An Experimental Survey of Extended Resolution Effects for SAT Solvers on the Pigeonhole Principle
Abstract
:1. Introduction
- We analyze two simple methods to utilize extended variables in the search. Experimental results indicate that these methods can improve the performance of the solvers. This fact implies that if extended variables are properly selected and properly utilized, the extended resolution can practically improve the performance of the pigeonhole principle.
2. Preliminaries
2.1. SAT Problem
2.2. SAT Solver
Algorithm 1 Pseudo code of CDCL. |
Input: a CNF formula ∏ Output: SATISFIABLE or UNSATISFIABLE 1: level = 0 // decision level (depth of search tree) 2: learnts = ∅ // learnt clauses 3: inc_score = 1.0 // incremental value for VSIDS scores 4: conf // conflicting clause 5: learnt // learnt clause 6: blevel // level to backtrack 7: next // next decision variable 8: while true do 9: conf = unitPropagation(∏) 10: if conf ≠ NULL then 11: learnt = conflictAnalysis(∏, conf) 12: blevel = calcBackjumpLevel(learnt) 13: if blevel < 0 then 14: return UNSATISFIABLE 15: end if 16: for each var in learnt do 17: increaseVSIDSScores(var, inc_score) 18: end for 19: inc_score = inc_score / 0.95 20: learnts = learnts ∪ learnt 21: if restart() then 22: blevel = 0 23: end if 24: backjump(blevel) 25: level = blevel 26: else 27: next = chooseDecisionVariable(∏) 28: if next == NULL then 29: return SATISFIABLE 30: end if 31: assignValue(next) 32: level = level + 1 33: end if 34: end while |
2.3. Pigeonhole Principle
3. Related Work
4. Analysis Procedure
4.1. Full and Partial Extension
4.2. Prioritizing Extended Variables
Algorithm 2 Pseudo code of “m2” method. |
1: inc_score // incremental value for VSIDS scores 2: for each extended variable ev do 3: increaseVSIDSScores(ev, inc_score * R) 4: end for |
4.3. UNSAT Core Analysis
5. Experimental Results
5.1. Performance Comparison
5.2. DRUP Analysis
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Code of Our Proposed Methods
int num_org_vars; // calculated from the number of pigeons double evar_inc = 1e100; // incremental score for extended variables void bumpExtendedVars( const int num_org_vars, const int curr_restarts ){ if(curr_restarts != 0)return; const int nv = nVars(); for(int i = num_org_vars; i < nv; i++){ varBumpActivity(i, evar_inc); } } if(v < num_org_vars) activity[v] += inc; else activity[v] += inc ∗ evar_inc; if((v < num_org_vars && activity[v] > 1e100) || (v >= num_org_vars && activity[v] > 1e200)){ // Rescale: for(int i = 0; i < nVars(); i++) activity[i] ∗= 1e-100; var_inc ∗= 1e-100; } // Update order_heap with respect to new activity: if(order_heap.inHeap(v)) order_heap.decrease(v); } |
lbool Solver::solve_(){ ... int curr_restarts = 0; bumpExtendedVars(num_org_vars, curr_restarts); while (status == l_Undef){ double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts); status = search(rest_base ∗ restart_first); ... } |
void bumpExtendedVars(const int num_org_vars){ for(int i = num_org_vars; i < nVars(); i++){ varBumpActivity(i, var_inc ∗ 100); } } |
lbool Solver::solve_(){ ... int curr_restarts = 0; int num_org_vars; // calculated from the number of pigeons while (status == l_Undef){ bumpExtendedVars(num_org_vars, curr_restarts); double rest_base = luby_restart ? luby(restart_inc, curr_restarts) : pow(restart_inc, curr_restarts); status = search(rest_base ∗ restart_first); ... } |
References
- Cook, S.A. The Complexity of Theorem-Proving Procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, OH, USA, 3–5 May 1971; pp. 151–158. [Google Scholar] [CrossRef] [Green Version]
- Stephan, P.; Brayton, R.K.; Sangiovanni-Vincentelli, A.L. Combinational test generation using satisfiability. Trans. Comput. Aided Des. Integr. Circuits Syst. 2006, 15, 1167–1176. [Google Scholar] [CrossRef]
- Narodytska, N.; Kasiviswanathan, S.P.; Ryzhyk, L.; Sagiv, M.; Walsh, T. Verifying Properties of Binarized Deep Neural Networks. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, LA, USA, 2–7 February 2018; pp. 6615–6624. [Google Scholar] [CrossRef]
- Heule, M.J.H.; Kullmann, O.; Marek, V.W. Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer. In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2016-19th International Conference, Bordeaux, France, 5–8 July 2016; pp. 228–245. [Google Scholar] [CrossRef] [Green Version]
- Heule, M.J.H. Schur Number Five. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, LA, USA, 2–7 February 2018; pp. 6598–6606. [Google Scholar] [CrossRef]
- Bright, C.; Kotsireas, I.S.; Heinle, A.; Ganesh, V. Complex Golay pairs up to length 28: A search via computer algebra and programmatic SAT. J. Symb. Comput. 2021, 102, 153–172. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.; Logemann, G.; Loveland, D. A machine program for theorem-proving. Commun. ACM 1962, 5, 394–397. [Google Scholar] [CrossRef]
- Silva, J.P.M.; Sakallah, K.A. GRASP—A new search algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA, USA, 10–14 November 1996; pp. 220–227. [Google Scholar] [CrossRef] [Green Version]
- Tseitin, G.S. On the complexity of derivation in propositional calculus. In Automation of 468 Reasoning: 2: Classical Papers on Computational Logic 1967–1970; Springer: Berlin/Heidelberg, Germany, 1983; pp. 466–483. [Google Scholar] [CrossRef]
- Cook, S.A. A short proof of the pigeon hole principle using extended resolution. ACM Sigact News 1976, 8, 28–32. [Google Scholar] [CrossRef]
- Huang, J. Extended clause learning. Artif. Intell. 2010, 174, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Audemard, G.; Katsirelos, G.; Simon, L. A Restriction of Extended Resolution for Clause Learning SAT Solvers. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, GA, USA, 11–15 July 2010. [Google Scholar] [CrossRef]
- Heule, M.H., Jr.; Hunt, W.A.; Wetzler, N. Trimming while checking clausal proofs. In Proceedings of the Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013; pp. 181–188. [Google Scholar] [CrossRef]
- Eén, N.; Sörensson, N. An Extensible SAT-solver. In Proceedings of the Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003, Santa Margherita Ligure, Italy, 5–8 May 2003; pp. 502–518. [Google Scholar] [CrossRef]
- Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009; pp. 399–404. [Google Scholar]
- Ignatiev, A.; Morgado, A.; Marques-Silva, J. On Tackling the Limits of Resolution in SAT Solving. In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2017-20th International Conference, Melbourne, Australia, 28 August–1 September 2017; pp. 164–183. [Google Scholar] [CrossRef] [Green Version]
- Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001; pp. 530–535. [Google Scholar] [CrossRef]
- Bayardo, R.J., Jr.; Schrag, R. Using CSP Look-Back Techniques to Solve Real-World SAT Instances. In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, Providence, RI, USA, 27–31 July 1997; pp. 203–208. [Google Scholar] [CrossRef]
- Gomes, C.P.; Selman, B.; Kautz, H.A. Boosting Combinatorial Search Through Randomization. In Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, Madison, WI, USA, 26–30 July 1998; pp. 431–437. [Google Scholar] [CrossRef]
- Huang, J. The Effect of Restarts on the Efficiency of Clause Learning. In Proceedings of the IJCAI 2007, 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 2318–2323. [Google Scholar] [CrossRef]
- Audemard, G.; Simon, L. Refining Restarts Strategies for SAT and UNSAT. In Proceedings of the Principles and Practice of Constraint Programming-18th International Conference, CP 2012, Québec City, QC, Canada, 8–12 October 2012; Volume 7514, pp. 118–126. [Google Scholar] [CrossRef]
- Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2016-19th International Conference, Bordeaux, France, 5–8 July 2016; pp. 123–140. [Google Scholar] [CrossRef]
- Cherif, M.S.; Habet, D.; Terrioux, C. Combining VSIDS and CHB Using Restarts in SAT. In Proceedings of the 27th International Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France, 25–29 October 2021; pp. 20:1–20:19. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, X. Deep Cooperation of CDCL and Local Search for SAT. In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2021-24th International Conference, Barcelona, Spain, 5–9 July 2021; pp. 64–81. [Google Scholar] [CrossRef]
- Bacchus, F.; Winter, J. Effective Preprocessing with Hyper-Resolution and Equality Reduction. In Proceedings of the Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003, Santa Margherita Ligure, Italy, 5–8 May 2003; pp. 341–355. [Google Scholar] [CrossRef] [Green Version]
- Eén, N.; Biere, A. Effective Preprocessing in SAT Through Variable and Clause Elimination. In Proceedings of the Theory and Applications of Satisfiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, 19–23 June 2005; pp. 61–75. [Google Scholar] [CrossRef] [Green Version]
- Heule, M.; Järvisalo, M.; Biere, A. Efficient CNF Simplification Based on Binary Implication Graphs. In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2011-14th International Conference, SAT 2011, Ann Arbor, MI, USA, 19–22 June 2011; pp. 201–215. [Google Scholar] [CrossRef] [Green Version]
- Järvisalo, M.; Heule, M.; Biere, A. Inprocessing Rules. In Proceedings of the Automated Reasoning-6th International Joint Conference, IJCAR 2012, Manchester, UK, 26–29 June 2012; pp. 355–370. [Google Scholar] [CrossRef]
- Cook, S.A.; Reckhow, R.A. The relative efficiency of propositional proof systems. J. Symb. Log. 1979, 44, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Sinz, C.; Biere, A. Extended Resolution Proofs for Conjoining BDDs. In Proceedings of the Computer Science-Theory and Applications, First International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, 8–12 June 2006; pp. 600–611. [Google Scholar] [CrossRef]
- Kullmann, O. On a generalization of extended resolution. Discret. Appl. Math. 1999, 96, 149–176. [Google Scholar] [CrossRef]
- Järvisalo, M.; Biere, A.; Heule, M. Blocked Clause Elimination. In Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, 20–28 March 2010; pp. 129–144. [Google Scholar] [CrossRef] [Green Version]
- Wetzler, N.; Heule, M.J.H.; Hunt, W.A., Jr. DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs. In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2014-17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, 14–17 July 2014; pp. 422–429. [Google Scholar] [CrossRef]
- Kiesl, B.; Rebola-Pardo, A.; Heule, M.J.H. Extended Resolution Simulates DRAT. In Proceedings of the Automated Reasoning-9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, 14–17 July 2018; pp. 516–531. [Google Scholar] [CrossRef]
- Kiesl, B.; Rebola-Pardo, A.; Heule, M.J.; Biere, A. Simulating strong practical proof systems with extended resolution. J. Autom. Reason. 2020, 64, 1247–1267. [Google Scholar] [CrossRef]
- Huang, J. A Case for Simple SAT Solvers. In Proceedings of the Principles and Practice of Constraint Programming-CP 2007, 13th International Conference, CP 2007, Providence, RI, USA, 23–27 September 2007; pp. 839–846. [Google Scholar] [CrossRef]
- Manthey, N. Extended resolution in modern SAT solving. In Proceedings of the Joint Automated Reasoning Workshop and Deduktionstreffen: As part of the Vienna Summer of Logic—IJCAR, Vienna, Austria, 23–24 July 2014; pp. 26–27. [Google Scholar]
- Jabbour, S.; Lonlac, J.; Sais, L. Extending Resolution by Dynamic Substitution of Boolean Functions. In Proceedings of the IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, 7–9 November 2012; pp. 1029–1034. [Google Scholar] [CrossRef]
- Manthey, N.; Heule, M.; Biere, A. Automated Reencoding of Boolean Formulas. In Proceedings of the Hardware and Software: Verification and Testing-8th International Haifa Verification Conference, HVC 2012, Haifa, Israel, 6–8 November 2012; pp. 102–117. [Google Scholar] [CrossRef] [Green Version]
- Manthey, N. Coprocessor 2.0—A Flexible CNF Simplifier-(Tool Presentation). In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2012-15th International Conference, Trento, Italy, 17–20 June 2012; pp. 436–441. [Google Scholar] [CrossRef]
- Simon, L. Post Mortem Analysis of SAT Solver Proofs. In Proceedings of the POS-14. Fifth Pragmatics of SAT Workshop, a Workshop of the SAT 2014 Conference, Part of FLoC 2014 during the Vienna Summer of Logic, Vienna, Austria, 13 July 2014; pp. 26–40. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
Instance | n | #V | #C | #EV | #EC | M | M+m1 | M+m2 | G | G+m1 | G+m2 |
---|---|---|---|---|---|---|---|---|---|---|---|
no shuffle | 11 | 110 | 561 | 0 | 0 | 100.39 | 100.41 | 95.85 | 122.81 | 121.48 | 122.72 |
shuffle1 | 11 | 110 | 561 | 0 | 0 | 105.26 | 104.96 | 100.27 | 119.39 | 117.89 | 119.26 |
shuffle2 | 11 | 110 | 561 | 0 | 0 | 46.23 | 46.24 | 43.96 | 52.39 | 51.97 | 52.42 |
shuffle3 | 11 | 110 | 561 | 0 | 0 | 95.92 | 95.78 | 91.43 | 104.67 | 103.37 | 103.97 |
no shuffle | 12 | 132 | 738 | 0 | 0 | 935.58 | 934.61 | 882.17 | 519.32 | 515.74 | 532.06 |
shuffle1 | 12 | 132 | 738 | 0 | 0 | 1704.47 | 1711.09 | 1610.6 | 558.32 | 562.01 | 563.29 |
shuffle2 | 12 | 132 | 738 | 0 | 0 | 1744.06 | 1740.08 | 1645.67 | 3220.12 | 3215.18 | 3239.16 |
shuffle3 | 12 | 132 | 738 | 0 | 0 | 1709.55 | 1717.77 | 1616.86 | 219.16 | 219.7 | 221.88 |
no shuffle | 13 | 156 | 949 | 0 | 0 | 10,000 | 10,000 | 10,000 | 7684.53 | 7694.96 | 7794.97 |
shuffle1 | 13 | 156 | 949 | 0 | 0 | 10,000 | 10,000 | 10,000 | 4922.59 | 4973.9 | 4947.7 |
shuffle2 | 13 | 156 | 949 | 0 | 0 | 10,000 | 10,000 | 10,000 | 5931.81 | 5918.43 | 5914.93 |
shuffle3 | 13 | 156 | 949 | 0 | 0 | 10,000 | 10,000 | 10,000 | 5022.76 | 5028.17 | 5054.09 |
no shuffle | 14 | 182 | 1197 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle1 | 14 | 182 | 1197 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle2 | 14 | 182 | 1197 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle3 | 14 | 182 | 1197 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
no shuffle | 15 | 210 | 1485 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle1 | 15 | 210 | 1485 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle2 | 15 | 210 | 1485 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle3 | 15 | 210 | 1485 | 0 | 0 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
Instance | n | #V | #C | #EV | #EC | M | M+m1 | M+m2 | G | G+m1 | G+m2 |
---|---|---|---|---|---|---|---|---|---|---|---|
no shuffle | 11 | 200 | 921 | 90 | 360 | 131.55 | 4.17 | 24.76 | 94.38 | 14.76 | 48.75 |
shuffle1 | 11 | 200 | 921 | 90 | 360 | 40.88 | 3.12 | 14.1 | 51.37 | 9.29 | 102.69 |
shuffle2 | 11 | 200 | 921 | 90 | 360 | 58.36 | 2.76 | 9.49 | 113.04 | 14.58 | 170.89 |
shuffle3 | 11 | 200 | 921 | 90 | 360 | 60.16 | 2.92 | 6.27 | 48.06 | 9.58 | 82.89 |
no shuffle | 12 | 242 | 1178 | 110 | 440 | 1607.91 | 126.33 | 1806.44 | 1125.69 | 91.54 | 110.03 |
shuffle1 | 12 | 242 | 1178 | 110 | 440 | 2302.25 | 55.9 | 1249.96 | 748.22 | 61.34 | 86.71 |
shuffle2 | 12 | 242 | 1178 | 110 | 440 | 2411.08 | 138.41 | 1890.52 | 660.61 | 57.07 | 135.91 |
shuffle3 | 12 | 242 | 1178 | 110 | 440 | 2326.94 | 324.51 | 771.5 | 893.94 | 70.4 | 559.47 |
no shuffle | 13 | 288 | 1477 | 132 | 528 | 10,000 | 2427.4 | 10,000 | 8565.22 | 434.97 | 478.05 |
shuffle1 | 13 | 288 | 1477 | 132 | 528 | 10,000 | 1045.38 | 10,000 | 3447.85 | 503.82 | 364.8 |
shuffle2 | 13 | 288 | 1477 | 132 | 528 | 10,000 | 2516.14 | 10,000 | 10,000 | 282.12 | 1679.05 |
shuffle3 | 13 | 288 | 1477 | 132 | 528 | 10,000 | 2702.69 | 10,000 | 3213.34 | 394.55 | 250.65 |
no shuffle | 14 | 338 | 1821 | 156 | 624 | 10,000 | 10,000 | 10,000 | 10,000 | 6575.03 | 4045.79 |
shuffle1 | 14 | 338 | 1821 | 156 | 624 | 10,000 | 10,000 | 10,000 | 10,000 | 2537.06 | 3255.24 |
shuffle2 | 14 | 338 | 1821 | 156 | 624 | 10,000 | 10,000 | 10,000 | 10,000 | 3006.74 | 3374.63 |
shuffle3 | 14 | 338 | 1821 | 156 | 624 | 10,000 | 10,000 | 10,000 | 10,000 | 2625.2 | 3688.71 |
no shuffle | 15 | 392 | 2213 | 182 | 728 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle1 | 15 | 392 | 2213 | 182 | 728 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle2 | 15 | 392 | 2213 | 182 | 728 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle3 | 15 | 392 | 2213 | 182 | 728 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
Instance | n | #V | #C | #EV | #EC | M | M+m1 | M+m2 | G | G+m1 | G+m2 |
---|---|---|---|---|---|---|---|---|---|---|---|
no shuffle | 11 | 119 | 597 | 9 | 36 | 101.48 | 51.14 | 50.4 | 105.33 | 65.76 | 78.55 |
shuffle1 | 11 | 119 | 597 | 9 | 36 | 45.8 | 101.2 | 40.33 | 79.43 | 122.02 | 44.11 |
shuffle2 | 11 | 119 | 597 | 9 | 36 | 98.69 | 97.87 | 40.6 | 170.46 | 105.53 | 91.8 |
shuffle3 | 11 | 119 | 597 | 9 | 36 | 44.82 | 100.02 | 41.85 | 56.57 | 47.55 | 108.75 |
no shuffle | 12 | 142 | 778 | 10 | 40 | 2789.98 | 1774.52 | 693.75 | 1014.79 | 762.31 | 565.39 |
shuffle1 | 12 | 142 | 778 | 10 | 40 | 3293.2 | 1765.4 | 702.2 | 615.44 | 592.57 | 1253.2 |
shuffle2 | 12 | 142 | 778 | 10 | 40 | 2805.84 | 1815.72 | 703.13 | 622.15 | 922.09 | 611.21 |
shuffle3 | 12 | 142 | 778 | 10 | 40 | 1728.68 | 1837.56 | 705.31 | 674.8 | 592.45 | 759.31 |
no shuffle | 13 | 167 | 993 | 11 | 44 | 10,000 | 10,000 | 10,000 | 10,000 | 7442.11 | 10,000 |
shuffle1 | 13 | 167 | 993 | 11 | 44 | 10,000 | 10,000 | 10,000 | 10,000 | 6585.62 | 10,000 |
shuffle2 | 13 | 167 | 993 | 11 | 44 | 10,000 | 10,000 | 10,000 | 7435.61 | 5155.5 | 10,000 |
shuffle3 | 13 | 167 | 993 | 11 | 44 | 10,000 | 10,000 | 10,000 | 6573.76 | 10,000 | 10,000 |
no shuffle | 14 | 194 | 1245 | 12 | 48 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle1 | 14 | 194 | 1245 | 12 | 48 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle2 | 14 | 194 | 1245 | 12 | 48 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle3 | 14 | 194 | 1245 | 12 | 48 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
no shuffle | 15 | 223 | 1537 | 13 | 52 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle1 | 15 | 223 | 1537 | 13 | 52 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle2 | 15 | 223 | 1537 | 13 | 52 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
shuffle3 | 15 | 223 | 1537 | 13 | 52 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000 |
M | M+m1 | M+m2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | n | #V | #C | ECR | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value |
no shuffle | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.80 | 0.77 | 0.50 | 0.51 | |||
shuffle1 | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.10 | 0.32 | 0.70 | 0.81 | |||
shuffle2 | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.50 | 0.74 | 0.70 | 0.76 | |||
shuffle3 | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.50 | 0.77 | 0.60 | 0.61 | |||
no shuffle | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.80 | 0.59 | 0.70 | 0.80 | |||
shuffle1 | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.60 | 0.82 | 0.50 | 0.55 | |||
shuffle2 | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.30 | 0.31 | 0.00 | 0.00 | |||
shuffle3 | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.00 | 0.68 | 0.60 | 0.82 | |||
no shuffle | 13 | 288 | 1477 | 0.36 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle1 | 13 | 288 | 1477 | 0.36 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle2 | 13 | 288 | 1477 | 0.36 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle3 | 13 | 288 | 1477 | 0.36 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
G | G+m1 | G+m2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | n | #V | #C | ECR | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value |
no shuffle | 11 | 200 | 921 | 0.39 | 0.00 | 0.36 | 0.70 | 0.79 | 0.10 | 0.64 | |||
shuffle1 | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.70 | 0.80 | 0.00 | 0.22 | |||
shuffle2 | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.60 | 0.78 | 0.10 | 0.37 | |||
shuffle3 | 11 | 200 | 921 | 0.39 | 0.00 | 0.00 | 0.70 | 0.76 | 0.00 | 0.08 | |||
no shuffle | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.60 | 0.85 | 0.20 | 0.65 | |||
shuffle1 | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.70 | 0.80 | 0.00 | 0.54 | |||
shuffle2 | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.60 | 0.80 | 0.50 | 0.71 | |||
shuffle3 | 12 | 242 | 1178 | 0.37 | 0.00 | 0.00 | 0.60 | 0.85 | 0.00 | 0.12 | |||
no shuffle | 13 | 288 | 1477 | 0.36 | no-data | no-data | no-data | 0.90 | 0.90 | 0.20 | 0.48 | ||
shuffle1 | 13 | 288 | 1477 | 0.36 | 0.00 | 0.00 | 0.80 | 0.82 | 0.70 | 0.86 | |||
shuffle2 | 13 | 288 | 1477 | 0.36 | no-data | no-data | no-data | 0.60 | 0.85 | 0.30 | 0.51 | ||
shuffle3 | 13 | 288 | 1477 | 0.36 | 0.00 | 0.00 | 0.60 | 0.82 | 0.80 | 0.83 |
M | M+m1 | M+m2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | n | #V | #C | ECR | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value |
no shuffle | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.10 | 0.02 | 0.00 | 0.00 | |||
shuffle1 | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.06 | |||
shuffle2 | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.10 | 0.01 | 0.20 | 0.04 | |||
shuffle3 | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.20 | 0.04 | 0.10 | 0.03 | |||
no shuffle | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
shuffle1 | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | |||
shuffle2 | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | |||
shuffle3 | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | |||
no shuffle | 13 | 167 | 993 | 0.04 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle1 | 13 | 167 | 993 | 0.04 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle2 | 13 | 167 | 993 | 0.04 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle3 | 13 | 167 | 993 | 0.04 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
G | G+m1 | G+m2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | n | #V | #C | ECR | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value | top-10 | top-100 | p-Value |
no shuffle | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.10 | 0.01 | 0.10 | 0.27 | |||
shuffle1 | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | |||
shuffle2 | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.10 | 0.02 | 0.00 | 0.00 | |||
shuffle3 | 11 | 119 | 597 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
no shuffle | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.10 | 0.01 | 0.00 | 0.00 | |||
shuffle1 | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
shuffle2 | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.10 | 0.02 | 0.00 | 0.02 | |||
shuffle3 | 12 | 142 | 778 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.04 | |||
no shuffle | 13 | 167 | 993 | 0.04 | no-data | no-data | no-data | 0.10 | 0.02 | no-data | no-data | no-data | |
shuffle1 | 13 | 167 | 993 | 0.04 | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data | no-data |
shuffle2 | 13 | 167 | 993 | 0.04 | 0.00 | 0.00 | 0.10 | 0.01 | no-data | no-data | no-data | ||
shuffle3 | 13 | 167 | 993 | 0.04 | 0.00 | 0.00 | no-data | no-data | no-data | no-data | no-data | no-data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonobe, T. An Experimental Survey of Extended Resolution Effects for SAT Solvers on the Pigeonhole Principle. Algorithms 2022, 15, 479. https://doi.org/10.3390/a15120479
Sonobe T. An Experimental Survey of Extended Resolution Effects for SAT Solvers on the Pigeonhole Principle. Algorithms. 2022; 15(12):479. https://doi.org/10.3390/a15120479
Chicago/Turabian StyleSonobe, Tomohiro. 2022. "An Experimental Survey of Extended Resolution Effects for SAT Solvers on the Pigeonhole Principle" Algorithms 15, no. 12: 479. https://doi.org/10.3390/a15120479
APA StyleSonobe, T. (2022). An Experimental Survey of Extended Resolution Effects for SAT Solvers on the Pigeonhole Principle. Algorithms, 15(12), 479. https://doi.org/10.3390/a15120479