
Citation: Sonobe, T. An Experimental

Survey of Extended Resolution

Effects for SAT Solvers on the

Pigeonhole Principle. Algorithms

2022, 15, 479. https://doi.org/

10.3390/a15120479

Academic Editor: Hirotaka Ono

Received: 17 November 2022

Accepted: 14 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An Experimental Survey of Extended Resolution Effects for SAT
Solvers on the Pigeonhole Principle
Tomohiro Sonobe

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan;
tomohiro_sonobe@nii.ac.jp

Abstract: It has been proven that extended resolution (ER) has more powerful reasoning than general
resolution for the pigeonhole principle in Cook’s paper. This fact indicates the possibility that a
solver based on extended resolution can exceed Boolean satisfiability problem solvers (SAT solvers
for short) based on general resolution. However, few studies have provided practical evidence of
this assumption. This paper explores how extended resolution can improve SAT solvers by using the
pigeonhole principle, which was the first problem solved by ER in polynomial steps. In fact, although
Cook’s paper introduced how to add auxiliary variables, there is no evidence that these variables
are really useful for practical solvers. We try to answer the question: If the SAT solver can add
appropriate auxiliary variables as proposed in Cook’s paper, can the solver enhance its performance
by utilizing these variables? Experimental results show that if the solver properly prioritizes the
extended variables in the search, the solver can end the search in a shorter time.

Keywords: search; SAT solver; extended resolution

1. Introduction

The Boolean satisfiability problem (SAT problem for short) deals with whether spe-
cific Boolean variables can evaluate whether a given Boolean formula is true. The SAT
problem is known as the first NP-complete problem [1]. Many practical problems can be
reduced to SAT, and there are many applications, such as circuit design [2], neural network
verification [3], and mathematical problem solving [4–6], where SAT can be applied.

To solve the Boolean satisifiability problem, we use what is called a SAT solver which
is based on general resolution. The state-of-the-art SAT solvers are based on a backtrack
search algorithm, called the Davis–Putnum–Logemann–Loveland (DPLL) algorithm [7].
The DPLL has been enhanced by a conflict clause learning mechanism [8], and today
the DPLL, combined with clause learning, is called the Conflict-Driven Clause Learning
(CDCL) algorithm. Clause learning conducts multiple resolution processes when a conflict
occurs in a search and then derives a new learned clause. On the other hand, extended
resolution (ER) [9] is different from general resolution. ER introduces new variables (i.e.,
extended variables) that do not exist in a given formula. Cook proved that the pigeonhole
principle can be solved in polynomial steps by using extended resolution [10]. From this
point of view, there is a possibility that solvers with ER can outperform the solvers based
on CDCL, at least for the pigeonhole principle.

However, today’s SAT solvers are still based on CDCL that uses general resolution.
One of the main reasons is that there is no stable way to choose effective extended variables.
Although existing research such as [11,12] tried to find extended variables that reduce the
size of clauses (or resolution steps), there is much room for improvement. In this paper, we
try to answer the question: If the SAT solver can add appropriate extended variables as
proposed in [10], can the solver enhance its performance by utilizing these variables for
the pigeonhole principle? The extended variables introduced in [10] are theoretically the
most suitable but their practical application is not clear. As a first step, we confirm that

Algorithms 2022, 15, 479. https://doi.org/10.3390/a15120479 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120479
https://doi.org/10.3390/a15120479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0995-7234
https://doi.org/10.3390/a15120479
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120479?type=check_update&version=2


Algorithms 2022, 15, 479 2 of 15

trying to solve a SAT problem by adding extended variables has almost no effect. Then, we
analyze two simple methods to leverage these variables in a search. From experimental
results, we show that our method can speed up the overall processing time. In addition,
analytical results of the DRUP (Delete Reverse Unit Propagation) proof [13] reveal that our
method can utilize extended variables more frequently. We provide practical evidence that
extended resolution (variables) can boost the performance of CDCL solvers.

Our contributions are as follows:

• We introduce two ways to add extended variables: full extension introduced by [10]
and partial extension by restricting a large part of the variables in [10].

• We show that trying to solve instances of the pigeonhole principle with full and partial
extension using basic solvers (MiniSAT [14] and Glucose [15]) has almost no effect.

• We analyze two simple methods to utilize extended variables in the search. Experi-
mental results indicate that these methods can improve the performance of the solvers.
This fact implies that if extended variables are properly selected and properly utilized,
the extended resolution can practically improve the performance of the pigeonhole
principle.

Note that our aim is neither to tackle difficult (or large) pigeonhole principle instances
(e.g., [16]) nor to develop a specific solver better than state-of-the-art solvers for the pigeon-
hole principle, but to analyze the effect of extended resolution based on [10]. From that
perspective, the implementation of our contribution is a proof of concept. However, our
proposed methods can be easily applied to state-of-the-art solvers because the methods do
not depend on implementation of specific solvers. Although we assume the ideal situation
that how to add extended variables is known in advance, our experimental results can be a
guide to build ER solvers.

The rest of the paper is organized as follows. Section 2 explains the background of this
paper, and Section 3 introduces some existing works. Section 4 details procedures of our
analysis, and Section 5 shows experimental results. Finally, Section 6 concludes the paper.

2. Preliminaries
2.1. SAT Problem

The SAT problem consists of Boolean variables. A literal is either a positive form or
a negative form of a Boolean variable. A positive (negative) literal is classified as true
if the corresponding variable is deemed to be true (false). The SAT problem is given
as Conjunctive Normal Form (CNF) in general, where a CNF consists of a conjunction
(logical and) of clauses, and a clause consists of a disjunction (logical or) of literals. The
SAT problem asks whether a variable assignment that satisfies (i.e., evaluates as true) the
given CNF exists. Cook proved the SAT problem is the first NP-complete problem [1]. An
SAT instance is satisfiable if there is at least one valid variable assignment, otherwise it is
unsatisfiable.

2.2. SAT Solver

Solvers for SAT problem are called SAT solvers. The mainstream algorithm for practi-
cal instances (no random generation) is a backtracking search, which is called the Davis–
Putnam–Logemann–Loveland (DPLL) algorithm [7]. The DPLL has been enhanced by
adding a conflict clause learning mechanism [8], and today the DPLL combined with
the clause learning is called the Conflict-Driven Clause Learning (CDCL) algorithm.
Algorithm 1 shows the pseudo code of the CDCL. The details are in [14].

In the algorithm, unit propagation Line 9) conducts forcing assignments to variables
in unit clauses in which only one remaining literal is unassigned, and the others are false.
After propagation, there can be a conflicting clause. A clause is in conflict when all of
its literals are false. The clause learning (Line 11) conducts multiple resolution processes



Algorithms 2022, 15, 479 3 of 15

when a conflict in the search occurs (Line 10). Suppose there are two clauses, (x ∨ A) and
(¬x ∨ B), where A and B are sub-clauses. Resolution on the variable x is defined as follows:

(x ∨ A), (¬x ∨ B)
(A ∨ B)

This is the reason why the CDCL solvers are based on the resolution. The most popular
learning scheme (i.e., what kind of clauses should be selected for resolution) is first-UIP [17].

Algorithm 1 Pseudo code of CDCL.

Input: a CNF formula ∏
Output: SATISFIABLE or UNSATISFIABLE

1: level = 0 // decision level (depth of search tree)
2: learnts = ∅ // learnt clauses
3: inc_score = 1.0 // incremental value for VSIDS scores
4: conf // conflicting clause
5: learnt // learnt clause
6: blevel // level to backtrack
7: next // next decision variable
8: while true do
9: conf = unitPropagation(∏)

10: if conf 6= NULL then
11: learnt = conflictAnalysis(∏, conf)
12: blevel = calcBackjumpLevel(learnt)
13: if blevel < 0 then
14: return UNSATISFIABLE
15: end if
16: for each var in learnt do
17: increaseVSIDSScores(var, inc_score)
18: end for
19: inc_score = inc_score / 0.95
20: learnts = learnts ∪ learnt
21: if restart() then
22: blevel = 0
23: end if
24: backjump(blevel)
25: level = blevel
26: else
27: next = chooseDecisionVariable(∏)
28: if next == NULL then
29: return SATISFIABLE
30: end if
31: assignValue(next)
32: level = level + 1
33: end if
34: end while

After learning a learnt clause, backjump (Line 24) [18] undoes the variable assignment
to a certain level (depth of search tree) where the newly learnt clause becomes a unit. The
level to backjump is calculated at Line 12 (“calcBackjumpLevel” function) from the learnt
clause. If the learnt clause cannot be a unit, then the given formula is unsatisfiable (Lines
13 and 14). While general backtracking just cancels the assignment of the last variable,
backjumping directly goes back to the culprit variable that causes the conflict (and is
included in the learnt clause).

Restart (Line 21) [19] cancels all the variable assignments. SAT solvers are often stuck
in a desert search space where no solution exists and no useful information (i.e., useful



Algorithms 2022, 15, 479 4 of 15

learnt clause) can be extracted. Restart is effective to escape such a search area. There are
two types for determining when to restart: statically [20] and dynamically [21].

If there is no conflict after the unit propagation, decision process chooses a variable,
called decision variable, to be assigned (Line 27). The most popular decision heuristic is
the Variable State Independent Decaying Sum (VSIDS) [17]. The VSIDS attaches a score for
each variable and chooses the highest scored variable at decision. The scores are increased
when the corresponding variable is included in a learnt clause (Lines 16 and 17). The
incremental value for the VSIDS score grows exponentially (Line 19) to prioritize variables
recently assigned and to neglect past scores. In recent solvers, machine-learning-based
scores such as Learning Rate Branching (LRB) [22] are used together. There are also other
decision techniques that combine multiple methods [23,24]. If all the variables are assigned,
then the given formula is satisfiable (Lines 28 and 29).

Before starting the search, preprocessing [25–27] simplifies the given CNF. Instances
made from real-world applications sometimes include redundant clauses. For example,
a clause A = (a ∨ b ∨ c) is redundant if there is a clause B = (a ∨ b) because when B is
satisfied A is also satisfied. Subsumption, as one of preprocessing techniques, removes
these clauses. Recent solvers conduct inprocessing [28] that simplifies the clauses and
variables by using techniques of preprocessing during a search.

2.3. Pigeonhole Principle

The pigeonhole principle (PHP) [29] is defined as follows.

Definition 1. (Pigeonhole Principle). The pigeonhole principle asks whether all n > 1 pigeons
can enter n− 1 holes so that one pigeon is at one hole. In other word, there is no injective function
mapping from {1, 2, . . . , n} to {1, 2, . . . , n− 1} for n > 1.

The answer is clearly no. Thus a SAT instance converted from the pigeonhole principle
is unsatisfiable. For each integer n > 1, the pigeonhole principle is formulated as follows. A
variable Pij for 1 ≤ i ≤ n and i ≤ j ≤ n− 1 is true when pigeon i is at hole j. The constraints
are described as a set of clauses: one pigeon at least in one hole (at least one constraint) is

(Pi,1 ∨ Pi,2 ∨ . . . ∨ Pi,n−1) f or 1 ≤ i ≤ n (1)

and one hole containing at most one pigeon (at most one constraint) is

(¬Pi,k ∨ ¬Pj,k) f or 1 ≤ i < j ≤ n, 1 ≤ k ≤ n− 1 (2)

The pigeonhole principle formula Sn constitutes the conjunction of Formulas (1) and (2).
Cook [10] proved that the PHP can be solved in polynomial steps by using extended

resolution [9]. Given a formula F, extended resolution is a proof system to apply the general
resolution on the extended formula F∗, where F∗ is obtained by adding redundant clauses
to F. Cook introduced a new variable Qi,j below:

Qi,j ≡ (Pi,j ∨ (Pi,n−1 ∧ Pn,j)) f or 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2 (3)

The formula is expressed as the following four clauses:

Qi,j ∨ ¬Pi,j

Qi,j ∨ ¬Pi,n−1 ∨ ¬Pn,j

¬Qi,j ∨ Pi,j ∨ Pi,n−1

¬Qi,j ∨ Pi,j ∨ Pn,j

The addition of these clauses to the original PHP formula guarantees the satisfiability
equivalency. We describe the newly introduced variable Qi,j as an extended variable and
a clause including extended variables as an extended clause. Using O(n3) resolutions



Algorithms 2022, 15, 479 5 of 15

on every Pi,j variable, only the extended variables remain. Hence, the formula Sn can be
reduced to Sn−1. By repeating the same manner, we can derive S2 = P1,1 ∧ P2,1 ∧ (¬P1,1 ∨
¬P2,1) that can be easily proved to be unsatisfiable.

Example 1. For a case where the number of pigeons is 3 (n = 3), Formula (1) is
(P1,1 ∨ P1,2) ∧ (P2,1 ∨ P2,2) ∧ (P3,1 ∨ P3,2)
Formula (2) is
(¬P1,1 ∨¬P2,1)∧ (¬P1,1 ∨¬P3,1)∧ (¬P2,1 ∨¬P3,1)∧ (¬P1,2 ∨¬P2,2)∧ (¬P1,2 ∨¬P3,2)∧

(¬P2,2 ∨ ¬P3,2)
Formula (3) is
Q1,1 ≡ (P1,1 ∨ (P1,2 ∧ P3,1)) ∧Q2,1 ≡ (P2,1 ∨ (P2,2 ∧ P3,1))

3. Related Work

There are various works related to extended resolution for SAT solvers.
Tseitin [9] first introduced the extension rule adding a new variable to the original

formula and retaining its satisfiability-equivalency. Cook [10] used this extension rule, i.e.,
as extended resolution, and established the polynomial-step solution of the pigeonhole
principle. Although Tseitin’s original extension was the form x ↔ (¬a ∨ ¬b), more general
extensions (including [10]) are commonly used [30]. Kullmann [31] generalized extended
resolution as an addition of blocked clauses and proved it can speed up resolution proofs
(later, in reverse, blocked clause elimination [32] was shown to be helpful for SAT solvers).
DRAT (Deletion Resolution Asymmetric Tautology) [33], used as the standard proof format
(known as the successor of DRUP) for unsatisfiable instances, has also been proven to
generalize extended resolution [34,35].

Huang [11] proposed extended clause learning (ECL). It conducts an extended res-
olution when a conflict occurs. When a clause γ = α ∨ β such that |α| ≥ 2 and |β| ≥ 1
is learnt by a standard learning scheme (e.g., 1-UIP), the ECL learns clauses (x ∨ β) and
(x ↔ α) instead of γ where x is a fresh variable. The ECL only applies the extension when
|γ| > 30 and conducts a restart after the extension. The author implemented the ECL on
Tinisat [36] and confirmed that TiniSAT with ECL could solve more instances for specific
problems. Audemard et al. [12] proposed a local extension. When two consecutive learnt
clauses Ci = (¬l1 ∨ D) and Ci+1 = (¬l2 ∨ D) are derived, a new variable v ↔ (l1 ∨ l2)
is introduced. The clauses Ci and Ci+1 can be replaced with C′ = (¬v ∨ D); thus, the
number of learnt clauses can be reduced. Moreover , all clauses, including l1 and l2, can
be replaced by using the variable v (a clause (l1 ∨ l2 ∨ A) is equivalent to (v ∨ A)). They
implemented the proposed method on MiniSAT 2.2 and (the first version of) Glucose and
confirmed performance improvements on instances of SAT Competition 2007 and 2009.
Manthey [37] improved the work by using a Bloom filter and reducing some overheads.
Jabbour et al. [38] proposed a way to detect auxiliary variables by exploiting the hidden
Boolean functions used for the problem encoding. The method tries to detect a new variable
y = (x1 ∨ . . . ∨ xn) or y = (x1 ∧ . . . ∧ xn) (equivalent to ¬y = (¬x1 ∨ . . . ∨ ¬xn)) during
the search and then substitutes the variable y for clauses including (x1 ∨ . . . ∨ xn). They
implemented the method to MiniSAT 2.2 and attained a performance gain on specific
problem instances. Manthey proposed blocked variable addition (BVA) [39] as a prepro-
cessing technique. BVA introduces a new variable that reduces the number of clauses in
a given CNF instance, in reverse manner of general resolution. Although we tried BVA
implemented in a coprocessor [40] on PHP instances as a preliminary experiment, BVA
did not reproduce the extended variables introduced by Cook [10]. Ignatiev et al. [16]
tackled the PHP as a MAXSAT problem by transforming the original SAT problem. In fact,
they solved larger instances than the ones we try. Our focus is not to challenge solving
difficult (or large) instances but to analyze the practical effect of extended resolution in a
(theoretically) ideal condition.

As a representative instance that extended resolution was proved to be powerful in
theory, we show the practical usefulness of extended resolution on the PHP in this paper.



Algorithms 2022, 15, 479 6 of 15

4. Analysis Procedure

We analyze the effect of extended resolution on the PHP, i.e., the effect of extended
variables, by asking two questions: (1) Can extended variables speed up a solver’s search?
and (2) How do extended variables affect proof of a formula’s unsatisfiability? For speeding
up solvers, we introduce two ways to prioritize the extended variables as decision variables.
Then, we observe whether the extended variables can really enhance the search efficiency
by measuring processing times. Moreover, we also survey the solver DRUP’s proof [13]
that represents the resolution steps leading to an empty clause, i.e., unsatisfiability of the
formula.

4.1. Full and Partial Extension

We use two types of variable extension, full and partial. Full extension is the same
as the one proposed in [10], using all the extended variable Qi,j in Formula (3). Partial
extension uses Qi,j for only i = 1. The right-hand side of Formula (3), Pi,j ∨ (Pi,n−1 ∧ Pn,j),
is equivalent to (¬Pi,j ⇒ (Pi,n−1 ∧ Pn,j)), which propositionally means that if pigeon i does
not enter into hole j, then pigeon i enters into hole n− 1 and pigeon n enters into hole j.
Thus, if Pi,j = False, then pigeon i and n are fixed to hole n− 1 and j, respectively. This
constraint can lead to a shortcut because positions of two pigeons are fixed by assigning
only one variable (Pi,j). Note that all the pigeons are not forced to enter a specific hole in
the original formula, which means that proving the unsatisfiability needs to consider all
the permutation of pigeon-hole assignments. Therefore, adding extended variables only
for a pigeon (i = 1) can be sufficiently helpful to SAT solvers.

4.2. Prioritizing Extended Variables

The extended variables are actually redundant from the perspective of logical equiva-
lence; the satisfiability of a formula without extended variables does not change. In fact,
the problem size expansion can deteriorate the solver’s performance, and it is the case for
extended variables (see the experimental results below). To reduce the redundancy of a
SAT problem, state-of-the-art SAT solvers conduct preprocessing on the given instance.
Preprocessing [26] of a CNF removes some variables and clauses to shrink the size of
the problem instance while preserving the logical equivalence. Preprocessing comprises
subsumption, variable elimination, and hyper resolution. Extended variables are also the
target of preprocessing (i.e., variable elimination). Hence, we switch off the preprocessing
in the experiments.

Merely adding extended variables in the original formula does not affect the solvers
since they do not know which variables are extended ones or not. The solvers should
utilize these variables to speed up their efficiency. To this end, we introduce two methods
to prioritize the extended variables as decision variables at the early phase of the search.
The actual codes are in Appendix A.

One is a simple way: extended variables are always selected prior to non-extended
variables. For each decision, the solver chooses an unassigned extended variable with
the highest VSIDS score. If there remain no unassigned extended variables, then a non-
extended variable is selected. We call this method “m1”. In practice, the method is executed
in the “chooseDecisionVariable” function in Algorithm 1.

The other way is shown in Algorithm 2. We denote this method “m2”. This function
is called after every restart, just after the “restart()” function in Algorithm 1. The constant R
is greater than 1 in order to add larger VSIDS score than the usual (inc_score is the regular
value for increasing VSIDS scores). It induces the extended variables being selected as
decision variables at the early phase after a restart. We try a couple of R values in the
following experiments and choose the best one.



Algorithms 2022, 15, 479 7 of 15

Algorithm 2 Pseudo code of “m2” method.

1: inc_score // incremental value for VSIDS scores
2: for each extended variable ev do
3: increaseVSIDSScores(ev, inc_score * R)
4: end for

4.3. UNSAT Core Analysis

In addition to processing time, we also analyze the DRUP proof for each instance.
The DRUP proof is a record of how the empty clause (causing the unsatisfiability of the
instance) is derived: which clause is used for resolution to generate a new learnt clause. By
analyzing this core, we can count the frequency of each clause that contributes to prove
the unsatisfiability. For example, assume that there is an unsatisfiable CNF that consists
of three clauses, A, B, and C. A SAT solver outputs a DRUP proof that tells that a learnt
clause D is generated from A and B, a learnt clause E is from B and C, and finally an empty
clause is from D and E. In this case, the frequency of each clause, A, B, and C, is 1, 2, and 1,
respectively (note that clause B is used twice for deriving clause D and E).

If extended variables and its clauses really impact the solution, these clauses can
appear frequently in the DRUP proof. We use DRUP-trim [13] to translate the DRUP proof
into a resolution graph (TRACECHECK format (http://fmv.jku.at/tracecheck/README.
tracecheck, accessed on 20 November 2022)), and then count the frequency of each clause.
After sorting the frequency, we observe the frequently used clauses (e.g., top-100).

The TRACECHECK format is as follows:

cindex, l1, l2, . . . , lx, 0, a1, a2, . . . , ay, 0

Each element is separated by a single space (commas are used for readability in the above
example). One line corresponds to one clause. The number 0 is used as a delimiter. The
cindex stands for its index: original clauses in a CNF with m clauses have an index 1 to m,
and derived (learnt) clauses have an index more than m. The clause has x literals: l1, l2, . . . ,
lx. If the clause is a derived one, the clauses with index a1 to ay are the antecedents that are
used to derive the clause by resolution (note that all antecedent indices are less than the
cindex).

We denote Di as a set of descendants of a clause ci, and define the frequency of a clause
f req[ci] for a DRUP by traversing clause indices in reverse order as follows:

f req[ci] = ∑
cj∈Di

f req[cj] (4)

Note that the frequency of a clause without any descendants is 1. Since the frequency
increases exponentially, it is difficult to calculate exact values with the standard 32- or
64-bit integer used in the standard programming languages. We instead calculate approx-
imated values with 64-bit double floating-point numbers: when the highest frequency
exceeds a threshold (we set it as 10200) we multiply all the frequencies with 10−200. This
approximation can retain the magnitude relationship of the frequencies. Even though some
small frequency values can be rounded to 0 due to underflow, we ignore these infrequent
ones. In this manner, we finally examine the relative values in descending order, i.e.,
ranking of frequencies of all the clauses in which we can see the frequently used clauses in
a resolution proof.

5. Experimental Results

We conduct computational experiments to see how extended variables affect and
improve the search efficiency. First, we see the performance (processing time) of solvers
with/without one of the methods shown in Section 4.2 on three types of instances (no exten-
sion, full extension, and partial extension) in Section 4.1. Second, we analyze DRUP proofs
generated from solvers on the three extensions and observe how many times extended

http://fmv.jku.at/tracecheck/README.tracecheck
http://fmv.jku.at/tracecheck/README.tracecheck


Algorithms 2022, 15, 479 8 of 15

variables are used to derive unsatisfiability. For both experiments, we use two popular
SAT solvers: MiniSAT 2.2 [14] and Glucose 3 [15]. Both solvers are the most fundamental
solvers used as a basis for today’s subsequent solvers. We switch off the preprocessing,
as described in Section 4.2, so not to remove the extended variables. In preliminary ex-
periments, we found that the preprocessing for instances of no extension deteriorates the
solvers’ performance. Hence, we report results without the preprocessing even for (not
extended) original PHP instances.

We use the PHP instances with the number of pigeons (n) from 11 to 15. Note that
instances with less than 10 pigeons are easy to solve within 10 seconds in our preliminary
experience. We set the time limit for each instance as 10,000 s and the constant R in
Algorithm 2 as 100 that showed good performance among the values 10, 100, 1000, and
10,000 in our preliminary experiments. Since the order of clauses and variables in a CNF
can affect the solver’s performance [41] (e.g., initial decision variables and initial watched
literals [14]), we shuffle the order by random reordering and make four differently shuffled
instances for each n.

We use a machine running Ubuntu 16.04 with two Xeon Gold 5218 CPUs and 384 GB
RAM. Our codes, MiniSAT 2.2 and Glucose 3 with/without our proposed method, are
compiled by GNU C++ Compiler version 5.4.0. Since both solvers run deterministically, we
execute each solver on each instance once.

5.1. Performance Comparison

Table 1 exhibits the results of vanilla (no extension) PHP instances. The second to sixth
columns (n, #V, #C, #EV, and #EC) indicate the number of pigeons, variables (including
extended variables), clauses (including extended clauses), extended variables, and clauses
including extended variables, respectively. The seventh and later columns stand for the
results of each solver. The “M” and “G” indicate MiniSAT 2.2 and Glucose 3, respectively.
A solver with one of our methods is expressed as “M/G +m1/m2”. The values for each
solver indicate the processing time in seconds, and the best one is bolded. Instances with
more pigeons are difficult to solve from the point of view of processing time. Specifically,
instances with more than 13 pigeons could not be solved by any solvers. Since Glucose is
the enhanced solver based on MiniSAT, it could solve instances with 13 pigeons. Note that
due to the lack of extended variables, our two methods have essentially no effect for these
instances.

Table 2 exhibits the results of the PHP instances with full extension. Glucose with
“m1” and Glucose with “m2” exhibited good performance, especially for large instances.
Only these solvers could solve the instances with 14 pigeons. The two methods could
consistently improve the performance for instances with more than 11 pigeons. On the
other hand, the effect of “m2” is moderate on MiniSAT. Even though it could shorten the
processing time for all the instances with 11 pigeons, this is not the case for 12 pigeons.
One of the possible reasons is that MiniSAT conducts less restarts than Glucose. While
MiniSAT version 2.2 implements Luby restart [20] based on a static policy, Glucose version 3
executes a dynamic restart policy [21] which invokes restarting more frequently in practice.
Thus, the method “m2” can be called more in Glucose than MiniSAT, which enhances the
performance of Glucose. In contrast, the method “m1” also worked on MiniSAT. These
results reveal that we can boost the performance of a SAT solver that implements methods
to leverage extended variables aggressively for “fully” extended instances.



Algorithms 2022, 15, 479 9 of 15

Table 1. Results of vanilla PHP instances.

Instance n #V #C #EV #EC M M+m1 M+m2 G G+m1 G+m2

no shuffle 11 110 561 0 0 100.39 100.41 95.85 122.81 121.48 122.72
shuffle1 11 110 561 0 0 105.26 104.96 100.27 119.39 117.89 119.26
shuffle2 11 110 561 0 0 46.23 46.24 43.96 52.39 51.97 52.42
shuffle3 11 110 561 0 0 95.92 95.78 91.43 104.67 103.37 103.97

no shuffle 12 132 738 0 0 935.58 934.61 882.17 519.32 515.74 532.06
shuffle1 12 132 738 0 0 1704.47 1711.09 1610.6 558.32 562.01 563.29
shuffle2 12 132 738 0 0 1744.06 1740.08 1645.67 3220.12 3215.18 3239.16
shuffle3 12 132 738 0 0 1709.55 1717.77 1616.86 219.16 219.7 221.88

no shuffle 13 156 949 0 0 10,000 10,000 10,000 7684.53 7694.96 7794.97
shuffle1 13 156 949 0 0 10,000 10,000 10,000 4922.59 4973.9 4947.7
shuffle2 13 156 949 0 0 10,000 10,000 10,000 5931.81 5918.43 5914.93
shuffle3 13 156 949 0 0 10,000 10,000 10,000 5022.76 5028.17 5054.09

no shuffle 14 182 1197 0 0 10,000 10,000 10,000 10,000 10,000 10,000
shuffle1 14 182 1197 0 0 10,000 10,000 10,000 10,000 10,000 10,000
shuffle2 14 182 1197 0 0 10,000 10,000 10,000 10,000 10,000 10,000
shuffle3 14 182 1197 0 0 10,000 10,000 10,000 10,000 10,000 10,000

no shuffle 15 210 1485 0 0 10,000 10,000 10,000 10,000 10,000 10,000
shuffle1 15 210 1485 0 0 10,000 10,000 10,000 10,000 10,000 10,000
shuffle2 15 210 1485 0 0 10,000 10,000 10,000 10,000 10,000 10,000
shuffle3 15 210 1485 0 0 10,000 10,000 10,000 10,000 10,000 10,000

Table 2. Results of PHP instances with full extension.

Instance n #V #C #EV #EC M M+m1 M+m2 G G+m1 G+m2

no shuffle 11 200 921 90 360 131.55 4.17 24.76 94.38 14.76 48.75
shuffle1 11 200 921 90 360 40.88 3.12 14.1 51.37 9.29 102.69
shuffle2 11 200 921 90 360 58.36 2.76 9.49 113.04 14.58 170.89
shuffle3 11 200 921 90 360 60.16 2.92 6.27 48.06 9.58 82.89

no shuffle 12 242 1178 110 440 1607.91 126.33 1806.44 1125.69 91.54 110.03
shuffle1 12 242 1178 110 440 2302.25 55.9 1249.96 748.22 61.34 86.71
shuffle2 12 242 1178 110 440 2411.08 138.41 1890.52 660.61 57.07 135.91
shuffle3 12 242 1178 110 440 2326.94 324.51 771.5 893.94 70.4 559.47

no shuffle 13 288 1477 132 528 10,000 2427.4 10,000 8565.22 434.97 478.05
shuffle1 13 288 1477 132 528 10,000 1045.38 10,000 3447.85 503.82 364.8
shuffle2 13 288 1477 132 528 10,000 2516.14 10,000 10,000 282.12 1679.05
shuffle3 13 288 1477 132 528 10,000 2702.69 10,000 3213.34 394.55 250.65

no shuffle 14 338 1821 156 624 10,000 10,000 10,000 10,000 6575.03 4045.79
shuffle1 14 338 1821 156 624 10,000 10,000 10,000 10,000 2537.06 3255.24
shuffle2 14 338 1821 156 624 10,000 10,000 10,000 10,000 3006.74 3374.63
shuffle3 14 338 1821 156 624 10,000 10,000 10,000 10,000 2625.2 3688.71

no shuffle 15 392 2213 182 728 10,000 10,000 10,000 10,000 10,000 10,000
shuffle1 15 392 2213 182 728 10,000 10,000 10,000 10,000 10,000 10,000
shuffle2 15 392 2213 182 728 10,000 10,000 10,000 10,000 10,000 10,000
shuffle3 15 392 2213 182 728 10,000 10,000 10,000 10,000 10,000 10,000

Table 3 exhibits the results of the PHP instances with partial extension. For this kind
of instance, the two methods had good effects on MiniSAT but little impact on Glucose.
MiniSAT with the methods stably outperformed the original MiniSAT for instances with
11 and 12 pigeons. On the other hand, Glucose with “m2” methods could not solve two
instances with 13 pigeons that the original Glucose could solve. As mentioned in Section 4.1,
partial extension can be useful for pruning the search space. However, in comparison with
the results of full extension, partially extending variables cannot always help the solvers.

In these experiments, we can use already extended instances under the ideal extension.
However, we have no idea how to add extended variables for various types of problems in
practice. The results obtained from our experiments indicate that if we only derive partial
extension during (or before) the search, the performance gain cannot be so significant. We



Algorithms 2022, 15, 479 10 of 15

can have full benefits of extended resolution if we can fully (completely) conduct extension,
which is not easy in practice.

Table 3. Results of PHP instances with partial extension.

Instance n #V #C #EV #EC M M+m1 M+m2 G G+m1 G+m2

no shuffle 11 119 597 9 36 101.48 51.14 50.4 105.33 65.76 78.55
shuffle1 11 119 597 9 36 45.8 101.2 40.33 79.43 122.02 44.11
shuffle2 11 119 597 9 36 98.69 97.87 40.6 170.46 105.53 91.8
shuffle3 11 119 597 9 36 44.82 100.02 41.85 56.57 47.55 108.75

no shuffle 12 142 778 10 40 2789.98 1774.52 693.75 1014.79 762.31 565.39
shuffle1 12 142 778 10 40 3293.2 1765.4 702.2 615.44 592.57 1253.2
shuffle2 12 142 778 10 40 2805.84 1815.72 703.13 622.15 922.09 611.21
shuffle3 12 142 778 10 40 1728.68 1837.56 705.31 674.8 592.45 759.31

no shuffle 13 167 993 11 44 10,000 10,000 10,000 10,000 7442.11 10,000
shuffle1 13 167 993 11 44 10,000 10,000 10,000 10,000 6585.62 10,000
shuffle2 13 167 993 11 44 10,000 10,000 10,000 7435.61 5155.5 10,000
shuffle3 13 167 993 11 44 10,000 10,000 10,000 6573.76 10,000 10,000

no shuffle 14 194 1245 12 48 10,000 10,000 10,000 10,000 10,000 10,000
shuffle1 14 194 1245 12 48 10,000 10,000 10,000 10,000 10,000 10,000
shuffle2 14 194 1245 12 48 10,000 10,000 10,000 10,000 10,000 10,000
shuffle3 14 194 1245 12 48 10,000 10,000 10,000 10,000 10,000 10,000

no shuffle 15 223 1537 13 52 10,000 10,000 10,000 10,000 10,000 10,000
shuffle1 15 223 1537 13 52 10,000 10,000 10,000 10,000 10,000 10,000
shuffle2 15 223 1537 13 52 10,000 10,000 10,000 10,000 10,000 10,000
shuffle3 15 223 1537 13 52 10,000 10,000 10,000 10,000 10,000 10,000

5.2. DRUP Analysis

Tables 4 and 5 exhibit the results of DRUP analysis of PHP instances with full extension
for MiniSAT and Glucose with/without our methods. The second to fourth columns (n,
#V, and #C) indicate the number of pigeons, variables (including extended variables),
and clauses (including extended clauses), respectively. Note that solvers with a DRUP
output run slower due to the overhead of recording DRUP, and instances with more than
13 pigeons are omitted since these instances could not be solved within the time limit (the
“no-data” stands for the time limit exceeded one). As mentioned in Section 4.3, we count
the frequencies (the number of appearances) of each clause in the unsatisfiability proof
by analyzing DRUP proof of the instance. Then, we sort the frequencies in descending
order and see the top-k (k = 10 and 100) of frequently used clauses for each instance.
The values in columns top-k in the tables stand for the ratio of the number of extended
clauses (clauses including at least one extended variable) in the top-k clauses. The column
“ECR” indicates the ratio of the number of extended clauses to the number of whole clauses.
Hence, if all the clauses uniformly contribute on the proof, the top-k ratio can be close to
this rate. We can see that both solvers with the methods utilized lots of clauses including
extended variables for almost all instances, while the original solvers hardly did. The
column “p-value” stands for the result of the Wilcoxon rank-sum test [42], a nonparametric
test of the null hypothesis that two sets of samples come from the same population. The
first set is the clauses including (at least one) extended variables, and the second one is the
clauses without extended variables. Note that in this test we observe all the clauses (not
limited to top-k) used in the proof. In general, p-value less than 0.01 is considered to be
statistically significant, which means that the null hypothesis should be rejected. In our
experiments, we conduct the one-sided test where the alternative hypothesis is that clauses
including extended variables are more frequently used in the proof. High correlation can
be seen between the top-k ratio and p-value: higher top-k ratio gains lower p-value. From
these results, we determine that our methods can firmly focus on the extended variables
and shorten the processing time. Tables 6 and 7 exhibit the results of partial extension.
Due to the few extended clauses (the ratio of extended clauses is under 0.06), these clauses
appeared infrequently in the DRUP proof. Moreover, corresponding p-values are not low,



Algorithms 2022, 15, 479 11 of 15

which does not indicate that clauses including extended variables contribute to the proof.
While MiniSAT with the “m2” method utilized them for instances with 11 pigeons, the other
solvers could hardly exploit the extended variables. Even always prioritizing the extended
variables (by using the “m1” method), partial information of the ideal extension has little
impact on the overall performance, at least by our proposed methods. The complete
acquisition of extension can be necessary to gain practical speedup of the solvers.

Table 4. DRUP analysis results of PHP instances with full extension for MiniSAT.

M M+m1 M+m2

Instance n #V #C ECR top-10 top-100 p-Value top-10 top-100 p-Value top-10 top-100 p-Value

no shuffle 11 200 921 0.39 0.00 0.00 1.00× 100 0.80 0.77 1.03× 10−85 0.50 0.51 1.09× 10−34

shuffle1 11 200 921 0.39 0.00 0.00 1.00× 100 0.10 0.32 6.73× 10−1 0.70 0.81 7.01× 10−34

shuffle2 11 200 921 0.39 0.00 0.00 1.00× 100 0.50 0.74 6.44× 10−46 0.70 0.76 1.42× 10−21

shuffle3 11 200 921 0.39 0.00 0.00 1.00× 100 0.50 0.77 6.73× 10−53 0.60 0.61 6.31× 10−2

no shuffle 12 242 1178 0.37 0.00 0.00 1.00× 100 0.80 0.59 7.40× 10−67 0.70 0.80 5.12× 10−57

shuffle1 12 242 1178 0.37 0.00 0.00 1.00× 100 0.60 0.82 2.28× 10−24 0.50 0.55 1.79× 10−2

shuffle2 12 242 1178 0.37 0.00 0.00 1.00× 100 0.30 0.31 3.07× 10−1 0.00 0.00 1.00× 100

shuffle3 12 242 1178 0.37 0.00 0.00 1.00× 100 0.00 0.68 1.67× 10−18 0.60 0.82 1.03× 10−32

no shuffle 13 288 1477 0.36 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle1 13 288 1477 0.36 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle2 13 288 1477 0.36 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle3 13 288 1477 0.36 no-data no-data no-data no-data no-data no-data no-data no-data no-data

Table 5. DRUP analysis results of PHP instances with full extension for Glucose.

G G+m1 G+m2

Instance n #V #C ECR top-10 top-100 p-Value top-10 top-100 p-Value top-10 top-100 p-Value

no shuffle 11 200 921 0.39 0.00 0.36 6.20× 10−23 0.70 0.79 9.77× 10−64 0.10 0.64 1.07× 10−38

shuffle1 11 200 921 0.39 0.00 0.00 2.11× 10−1 0.70 0.80 8.08× 10−58 0.00 0.22 1.00× 100

shuffle2 11 200 921 0.39 0.00 0.00 1.00× 100 0.60 0.78 7.50× 10−45 0.10 0.37 5.72× 10−1

shuffle3 11 200 921 0.39 0.00 0.00 7.89× 10−1 0.70 0.76 4.72× 10−63 0.00 0.08 1.00× 100

no shuffle 12 242 1178 0.37 0.00 0.00 2.93× 10−7 0.60 0.85 3.27× 10−168 0.20 0.65 4.96× 10−55

shuffle1 12 242 1178 0.37 0.00 0.00 1.00× 100 0.70 0.80 1.55× 10−45 0.00 0.54 4.38× 10−39

shuffle2 12 242 1178 0.37 0.00 0.00 1.00× 100 0.60 0.80 3.98× 10−59 0.50 0.71 1.51× 10−67

shuffle3 12 242 1178 0.37 0.00 0.00 9.99× 10−1 0.60 0.85 8.20× 10−68 0.00 0.12 4.10× 10−17

no shuffle 13 288 1477 0.36 no-data no-data no-data 0.90 0.90 4.53× 10−215 0.20 0.48 1.09× 10−69

shuffle1 13 288 1477 0.36 0.00 0.00 9.97× 10−1 0.80 0.82 1.77× 10−46 0.70 0.86 1.30× 10−72

shuffle2 13 288 1477 0.36 no-data no-data no-data 0.60 0.85 6.33× 10−83 0.30 0.51 2.85× 10−19

shuffle3 13 288 1477 0.36 0.00 0.00 9.04× 10−1 0.60 0.82 2.34× 10−72 0.80 0.83 1.88× 10−64

Table 6. DRUP analysis results of PHP instances with partial extension for MiniSAT.

M M+m1 M+m2

Instance n #V #C ECR top-10 top-100 p-Value top-10 top-100 p-Value top-10 top-100 p-Value

no shuffle 11 119 597 0.06 0.00 0.00 1.00× 100 0.10 0.02 1.83× 10−2 0.00 0.00 6.47× 10−2

shuffle1 11 119 597 0.06 0.00 0.00 1.00× 100 0.00 0.00 7.09× 10−1 0.30 0.06 1.00× 100

shuffle2 11 119 597 0.06 0.00 0.00 1.00× 100 0.10 0.01 7.23× 10−1 0.20 0.04 9.85× 10−1

shuffle3 11 119 597 0.06 0.00 0.00 1.00× 100 0.20 0.04 7.86× 10−1 0.10 0.03 7.56× 10−1

no shuffle 12 142 778 0.05 0.00 0.00 1.00× 100 0.00 0.00 1.00× 100 0.00 0.00 1.58× 10−9

shuffle1 12 142 778 0.05 0.00 0.00 1.00× 100 0.00 0.00 1.00× 100 0.00 0.02 1.00× 100

shuffle2 12 142 778 0.05 0.00 0.00 1.00× 100 0.00 0.00 1.00× 100 0.00 0.02 9.25× 10−1

shuffle3 12 142 778 0.05 0.00 0.00 1.00× 100 0.00 0.00 1.00× 100 0.00 0.04 6.00× 10−2

no shuffle 13 167 993 0.04 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle1 13 167 993 0.04 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle2 13 167 993 0.04 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle3 13 167 993 0.04 no-data no-data no-data no-data no-data no-data no-data no-data no-data



Algorithms 2022, 15, 479 12 of 15

Table 7. DRUP analysis results of PHP instances with partial extension for Glucose.

G G+m1 G+m2

Instance n #V #C ECR top-10 top-100 p-Value top-10 top-100 p-Value top-10 top-100 p-Value

no shuffle 11 119 597 0.06 0.00 0.00 1.00× 100 0.10 0.01 1.29× 10−1 0.10 0.27 2.74× 10−11

shuffle1 11 119 597 0.06 0.00 0.00 1.00× 100 0.00 0.02 9.26× 10−2 0.00 0.03 8.60× 10−1

shuffle2 11 119 597 0.06 0.00 0.00 9.98× 10−1 0.10 0.02 7.78× 10−1 0.00 0.00 1.00× 100

shuffle3 11 119 597 0.06 0.00 0.00 1.00× 100 0.00 0.00 6.82× 10−1 0.00 0.00 1.00× 100

no shuffle 12 142 778 0.05 0.00 0.00 3.73× 10−1 0.10 0.01 7.14× 10−3 0.00 0.00 9.98× 10−1

shuffle1 12 142 778 0.05 0.00 0.00 1.00× 100 0.00 0.00 9.52× 10−1 0.00 0.00 9.98× 10−1

shuffle2 12 142 778 0.05 0.00 0.00 1.00× 100 0.10 0.02 4.89× 10−1 0.00 0.02 4.69× 10−1

shuffle3 12 142 778 0.05 0.00 0.00 1.00× 100 0.00 0.00 3.23× 10−1 0.10 0.04 4.29× 10−2

no shuffle 13 167 993 0.04 no-data no-data no-data 0.10 0.02 1.00× 100 no-data no-data no-data
shuffle1 13 167 993 0.04 no-data no-data no-data no-data no-data no-data no-data no-data no-data
shuffle2 13 167 993 0.04 0.00 0.00 1.00× 100 0.10 0.01 1.38× 10−1 no-data no-data no-data
shuffle3 13 167 993 0.04 0.00 0.00 9.94× 10−1 no-data no-data no-data no-data no-data no-data

6. Conclusions

In theory, extended resolution enables polynomial solving of the pigeonhole principle.
However, few works have clarified the effectiveness of extended variables on today’s CDCL
(i.e., general resolution-based algorithm) SAT solvers. We investigated the “practical effect”
of the extended resolution on the pigeonhole principle by prioritizing the extended variables
in the solver’s search in two ways. Combining with these methods, the PHP instances with
the extended variables were solved within a shorter processing time by MiniSAT 2.2 and
Glucose 3. While fully extended instances had clearer performance gain, partially extended
ones had moderate effects. Even though it is not clear our methods could fully utilize
the extended variables, our results indicate that we cannot attain good performance gain
on the partially extended instances. Note that the method of extension is under the ideal
condition, and there cannot be definite guidelines on how to add the extended variables in
practice. Although it is difficult to add appropriate auxiliary variables and utilize them,
our results exhibit the possibility of performance enhancement by extension. We believe
that the facts in this paper create a stir to the practical usefulness of the extended resolution
for instances other than the PHP.

Funding: This work was supported by JSPS KAKENHI Grant Number JP17K12742 and JP21K12023.

Institutional Review Board Statement: Not applicale.

Data Availability Statement: The datasets generated during the current study are not publicly
available but are available from the corresponding author on reasonable request.

Acknowledgments: We appreciate all the researchers giving helpful comments on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Code of Our Proposed Methods

In this section, we show the actual code of our proposed methods, “m1” and “m2”.
Note that the code of Glucose is based on MiniSAT, thus the codes can work in both solvers.

We show the source code of the “m1” method in Listings A1 and A2. Listing A1 is
embedded in Solver.h file of MiniSAT/Glucose, and Listing A2 is embedded in Solver.cc file
(head and tail parts are the same as the original code and omitted). By extremely increasing
the VSIDS scores of extended variables, the solver always selects them as decision variables
prior to non-extended variables.



Algorithms 2022, 15, 479 13 of 15

Listing A1. Code of m1 method implemented in Solver.h.

i n t num_org_vars ; // c a l c u l a t e d from the number of pigeons
double evar_ inc = 1 e100 ; // incremental score f o r extended v a r i a b l e s
void bumpExtendedVars (

const i n t num_org_vars , const i n t c u r r _ r e s t a r t s
) {

i f ( c u r r _ r e s t a r t s != 0 ) re turn ;
const i n t nv = nVars ( ) ;
f o r ( i n t i = num_org_vars ; i < nv ; i ++){

varBumpActivity ( i , evar_ inc ) ;
}

}

i n l i n e void Solver : : varBumpActivity ( Var v , double inc ) {
i f ( v < num_org_vars )

a c t i v i t y [ v ] += inc ;
e l s e

a c t i v i t y [ v ] += inc * evar_ inc ;
i f ( ( v < num_org_vars && a c t i v i t y [ v ] > 1 e100 ) ||

( v >= num_org_vars && a c t i v i t y [ v ] > 1 e200 ) ) {
// Rescale :
f o r ( i n t i = 0 ; i < nVars ( ) ; i ++)

a c t i v i t y [ i ] *= 1e −100;
var_ inc *= 1e −100;

}
// Update order_heap with r e s p e c t to new a c t i v i t y :
i f ( order_heap . inHeap ( v ) )

order_heap . decrease ( v ) ;
}

Listing A2. Code of m1 method implemented in Solver.cc.

l b o o l Solver : : so lve_ ( ) {
. . .
i n t c u r r _ r e s t a r t s = 0 ;
bumpExtendedVars ( num_org_vars , c u r r _ r e s t a r t s ) ;
while ( s t a t u s == l_Undef ) {

double r e s t _ b a s e = l u b y _ r e s t a r t ? luby ( r e s t a r t _ i n c , c u r r _ r e s t a r t s ) :
pow( r e s t a r t _ i n c , c u r r _ r e s t a r t s ) ;

s t a t u s = search ( r e s t _ b a s e * r e s t a r t _ f i r s t ) ;
. . .

}

We show the source code of the “m2” method in Listings A3 and A4. Like the “m1”
method, Listing A1 is embedded in Solver.h file of MiniSAT/Glucose, and Listing A2 is
embedded in Solver.cc file (head and tail parts are also omitted). Similar to “m1”, VSIDS
scores of extended variables are periodically (i.e., at every restart) increased.

Listing A3. Code of m2 method implemented in Solver.h.

void bumpExtendedVars ( const i n t num_org_vars ) {
f o r ( i n t i = num_org_vars ; i < nVars ( ) ; i ++){

varBumpActivity ( i , var_ inc * 1 0 0 ) ;
}

}



Algorithms 2022, 15, 479 14 of 15

Listing A4. Code of m2 method implemented in Solver.cc.

l b o o l Solver : : so lve_ ( ) {
. . .
i n t c u r r _ r e s t a r t s = 0 ;
i n t num_org_vars ; // c a l c u l a t e d from the number of pigeons
while ( s t a t u s == l_Undef ) {

bumpExtendedVars ( num_org_vars , c u r r _ r e s t a r t s ) ;
double r e s t _ b a s e = l u b y _ r e s t a r t ? luby ( r e s t a r t _ i n c , c u r r _ r e s t a r t s ) :

pow( r e s t a r t _ i n c , c u r r _ r e s t a r t s ) ;
s t a t u s = search ( r e s t _ b a s e * r e s t a r t _ f i r s t ) ;

. . .
}

References
1. Cook, S.A. The Complexity of Theorem-Proving Procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of

Computing, Shaker Heights, OH, USA, 3–5 May 1971; pp. 151–158. [CrossRef]
2. Stephan, P.; Brayton, R.K.; Sangiovanni-Vincentelli, A.L. Combinational test generation using satisfiability. Trans. Comput. Aided

Des. Integr. Circuits Syst. 2006, 15, 1167–1176. [CrossRef]
3. Narodytska, N.; Kasiviswanathan, S.P.; Ryzhyk, L.; Sagiv, M.; Walsh, T. Verifying Properties of Binarized Deep Neural Networks.

In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, LA, USA, 2–7 February
2018; pp. 6615–6624. [CrossRef]

4. Heule, M.J.H.; Kullmann, O.; Marek, V.W. Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer.
In Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2016-19th International Conference, Bordeaux, France,
5–8 July 2016; pp. 228–245. [CrossRef]

5. Heule, M.J.H. Schur Number Five. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
New Orleans, LA, USA, 2–7 February 2018; pp. 6598–6606. [CrossRef]

6. Bright, C.; Kotsireas, I.S.; Heinle, A.; Ganesh, V. Complex Golay pairs up to length 28: A search via computer algebra and
programmatic SAT. J. Symb. Comput. 2021, 102, 153–172. [CrossRef]

7. Davis, M.; Logemann, G.; Loveland, D. A machine program for theorem-proving. Commun. ACM 1962, 5, 394–397. [CrossRef]
8. Silva, J.P.M.; Sakallah, K.A. GRASP—A new search algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM International

Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA, USA, 10–14 November 1996; pp. 220–227. [CrossRef]
9. Tseitin, G.S. On the complexity of derivation in propositional calculus. In Automation of 468 Reasoning: 2: Classical Papers on

Computational Logic 1967–1970; Springer: Berlin/Heidelberg, Germany, 1983; pp. 466–483. [CrossRef]
10. Cook, S.A. A short proof of the pigeon hole principle using extended resolution. ACM Sigact News 1976, 8, 28–32. [CrossRef]
11. Huang, J. Extended clause learning. Artif. Intell. 2010, 174, 1277–1284. [CrossRef]
12. Audemard, G.; Katsirelos, G.; Simon, L. A Restriction of Extended Resolution for Clause Learning SAT Solvers. In Proceedings of

the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, GA, USA, 11–15 July 2010. [CrossRef]
13. Heule, M.H., Jr.; Hunt, W.A.; Wetzler, N. Trimming while checking clausal proofs. In Proceedings of the Formal Methods in

Computer-Aided Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013; pp. 181–188. [CrossRef]
14. Eén, N.; Sörensson, N. An Extensible SAT-solver. In Proceedings of the Theory and Applications of Satisfiability Testing, 6th

International Conference, SAT 2003, Santa Margherita Ligure, Italy, 5–8 May 2003; pp. 502–518. [CrossRef]
15. Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the IJCAI 2009, Proceedings

of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009; pp. 399–404.
16. Ignatiev, A.; Morgado, A.; Marques-Silva, J. On Tackling the Limits of Resolution in SAT Solving. In Proceedings of the Theory

and Applications of Satisfiability Testing-SAT 2017-20th International Conference, Melbourne, Australia, 28 August–1 September
2017; pp. 164–183. [CrossRef]

17. Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the
38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001; pp. 530–535. [CrossRef]

18. Bayardo, R.J., Jr.; Schrag, R. Using CSP Look-Back Techniques to Solve Real-World SAT Instances. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference,
AAAI 97, IAAI 97, Providence, RI, USA, 27–31 July 1997; pp. 203–208. [CrossRef]

19. Gomes, C.P.; Selman, B.; Kautz, H.A. Boosting Combinatorial Search Through Randomization. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98,
IAAI 98, Madison, WI, USA, 26–30 July 1998; pp. 431–437. [CrossRef]

20. Huang, J. The Effect of Restarts on the Efficiency of Clause Learning. In Proceedings of the IJCAI 2007, 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 2318–2323. [CrossRef]

http://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1109/43.536723
http://dx.doi.org/10.5555/3504035.3504845
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.5555/3504035.3504843
http://dx.doi.org/10.1016/j.jsc.2019.10.013
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1109/ICCAD.1996.569607
http://dx.doi.org/10.1007/978-3-642-81955-1_28
http://dx.doi.org/10.1145/1008335.1008338
http://dx.doi.org/10.1016/j.artint.2010.07.008
http://dx.doi.org/10.5555/2898607.2898610
http://dx.doi.org/10.1109/FMCAD. 2013.6679408
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-66263-3_11
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.5555/1867406.1867438
http://dx.doi.org/10.5555/295240.295710
http://dx.doi.org/10.5555/1625275.1625649


Algorithms 2022, 15, 479 15 of 15

21. Audemard, G.; Simon, L. Refining Restarts Strategies for SAT and UNSAT. In Proceedings of the Principles and Practice of
Constraint Programming-18th International Conference, CP 2012, Québec City, QC, Canada, 8–12 October 2012; Volume 7514,
pp. 118–126. [CrossRef]

22. Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of
the Theory and Applications of Satisfiability Testing-SAT 2016-19th International Conference, Bordeaux, France, 5–8 July 2016;
pp. 123–140. [CrossRef]

23. Cherif, M.S.; Habet, D.; Terrioux, C. Combining VSIDS and CHB Using Restarts in SAT. In Proceedings of the 27th Interna-
tional Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier, France, 25–29 October 2021;
pp. 20:1–20:19. [CrossRef]

24. Cai, S.; Zhang, X. Deep Cooperation of CDCL and Local Search for SAT. In Proceedings of the Theory and Applications of
Satisfiability Testing-SAT 2021-24th International Conference, Barcelona, Spain, 5–9 July 2021; pp. 64–81. [CrossRef]

25. Bacchus, F.; Winter, J. Effective Preprocessing with Hyper-Resolution and Equality Reduction. In Proceedings of the Theory
and Applications of Satisfiability Testing, 6th International Conference, SAT 2003, Santa Margherita Ligure, Italy, 5–8 May 2003;
pp. 341–355. [CrossRef]

26. Eén, N.; Biere, A. Effective Preprocessing in SAT Through Variable and Clause Elimination. In Proceedings of the Theory and
Applications of Satisfiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, 19–23 June 2005; pp. 61–75.
[CrossRef]

27. Heule, M.; Järvisalo, M.; Biere, A. Efficient CNF Simplification Based on Binary Implication Graphs. In Proceedings of the Theory
and Applications of Satisfiability Testing-SAT 2011-14th International Conference, SAT 2011, Ann Arbor, MI, USA, 19–22 June
2011; pp. 201–215. [CrossRef]

28. Järvisalo, M.; Heule, M.; Biere, A. Inprocessing Rules. In Proceedings of the Automated Reasoning-6th International Joint
Conference, IJCAR 2012, Manchester, UK, 26–29 June 2012; pp. 355–370. [CrossRef]

29. Cook, S.A.; Reckhow, R.A. The relative efficiency of propositional proof systems. J. Symb. Log. 1979, 44, 36–50. [CrossRef]
30. Sinz, C.; Biere, A. Extended Resolution Proofs for Conjoining BDDs. In Proceedings of the Computer Science-Theory and

Applications, First International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, 8–12 June 2006;
pp. 600–611. [CrossRef]

31. Kullmann, O. On a generalization of extended resolution. Discret. Appl. Math. 1999, 96, 149–176. [CrossRef]
32. Järvisalo, M.; Biere, A.; Heule, M. Blocked Clause Elimination. In Proceedings of the Tools and Algorithms for the Construction

and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2010, Paphos, Cyprus, 20–28 March 2010; pp. 129–144. [CrossRef]

33. Wetzler, N.; Heule, M.J.H.; Hunt, W.A., Jr. DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs. In
Proceedings of the Theory and Applications of Satisfiability Testing-SAT 2014-17th International Conference, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, 14–17 July 2014; pp. 422–429. [CrossRef]

34. Kiesl, B.; Rebola-Pardo, A.; Heule, M.J.H. Extended Resolution Simulates DRAT. In Proceedings of the Automated Reasoning-9th
International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, 14–17 July
2018; pp. 516–531. [CrossRef]

35. Kiesl, B.; Rebola-Pardo, A.; Heule, M.J.; Biere, A. Simulating strong practical proof systems with extended resolution. J. Autom.
Reason. 2020, 64, 1247–1267. [CrossRef]

36. Huang, J. A Case for Simple SAT Solvers. In Proceedings of the Principles and Practice of Constraint Programming-CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, 23–27 September 2007; pp. 839–846. [CrossRef]

37. Manthey, N. Extended resolution in modern SAT solving. In Proceedings of the Joint Automated Reasoning Workshop and
Deduktionstreffen: As part of the Vienna Summer of Logic—IJCAR, Vienna, Austria, 23–24 July 2014; pp. 26–27.

38. Jabbour, S.; Lonlac, J.; Sais, L. Extending Resolution by Dynamic Substitution of Boolean Functions. In Proceedings of the IEEE
24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, 7–9 November 2012; pp. 1029–1034.
[CrossRef]

39. Manthey, N.; Heule, M.; Biere, A. Automated Reencoding of Boolean Formulas. In Proceedings of the Hardware and Software:
Verification and Testing-8th International Haifa Verification Conference, HVC 2012, Haifa, Israel, 6–8 November 2012; pp. 102–117.
[CrossRef]

40. Manthey, N. Coprocessor 2.0—A Flexible CNF Simplifier-(Tool Presentation). In Proceedings of the Theory and Applications of
Satisfiability Testing-SAT 2012-15th International Conference, Trento, Italy, 17–20 June 2012; pp. 436–441. [CrossRef]

41. Simon, L. Post Mortem Analysis of SAT Solver Proofs. In Proceedings of the POS-14. Fifth Pragmatics of SAT Workshop, a
Workshop of the SAT 2014 Conference, Part of FLoC 2014 during the Vienna Summer of Logic, Vienna, Austria, 13 July 2014;
pp. 26–40. [CrossRef]

42. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.
Stat. 1947, 18, 50–60. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-33558-7_11
http://dx.doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.4230/LIPIcs.CP.2021.20
http://dx.doi.org/10.1007/978-3-030-80223-3_6
http://dx.doi.org/10.1007/978-3-540-24605-3_26
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1007/978-3-642-21581-0_17
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1007/11753728_60
http://dx.doi.org/10.1016/S0166-218X(99)00037-2
http://dx.doi.org/10.1007/978-3-642-12002-2_10
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-319-94205-6_34
http://dx.doi.org/10.1007/s10817-020-09554-z
http://dx.doi.org/10.1007/978-3-540-74970-7_62
http://dx.doi.org/10.1109/ICTAI.2012.145
http://dx.doi.org/10.1007/978-3-642-39611-3_14
http://dx.doi.org/10.1007/978-3-642-31612-8_34
http://dx.doi.org/10.29007/gpp8
http://dx.doi.org/10.1214/aoms/1177730491

	Introduction
	Preliminaries
	SAT Problem
	SAT Solver
	Pigeonhole Principle

	Related Work
	Analysis Procedure
	Full and Partial Extension
	Prioritizing Extended Variables
	UNSAT Core Analysis

	Experimental Results
	Performance Comparison
	DRUP Analysis

	Conclusions
	Code of Our Proposed Methods
	References

