Numerical Integration Schemes Based on Composition of Adjoint Multistep Methods
Abstract
:1. Introduction
2. Preliminary
2.1. Basic Definitions
2.2. Composition of the Methods
- take step
- shift indices such that the term became the oldest
- express the term
3. Composition of Multistep Methods
Adjoint for Multistep Method
4. The Proposed Composition Schemes
4.1. Composition Scheme Based on Two-Step Adams-Bashforth Method
4.2. Composition Scheme Based on Two-Step Adams-Moulton Method
4.3. Error Growth and Order
4.4. Linkage with Miln-Simpson Method
4.5. Implementation of Proposed Methods
5. Experimental Investigation
5.1. Computational Efficiency
5.2. Energy Preservation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Sanz-Serna, J.M. Symplectic integrators for Hamiltonian problems: An overview. Acta Numer. 1992, 1, 243–286. [Google Scholar] [CrossRef]
- Sun, G. A simple way constructing symplectic Runge-Kutta methods. J. Comput. Math. 2000, 18, 61–68. [Google Scholar]
- Monovasilis, T.; Kalogiratou, Z.; Simos, T. Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 2013, 7, 81–85. [Google Scholar] [CrossRef]
- Quinlan, G.D.; Tremaine, S. Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 1990, 100, 1694–1700. [Google Scholar] [CrossRef]
- Evans, N.W.; Tremaine, S. Linear multistep methods for integrating reversible differential equations. Astron. J. 1999, 118, 1888. [Google Scholar] [CrossRef] [Green Version]
- Hairer, E.; Lubich, C. Symmetric multistep methods for charged-particle dynamics. SMAI J. Comput. Math. 2017, 3, 205–218. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, R.I.; Quispel, G.R.W. Splitting methods. Acta Numer. 2002, 11, 341–434. [Google Scholar] [CrossRef]
- Yoshida, H. Construction of higher order symplectic integrators. Phys. Lett. A 1990, 150, 262–268. [Google Scholar] [CrossRef]
- Suzuki, M. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 1990, 146, 319–323. [Google Scholar] [CrossRef]
- Blanes, S.; Casas, F. Raising the order of geometric numerical integrators by composition and extrapolation. Numer. Algorithms 2005, 38, 305–326. [Google Scholar] [CrossRef]
- Blanes, S.; Casas, F. Splitting methods for non-autonomous separable dynamical systems. J. Phys. A Math. Gen. 2006, 39, 5405. [Google Scholar] [CrossRef]
- Blanes, S.; Casas, F.; Murua, A. Splitting and composition methods in the numerical integration of differential equations. arXiv 2008, arXiv:0812.0377. [Google Scholar]
- Butusov, D.N.; Ostrovskii, V.Y.; Karimov, A.I.; Andreev, V.S. Semi-explicit composition methods in memcapacitor circuit simulation. Int. J. Embed. Real-Time Commun. Syst. (IJERTCS) 2019, 10, 37–52. [Google Scholar] [CrossRef]
- Donelson, J., III; Hansen, E. Cyclic composite multistep predictor-corrector methods. SIAM J. Numer. Anal. 1971, 8, 137–157. [Google Scholar] [CrossRef]
- Bickart, T.A.; Picel, Z. High order stiffly stable composite multistep methods for numerical integration of stiff differential equations. BIT Numer. Math. 1973, 13, 272–286. [Google Scholar] [CrossRef]
- Tendler, J.M.; Bickart, T.A.; Picel, Z. A stiffly stable integration process using cyclic composite methods. ACM Trans. Math. Softw. (TOMS) 1978, 4, 339–368. [Google Scholar] [CrossRef]
- Cash, J. On a class of cyclic methods for the numerical integration of stiff systems of ODEs. BIT Numer. Math. 1977, 17, 270–280. [Google Scholar] [CrossRef]
- Biala, T.; Jator, S.; Adeniyi, R.; Ndukum, P. Block Hybrid Simpson’s Method with Two Offgrid Points for Stiff System. Int. J. Nonlinear Sci. 2015, 20, 3–10. [Google Scholar]
- Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I: Nonstiff Problems; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Hojjati, G.; Ardabili, M.R.; Hosseini, S. New second derivative multistep methods for stiff systems. Appl. Math. Model. 2006, 30, 466–476. [Google Scholar] [CrossRef]
- Cash, J. On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numer. Math. 1980, 34, 235–246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesterev, D.; Druzhina, O.; Pchelintsev, A.; Nepomuceno, E.; Butusov, D. Numerical Integration Schemes Based on Composition of Adjoint Multistep Methods. Algorithms 2022, 15, 463. https://doi.org/10.3390/a15120463
Pesterev D, Druzhina O, Pchelintsev A, Nepomuceno E, Butusov D. Numerical Integration Schemes Based on Composition of Adjoint Multistep Methods. Algorithms. 2022; 15(12):463. https://doi.org/10.3390/a15120463
Chicago/Turabian StylePesterev, Dmitriy, Olga Druzhina, Alexander Pchelintsev, Erivelton Nepomuceno, and Denis Butusov. 2022. "Numerical Integration Schemes Based on Composition of Adjoint Multistep Methods" Algorithms 15, no. 12: 463. https://doi.org/10.3390/a15120463
APA StylePesterev, D., Druzhina, O., Pchelintsev, A., Nepomuceno, E., & Butusov, D. (2022). Numerical Integration Schemes Based on Composition of Adjoint Multistep Methods. Algorithms, 15(12), 463. https://doi.org/10.3390/a15120463