A Modified Iterative Algorithm for Numerical Investigation of HIV Infection Dynamics
Abstract
:1. Introduction
2. Solution Procedure
2.1. Basic Idea of NIM
2.2. The Modified New Iterative Method (MNIM)
2.3. Convergence Analysis of MNIM
3. Application
3.1. NIM for HIV Infection Model
3.2. MNIM for the HIV Infection Model
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraverty, S.; Mahato, N.R.; Karunakar, P.; Rao, T.D. Advanced Numerical and Semi-Analytical Methods for Differential Equations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; ISBN 9781119423423. [Google Scholar]
- Tenenbamn, M.; Pollard, H. Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences; Dover publications Inc.: New York, NY, USA, 1963; ISBN 0486649407. [Google Scholar]
- Alexander, R. Solving Ordinary Differential Equations I: Nonstiff Problems (E. Hairer, SP Norsett, and G. Wanner). Siam Rev. 1990, 32, 485. [Google Scholar] [CrossRef]
- Hall, G.; Watt, J.M.; Hall, G.; Watt, J.W.; Watt, M. Modern Numerical Methods for Ordinary Differential Equations; Oxford University Press: Oxford, UK, 1976; ISBN 0198533489. [Google Scholar]
- Stetter, H.J. Analysis of Discretization Methods for Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 1973; Volume 23, ISBN 0387060081. [Google Scholar]
- Ortega, J.M.; Poole, W.G. An Introduction to Numerical Methods for Differential Equations; Pitman Publishing: London, UK, 1981; ISBN 0273016377. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Ordinary Differential Equations; Chapman and Hall/CRC: London, UK, 2017; ISBN 9781466569379. [Google Scholar]
- Ascher, U.M.; Petzold, L.R. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Epperson, J.F. An Introduction to Numerical Methods and Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 9781118367599. [Google Scholar]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A Theoretical Study of the Caputo–Fabrizio Fractional Modeling for Hearing Loss Due to Mumps Virus with Optimal Control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Zhang, Z.; Jain, S. Mathematical Model of Ebola and Covid-19 with Fractional Differential Operators: Non-Markovian Process and Class for Virus Pathogen in the Environment. Chaos Solitons Fractals 2020, 140, 110175. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Jarad, F.; Abdeljawad, T. On a Nonlinear Fractional Order Model of Dengue Fever Disease under Caputo-Fabrizio Derivative. Alexandria Eng. J. 2020, 59, 2305–2313. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. A Mathematical Theoretical Study of a Particular System of Caputo–Fabrizio Fractional Differential Equations for the Rubella Disease Model. Adv. Differ. Equ. 2020, 2020, 184. [Google Scholar] [CrossRef]
- Rezapour, S.; Mohammadi, H. A Study on the AH1N1/09 Influenza Transmission Model with the Fractional Caputo–Fabrizio Derivative. Adv. Differ. Equ. 2020, 2020, 488. [Google Scholar] [CrossRef]
- Rezapour, S.; Mohammadi, H.; Jajarmi, A. A New Mathematical Model for Zika Virus Transmission. Adv. Differ. Equ. 2020, 2020, 589. [Google Scholar] [CrossRef]
- Batistela, C.M.; Correa, D.P.F.; Bueno, Á.M.; Piqueira, J.R.C. SIRSi Compartmental Model for COVID-19 Pandemic with Immunity Loss. Chaos Solitons Fractals 2020, 2020, 110388. [Google Scholar] [CrossRef]
- Basnarkov, L. SEAIR Epidemic Spreading Model of COVID-19. Chaos Solitons Fractals 2021, 142, 110394. [Google Scholar] [CrossRef]
- Panwar, V.S.; Sheik Uduman, P.S.; Gómez-Aguilar, J.F. Mathematical Modeling of Coronavirus Disease COVID-19 Dynamics Using CF and ABC Non-Singular Fractional Derivatives. Chaos Solitons Fractals 2021, 2021, 110757. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the Model of HIV-1 Infection of CD4+ T-Cell with a New Approach of Fractional Derivative. Adv. Differ. Equ. 2020, 2020, 71. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, M.Y. Mathematical Analysis of the Global Dynamics of a Model for HIV Infection of CD4+ T Cells. Math. Biosci. 2006, 200, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Ongun, M.Y. The Laplace Adomian Decomposition Method for Solving a Model for HIV Infection of CD4+T Cells. Math. Comput. Model. 2011, 53, 597–603. [Google Scholar] [CrossRef]
- Merdan, M.; Gokdogan, A.; Erturk, V.S. An Approximate Solution of a Model for HIV Infection of CD4+ T Cells. Iran. J. Sci. Technol. Trans. A Sci. 2011, 35, 9–12. [Google Scholar]
- Yüzbaşi, Ş. A Numerical Approach to Solve the Model for HIV Infection of CD4+ T Cells. Appl. Math. Model. 2012, 36, 5876–5890. [Google Scholar] [CrossRef]
- Doǧan, N. Numerical Treatment of the Model for HIV Infection of CD4+ T Cells by Using Multistep Laplace Adomian Decomposition Method. Discret. Dyn. Nat. Soc. 2012, 2012, 976352. [Google Scholar] [CrossRef] [Green Version]
- Merdan, M. Homotopy Perturbation Method for Solving a Model for HIV Infection of CD4+ T Cells. İstanbul Ticaret Üniv. Fen Bilim. Derg. 2007, 6, 39–52. [Google Scholar]
- Merdan, M.; Gökdoǧan, A.; Yildirim, A. On the Numerical Solution of the Model for HIV Infection of CD4+ T Cells. Comput. Math. Appl. 2011, 62, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Ghoreishi, M.; Ismail, A.I.B.M.; Alomari, A.K. Application of the Homotopy Analysis Method for Solving a Model for HIV Infection of CD4+ T-Cells. Math. Comput. Model. 2011, 54, 3007–3015. [Google Scholar] [CrossRef]
- Malik, S.A.; Qureshi, I.M.; Amir, M.; Malik, A.N. Nature Inspired Computational Approach to Solve the Model for HIV Infection of CD4+ T Cells. Res. J. Recent Sci. 2014, 3, 67–76. [Google Scholar]
- Attaullah; Sohaib, M. Mathematical Modeling and Numerical Simulation of HIV Infection Model. Results Appl. Math. 2020, 7, 100118. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An Iterative Method for Solving Nonlinear Functional Equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Adwan, M.I.; Al-Jawary, M.A.; Tibaut, J.; Ravnik, J. Analytic and Numerical Solutions for Linear and Nonlinear Multidimensional Wave Equations. Arab J. Basic Appl. Sci. 2020, 27, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Al-Jawary, M.A.; Adwan, M.I.; Radhi, G.H. Three Iterative Methods for Solving Second Order Nonlinear ODEs Arising in Physics. J. King Saud Univ.-Sci. 2020, 32, 312–323. [Google Scholar] [CrossRef]
- AL-Jawary, M.A.; Abdul Nabi, A.Z.J. Three Iterative Methods for Solving Jeffery-Hamel Flow Problem. Kuwait J. Sci. 2020, 47, 1–13. [Google Scholar]
- Alderremy, A.A.; Elzaki, T.M.; Chamekh, M. New Transform Iterative Method for Solving Some Klein-Gordon Equations. Results Phys. 2018, 10, 655–659. [Google Scholar] [CrossRef]
- Ghosh, I.; Chowdhury, M.S.H.; Mt Aznam, S.; Rashid, M.M. Measuring the Pollutants in a System of Three Interconnecting Lakes by the Semianalytical Method. J. Appl. Math. 2021, 2021, 6664307. [Google Scholar] [CrossRef]
- Ghosh, I.; Chowdhury, M.S.H.; Mt Aznam, S.; Mawa, S. New Iterative Method for Solving Chemistry Problem. AIP Conf. Proc. 2021, 2365, 020012. [Google Scholar]
- Chowdhury, M.S.H.; Ghosh, I.; Aznam, S.M.; Mawa, S. A Novel Iterative Method for Solving Chemical Kinetics System. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1731–1743. [Google Scholar] [CrossRef]
- Shah, Z.; Nawaz, R.; Kumam, P.; Farid, S. Application of New Iterative Method to Time Fractional Whitham–Broer–Kaup Equations. Front. Phys. 2020, 8, 104. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Siddique, Z. Machine learning-based heart disease diagnosis: A systematic literature review. Artif. Intell. Med. 2022, 122, 102289. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.M.; Mahmud, M.A.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Nazim, R.; Siddique, Z.; Huebner, P. Detection of COVID-19 patients from CT scan and chest X-ray data using modified MobileNetV2 and LIME. Healthcare 2021, 9, 1099. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Ahad, M.T.; Soma, F.A.; Paul, S.; Chowdhury, A.; Luna, S.A.; Yazdan, M.M.; Rahman, A.; Siddique, Z.; Huebner, P. Detecting SARS-CoV-2 from chest X-Ray using artificial intelligence. IEEE Access 2021, 9, 35501–35513. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Gupta, K.D.; Islam, M.M.; Sen, S.; Rahman, M.; Shakhawat Hossain, M. COVID-19 symptoms detection based on nasnetmobile with explainable ai using various imaging modalities. Mach. Learn. Knowl. Extr. 2020, 2, 490–504. [Google Scholar] [CrossRef]
- Ahsan, M.M.; EAlam, T.; Trafalis, T.; Huebner, P. Deep MLP-CNN model using mixed-data to distinguish between COVID-19 and Non-COVID-19 patients. Symmetry 2020, 12, 1526. [Google Scholar] [CrossRef]
Parameters | Remark |
---|---|
Production rate of healthy T cells from bone marrow and thymus | |
Uninfected T cell natural turn-over rate | |
Healthy T-cell growth rate through mitosis | |
CD4+ T cells maximum concentration level in the body | |
The rate of infection | |
Natural turn-over rates of infected T cells | |
Number of virus particles assumed to be produced by infected T cells | |
Virus particle natural turnover rate |
LWCM [29] | cGP(2) [29] | GA-IPA [28] | GA-ASA [28] | LADM-Padé [21] | MVIM [26] | HPM [25] | Bessel Collocation [23] | NIM (Present Method) | MNIM (Present Method) | |
---|---|---|---|---|---|---|---|---|---|---|
0.2 | 7.50 × 10−6 | 5.81 × 10−6 | 1.32 × 10−3 | 1.32 × 10−3 | 7.77 × 10−5 | 7.85 × 10−5 | 7.78 × 10−5 | 4.87 × 10−3 | 6.979 × 10−6 | 1 × 10−10 |
0.4 | 2.70 × 10−5 | 2.11 × 10−5 | 1.06 × 10−3 | 1.06 × 10−3 | 1.65 × 10−4 | 3.00 × 10−4 | 1.95 × 10−4 | 2.56 × 10−2 | 0.0005035 | 7 × 10−10 |
0.6 | 7.34 × 10−5 | 5.74 × 10−5 | 1.69 × 10−3 | 1.69 × 10−3 | 2.43 × 10−3 | 8.49 × 10−4 | 1.10 × 10−3 | 6.81 × 10−2 | 0.006497 | 5.0 × 10−9 |
0.8 | 1.77 × 10−4 | 1.38 × 10−4 | 3.83 × 10−3 | 3.83 × 10−3 | 3.46 × 10−2 | 2.14 × 10−3 | 1.39 × 10−2 | 1.36 × 10−1 | 0.04157 | 2.14 × 10−8 |
1 | 3.98 × 10−4 | 3.98 × 10−4 | 4.19 × 10−3 | 4.18 × 10−3 | 2.58 × 10−1 | 5.14 × 10−3 | 7.89 × 10−2 | 2.04 × 10−1 | 0.1816 | 7.92 × 10−8 |
LWCM [29] | cGP(2) [29] | GA-IPA [28] | GA-ASA [28] | LADM-Padé [21] | MVIM [26] | HPM [25] | Bessel Collocation [23] | NIM (Present Method) | MNIM (Present Method) | |
---|---|---|---|---|---|---|---|---|---|---|
0.2 | 8.36 × 10−10 | 6.67 × 10−10 | 1.66 × 10−6 | 1.73 × 10−6 | 1.20 × 10−9 | 1.19 × 10−9 | 1.20 × 10−9 | 2.16 × 10−7 | 3.255 × 10−12 | 0 |
0.4 | 1.95 × 10−9 | 1.49 × 10−9 | 2.46 × 10−6 | 2.94 × 10−6 | 6.15 × 10−9 | 5.29 × 10−9 | 5.89 × 10−9 | 2.17 × 10−7 | 2.255 × 10−8 | 6 × 10−10 |
0.6 | 3.20 × 10−9 | 2.48 × 10−9 | 1.76 × 10−7 | 4.54 × 10−7 | 5.78 × 10−8 | 1.27 × 10−8 | 2.24 × 10−8 | 8.58 × 10−7 | 5.876 × 10−7 | 3.2 × 10−9 |
0.8 | 4.63 × 10−9 | 3.65 × 10−9 | 1.80 × 10−7 | 2.07 × 10−7 | 8.26 × 10−8 | 2.27 × 10−8 | 9.09 × 10−8 | 1.78 × 10−6 | 5.825 × 10−6 | 1.19 × 10−8 |
1 | 6.44 × 10−9 | 5.04 × 10−9 | 1.88 × 10−6 | 2.02 × 10−6 | 1.21 × 10−7 | 3.12 × 10−8 | 3.39 × 10−7 | 3.09 × 10−6 | 3.538 × 10−5 | 3.66 × 10−8 |
LWCM [29] | cGP(2) [29] | GA-IPA [28] | GA-ASA [28] | LADM-Padé [21] | MVIM [26] | HPM [25] | Bessel Collocation [23] | NIM (Present Method) | MNIM (Present Method) | |
---|---|---|---|---|---|---|---|---|---|---|
0.2 | 1.00 × 10−10 | 8.66 × 10−7 | 1.32 × 10−5 | 1.46 × 10−5 | 1.08 × 10−7 | 5.61 × 10−8 | 1.00 × 10−7 | 6.59 × 10−8 | 1.591 × 10−6 | 1 × 10−10 |
0.4 | 1.24 × 10−6 | 1.07 × 10−6 | 3.40 × 10−6 | 1.49 × 10−6 | 1.84 × 10−5 | 1.06 × 10−6 | 1.33 × 10−5 | 3.79 × 10−8 | 9.555 × 10−5 | 3 × 10−10 |
0.6 | 1.15 × 10−6 | 9.95 × 10−7 | 3.07 × 10−6 | 4.05 × 10−6 | 6.87 × 10−4 | 5.75 × 10−6 | 2.15 × 10−4 | 2.31 × 10−7 | 0.001025 | 8 × 10−10 |
0.8 | 9.50 × 10−7 | 8.21 × 10−7 | 7.91 × 10−6 | 7.03 × 10−6 | 4.71 × 10−3 | 2.01 × 10−5 | 1.53 × 10−3 | 7.87 × 10−7 | 0.005438 | 6 × 10−10 |
1 | 7.61 × 10−7 | 6.34 × 10−7 | 6.64 × 10−6 | 5.66 × 10−6 | 5.80 × 10−3 | 5.64 × 10−5 | 6.95 × 10−3 | 1.46 × 10−2 | 0.01965 | 2.4 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, I.; Rashid, M.M.; Mawa, S.; Roy, R.; Ahsan, M.M.; Uddin, M.R.; Gupta, K.D.; Ghosh, P. A Modified Iterative Algorithm for Numerical Investigation of HIV Infection Dynamics. Algorithms 2022, 15, 175. https://doi.org/10.3390/a15050175
Ghosh I, Rashid MM, Mawa S, Roy R, Ahsan MM, Uddin MR, Gupta KD, Ghosh P. A Modified Iterative Algorithm for Numerical Investigation of HIV Infection Dynamics. Algorithms. 2022; 15(5):175. https://doi.org/10.3390/a15050175
Chicago/Turabian StyleGhosh, Indranil, Muhammad Mahbubur Rashid, Shukranul Mawa, Rupal Roy, Md Manjurul Ahsan, Muhammad Ramiz Uddin, Kishor Datta Gupta, and Pallabi Ghosh. 2022. "A Modified Iterative Algorithm for Numerical Investigation of HIV Infection Dynamics" Algorithms 15, no. 5: 175. https://doi.org/10.3390/a15050175
APA StyleGhosh, I., Rashid, M. M., Mawa, S., Roy, R., Ahsan, M. M., Uddin, M. R., Gupta, K. D., & Ghosh, P. (2022). A Modified Iterative Algorithm for Numerical Investigation of HIV Infection Dynamics. Algorithms, 15(5), 175. https://doi.org/10.3390/a15050175