Metaheuristics in the Humanitarian Supply Chain
Abstract
:1. Introduction
2. Humanitarian Supply Chain
3. Metaheuristics
4. Methodology
- (a)
- Planning: At this stage, the research questions were asked to avoid ambiguous answers. The questions generated were the following:RQ1. How are the HSC problems that have been solved from Metaheuristics since 2016 classified?RQ2. What is the gap found to accomplish future research in Metaheuristics in HSC?
- (b)
- Searching: At this stage, articles were browsed in three databases—Web of Science, Scopus and Google Scholar—using the following keywords, “optimization”, “humanitarian supply chain”, “relief supply chain”, from 2016 to date. It is necessary to mention that “metaheuristics” was not used because it considerably decreased the number of articles found. There were 120 found in Web of Science, 289 in Scopus and 1680 in Google Scholar.
- (c)
- Screening: In this phase, the inclusion and exclusion criteria were established.Inclusion: Articles that used as a metaheuristic for the HSC solution were selected, all were peer-reviewed research articles from 2016 to date.Exclusion: Articles that do not use a metaheuristic for the solution and refer to the administration of HSC are excluded from this research. Duplicate articles, those that are conference articles and review articles were not considered for classification. After reading the articles, 80 articles were selected.
- (d)
- Extraction: In this phase, the selected articles were read and analyzed to classify them according to the characteristics of the HSC that are detailed in the next section.
5. Classification
5.1. Type of Problem
5.2. Model Type and Phases
5.3. Time Period, Objective Type and Objective Function
- Cost of transporting the population out of danger zones [60].
- The infection possibility [91].
- The level of discontent of facing injustice [48].
- The financial effects and variable costs [50].
- The number of injured people who have not been attended to [52].
- Environmental aspects when relief items are carried [54].
5.4. Metaheuristics Classification in Humanitarian Supply Chains
6. Main Findings and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Annual Number of Natural Disaster Events Globally from 2000 to 2020. Available online: https://0-www-statista-com.biblioteca-ils.tec.mx/statistics/510959/number-of-natural-disasters-events-globally (accessed on 8 September 2021).
- Countries with the Most Natural Disasters in 2020. Available online: https://0-www-statista-com.biblioteca-ils.tec.mx/statistics/269652/countries-with-the-most-natural-disasters/ (accessed on 8 September 2021).
- Thomas, A.S.; Kopczak, L.R. From Logistics to Supply Chain Management:The Path Forward in the Humanitarian Sector. Fritz Inst. 2005, 15, 1–15. [Google Scholar]
- Manopiniwes, W.; Irohara, T. A Review of Relief Supply Chain Optimization. J. Humanit. Logist. Supply Chain. Manag. 2014, 13, 1–14. [Google Scholar] [CrossRef]
- Habib, M.S.; Lee, Y.H.; Memon, M.S. Mathematical Models in Humanitarian Supply Chain Management: A Systematic Literature Review. Math. Probl. Eng. 2015, 2016, 3212095. [Google Scholar] [CrossRef] [Green Version]
- Behl, A.; Dutta, P. Humanitarian supply chain management: A thematic literature review and future directions of research. Ann. Oper. Res. 2019, 283, 1001–1044. [Google Scholar] [CrossRef]
- Chiappetta, C.J.; Sobreiro, V.A.; de Sousa Jabbour, A.B.L.; Campos, L.M.S.; Mariano, E.B.; Renwick, D.W.S. An analysis of the literature on humanitarian logistics and supply chain management: Paving the way for future studies. Ann. Oper. Res. 2019, 283, 289–307. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; He, J.; He, X.; Yang, W.; Nie, J.; Ran, B. Emergency material scheduling optimization model and algorithms: A review. J. Traffic. Transp. 2019, 6, 441–454. [Google Scholar] [CrossRef]
- Hezam, I.M.; Nayeem, M.K. A Systematic Literature Review on Mathematical Models of Humanitarian Logistics. Symmetry 2021, 13, 11. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, N. Humanitarian logistics and emergency relief management: Hot perspectives and its optimization approach. E3S Web Conf. 2021, 245, 03036. [Google Scholar] [CrossRef]
- Thomas, A. Humanitarian Logistics Enabling Disaster Response; Fritz Institute: San Francisco, CA, USA, 2004. [Google Scholar]
- Sheu, J.B. Challenges of emergency logistics management. Transp. Res. Part E-Logist. Transp. Rev. 2007, 43, 655–659. [Google Scholar] [CrossRef]
- Wassenhove, L.N. Humanitarian aid logistics: Supply chain management in high gear. J. Oper. Res. Soc. 2006, 57, 475–489. [Google Scholar] [CrossRef]
- Oloruntoba, R.; Gray, R. Humanitarian aid: An agile supply chain Supply Chain? Int. J. Supply Chain Manag. 2006, 11, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, G.; Spens, K.M. Relief Supply Chain Management for Disasters: Humanitarian, Aid and Emergency Logistics; Business Science Reference: Hershey, PA, USA, 2012. [Google Scholar]
- Yadav, D.K.; Barve, A. Modeling post-disaster challenges of humanitarian supply chains: A TISM approach. Glob. J. Flex. Syst. Manag. 2016, 17, 321–340. [Google Scholar] [CrossRef]
- Dasaklis, T.K.; Pappis, C.P.; Rachaniotis, N.P. Epidemics control and logistics operations: A reviaklis. Int. J. Prod. Econ. 2012, 139, 393–410. [Google Scholar] [CrossRef]
- Altay, N.; Green, W.G., III. OR/MS Research in disaster operations management. Eur. J. Oper. Res. 2006, 175, 475–493. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.; Mladenovic, N.; Brimberg, J.; Moreno, J. Variable Neighborhood Search. In Handbook of Metaheuristics International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 3, pp. 57–59. [Google Scholar] [CrossRef]
- Gendreau, M.; Potvin, J. Handbook of Metaheuristics, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Academic Press: London, UK, 2018; pp. 185–231. [Google Scholar]
- Osman, I.H. Focused issue on applied meta-heuristics. Comput Ind Eng. J. Prod. Econ. 2003, 44, 205–207. [Google Scholar] [CrossRef]
- Fister, I.; Yang, I.; Fister, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013, arXiv:1307.4186. [Google Scholar]
- Dorigo, M.; Stuztle, T. Ant colony Optimization: Overview and Recent Advances. In Handbook of Metaheuristics International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 10, pp. 311–313. [Google Scholar] [CrossRef] [Green Version]
- Reeves, C. Genetic Algorithms. In Handbook of Metaheuristics in International Series in Operations Research & Management Science 146, 2nd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2010; Volume 5, pp. 109–112. [Google Scholar] [CrossRef]
- Resende, M.; Ribeiro, C.; Glover, F.; Martí, R. Scatter Search and Path-Relinking: Fundamentals, Advances and Applications. In Handbook of Metaheuristics in International Series in Operations Research & Management Science 146, 2nd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2010; Volume 4, pp. 87–89. [Google Scholar] [CrossRef]
- Ramalhinho, H.; Martin, O.; Thomas, S. Iterated Local Search: Framework and applications. In Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 5, pp. 129–131. [Google Scholar] [CrossRef]
- Pisinger, D.; Ropke, S. Large Neighborhood Search. In Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 4, pp. 99–101. [Google Scholar] [CrossRef] [Green Version]
- Delahaye, D.; Chaimatanan, S.; Mangeau, M. Simulated Annealing From Basics to Applications. In Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 3, pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Clerc, M. Swarm Intelligence. In Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 11, pp. 353–356. [Google Scholar] [CrossRef]
- Gendreau, M.; Potvin, J. Tabu Search. In Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 3, pp. 1–3. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles Mating Optimizer: A new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y. A Competitive Swarm Optimizer for Large Scale Optimization. IEEE Trans. Cybern. 2015, 45, 191–204. [Google Scholar] [CrossRef]
- De Vasconcelos Segundo, E.H.; Mariani, V.C.; dos Santos Coelho, L. Design of heat exchangers using Falcon Optimization Algorithm. Appl. Therm. Eng. 2019, 156, 119–144. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Nandi, A.; Bhadoria, A.; Sehgal, S. An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl. Soft Comput. 2020, 89, 106018. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- De Vasconcelos Segundo, E.H.; Mariani, V.C.; dos Santos Coelho, L. Metaheuristic inspired on owls behavior applied to heat exchangers design. Therm. Sci. Eng. Prog. 2019, 14, 100431. [Google Scholar] [CrossRef]
- Yapici, H.; Cetinkaya, N. A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 2019, 78, 545–568. [Google Scholar] [CrossRef]
- Samareh Moosavi, S.H.; Bardsiri, V.K. Poor and rich optimization algorithm: A new human-based and multi populations algorithm. Eng. Appl. Artif. Intell. 2019, 86, 165–181. [Google Scholar] [CrossRef]
- Shabani, A.; Asgarian, B.; Salido, M.; Gharebaghi, S.A. Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems. Expert Syst. Appl. 2020, 161, 113698. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Supply-Demand-Based Optimization: A Novel Economics-Inspired Algorithm for Global Optimization. IEEE Access 2019, 7, 73182–73206. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8721125 (accessed on 15 October 2021). [CrossRef]
- Raidl, G.; Puchinger, J.; Blum, C. Metaheuristics Hybrids. In Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, 3rd ed.; Gendreau, M., Potvin, J., Eds.; Springer: New York, NY, USA, 2019; Volume 12, pp. 385–387. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Shavarani, S.M. Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution: A case study. J. Humanit. Logist. Supply Chain. Manag. 2019, 9, 70–81. [Google Scholar] [CrossRef]
- Shavarani, S.M.; Golabi, M.; Izbirak, G. A capacitated biobjective location problem with uniformly distributed demands in the UAV-supported delivery operation. Int. Tran. Oper. Res. 2021, 28, 3220–3243. [Google Scholar] [CrossRef]
- Madani, H.; Khamseh, A.A.; Tavakkoli-Moghaddam, R. Solving a new bi-objective model for relief logistics in a humanitarian supply chain by bi-objective meta-heuristic algorithms. Int. J. Sci. Technol. 2020, 28, 2948–2971. [Google Scholar] [CrossRef]
- Khorsi, M.; Chaharsooghi, S.K.; Bozorgi-Amiri, A.; Kashana, A.H. A Multi-Objective Multi-Period Model for Humanitarian Relief Logistics with Split Delivery and Multiple Uses of Vehicles. J. Syst. Sci. Syst. Eng. 2020, 29, 360–378. [Google Scholar] [CrossRef]
- Razavi, N.; Gholizadeh, H.; Nayeria, S.; Ashrafi, T.A. A robust optimization model of the field hospitals in the sustainable blood supply chain in crisis logistics. J. Oper. Res. Soc. 2020, 72, 2804–2828. [Google Scholar] [CrossRef]
- Davoodi, S.R.R.; Goli, A. An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context. Comput. Ind. Eng. 2019, 130, 370–380. [Google Scholar] [CrossRef]
- Boonmee, C.; Arimura, M.; Asada, T. Location and allocation optimization for integrated decisions on post-disaster waste supply chain management: On-site and off-site separation for recyclable materials. Int. J. Disaster Risk Reduct. 2018, 31, 902–917. [Google Scholar] [CrossRef]
- Ghaffari, Z.; Nasiri, M.M.; Bozorgi-Amiri, A.; Rahbari, A. Emergency supply chain scheduling problem with multiple resources in disaster relief operations. Transp. A Transp. Sci. 2020, 16, 930–956. [Google Scholar] [CrossRef]
- Beiki, H.; Seyedhosseini, S.M.; Ghezavati, V.R.; Seyedaliakbar, S.M. Multi-objective Optimization of Multi-vehicle Relief Logistics Considering Satisfaction Levels under Uncertainty. Int. J. Eng. 2020, 33, 814–824. [Google Scholar]
- Macias, J.E.; Angeloudis, P.; Ochieng, W. Optimal hub selection for rapid medical deliveries using unmanned aerial vehicles. Transp. Res. Part C Emerg. Technol. 2020, 110, 56–80. [Google Scholar] [CrossRef]
- Mamashli, Z.; Bozorgi-Amiri, A.; Dadashpour, I.; Nayeri, S.; Heydari, J. A heuristic-based multi-choice goal programming for the stochastic sustainable-resilient routing-allocation problem in relief logistics. Neural Comput. Appl. 2021, 33, 14283–14309. [Google Scholar] [CrossRef]
- Talebian Sharif, M.; Salari, M. A GRASP algorithm for a humanitarian relief transportation problem. Eng. Appl. Artif. Intell. 2015, 41, 259–269. [Google Scholar] [CrossRef]
- Molladavoodi, H.; Paydar, M.M.; Safaei, A.S. A disaster relief operations management model: A hybrid LP–GA approach. Neural Comput Appl. 2020, 32, 1173–1194. [Google Scholar] [CrossRef]
- Rezaei, M.; Afsahi, M.; Shafiee, M.; Patrikssond, M. A bi-objective optimization framework for designing an efficient fuel supply chain network in post-earthquakes. Comput. Ind. Eng. 2020, 147, 106654. [Google Scholar] [CrossRef]
- Hajipour, V.; Taghi Akhavan Niaki, S.; Akhgar, M.; Ansari, M. The Healthcare Supply Chain Network Design with Traceability: A Novel Algorithm. Comput. Ind. Eng. 2021, 147, 106654. [Google Scholar] [CrossRef]
- Molina, J.; López-Sánchez, A.D.; Hernández-Díaz, A.G.; Martínez-Salazar, I. A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems. J. Heuristics 2017, 24, 111–133. [Google Scholar] [CrossRef]
- Mollah, A.K.; Sadhukhan, S.; Das, P.; Anis, M.Z. A cost optimization model and solutions for shelter allocation and relief distribution in flood scenario. Int. J. Disaster Risk Reduct. 2018, 31, 1187–1198. [Google Scholar] [CrossRef]
- Jha, A.; Acharya, D.; Tiwari, M.K. Humanitarian relief supply chain: A multi-objective model and solution. Sādhanā 2017, 42, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Decerle, J.; Grunder, O.; Hassani, A.H.E.; Barakat, O. A hybrid memetic-ant colony optimization algorithm for the home health care problem with time window, synchronization and working time balancing. Swarm Evol. Comput. 2019, 46, 171–183. [Google Scholar] [CrossRef]
- Frifita, S.; Masmoudi, M.; Euchi, J. General variable neighborhood search for home healthcare routing and scheduling problem with time windows and synchronized visits. Electron. Notes Discret. Math. 2017, 58, 63–70. [Google Scholar] [CrossRef]
- Sujaree, K.; Samattapapong, N. A Hybrid Chemical Based Metaheuristic Approach for a Vaccine Cold Chain Network. OSCM 2021, 14, 351–359. [Google Scholar] [CrossRef]
- Noham, R.; Tzur, M. Designing humanitarian supply chains by incorporating actual post-disaster decisions. Eur. J. Oper. Res. 2018, 265, 1064–1077. [Google Scholar] [CrossRef]
- Huang, X.; Song, L. An emergency logistics distribution routing model for unexpected events. Ann. Oper. Res. 2018, 269, 223–239. [Google Scholar] [CrossRef]
- Babaei, A.; Shahanaghi, K. A new model for planning the distributed facilities locations under emergency conditions and uncertainty space in relief logistics. Uncertain Supply Chain Manag. 2017, 5, 105–125. [Google Scholar] [CrossRef]
- Bozorgi-Amiri, A.; Jabalameli, M.S.; Alinaghian, M. A modified particle swarm optimization for disaster relief logistics under uncertain environment. Int. J. Adv. Manuf. Technol. 2012, 60, 357–371. [Google Scholar] [CrossRef]
- Adarang, H.; Bozorgi-Amiri, A.; Khalili-Damghani, K.; Tavakkoli-Moghaddam, R. A robust bi-objective location-routing model for providing emergency medical services. J. Humanit. Logist. Supply Chain Manag. 2020, 10, 285–319. [Google Scholar] [CrossRef]
- Akdoğan, M.; Bayındır, Z.; Iyigun, C. Locating emergency vehicles with an approximate queuing model and a meta-heuristic solution approach. Transp. Res. Part C Emerg. Technol. 2018, 40, 134–155. [Google Scholar] [CrossRef]
- Mardaninejad, F.; Nastaram, M. Mathematical modeling of the problem of locating temporary accommodation centers and assigning victims after a possible earthquake to safe places and solving using meta-heuristics algorithms. Front. Health Inform. 2021, 10, 81. [Google Scholar] [CrossRef]
- Nayeri, S.; Asadi-Gangraj, E.; Emami, S. Metaheuristic algorithms to allocate and schedule of the rescue units in the natural disaster with fatigue effect. Neural Comput. Appl. 2019, 31, 7517–7537. [Google Scholar] [CrossRef]
- Hasani, A.; Mokhtari, H. An integrated relief network design model under uncertainty: A case of Iran. Saf. Sci. 2019, 111, 22–36. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, F.; Li, S.; Chen, Z.; Dong, M. Peer-induced fairness capacitated vehicle routing scheduling using a hybrid optimization ACO–VNS algorithm. Soft Comput. 2020, 24, 2201–2213. [Google Scholar] [CrossRef]
- Vahdani, B.; Veysmoradi, D.; Shekari, N.; Mousavi, S.M. Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair. Neural Comput. Appl. 2018, 30, 835–854. [Google Scholar] [CrossRef]
- Goodarzian, F.; Taleizadeh, A.A.; Ghasemi, P.; Abraha, A. An integrated sustainable medical supply chain network during COVID-19. Eng. Appl. Artif. Intell. 2021, 100, 104188. [Google Scholar] [CrossRef]
- Wang, S.; Liu, F.; Lian, L.; Hong, Y.; Chen, H. Integrated post-disaster medical assistance team scheduling and relief supply distribution. Int. J. Logist. Manag. 2018, 29, 1279–1305. [Google Scholar] [CrossRef]
- Caballero-Morales, S.O.; Barojas-Payan, E.; Sanchez-Partida, D.; Martinez-Flores, J.L. Extended GRASP-Capacitated K-Means Clustering Algorithm to Establish Humanitarian Support Centers in Large Regions at Risk en Mexico. J. Optim. 2018, 2018, 3605298. [Google Scholar] [CrossRef] [Green Version]
- Tavanaa, M.; Amir-Reza, A.; Di Capriod, D.; Hashemic, R.; Yousefi-Zenouzc, R. An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations. Socio-Econ. Plan. Sci. 2021, 64, 21–37. [Google Scholar] [CrossRef]
- Mohammadi, R.; Ghomi, S.M.T.F.; Jolai, F. Prepositioning emergency earthquake response supplies: A new multi-objective particle swarm optimization algorithm. Appl. Math. Model 2016, 40, 5183–5199. [Google Scholar] [CrossRef]
- Shi, Y.; Boudouh, T.; Grunder, O. A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand. Expert Syst. Appl. 2017, 72, 160–176. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, G.; Liu, Y.; Yue, F.; Jiang, J. Multiple emergency resource allocation for concurrent incidents in natural disasters. Int. J. Disaster Risk Reduct. 2016, 17, 199–212. [Google Scholar] [CrossRef]
- Sharma, B.; Ramkumar, M.; Subramanian, N.; Malhotra, B. Dynamic temporary blood facility location-allocation during and post-disaster periods. Ann. Oper. Res. 2017, 283, 705–736. [Google Scholar] [CrossRef]
- Abazari, S.R.; Aghsami, A.; Rabbani, M. Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters. J. Socio-Econ. Plan. Sci. 2021, 74, 100933. [Google Scholar] [CrossRef]
- Golabi, M.; Shavarani, S.M.; Izbirak, G. An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: A case study of Tehran earthquake. Nat. Hazards 2017, 87, 1545–1565. [Google Scholar] [CrossRef]
- Sabouhi, F.; Bozorgi-Amiri, A.; Moshref-Javadi, M.; Heydari, M. An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: A case study. Ann Oper Res 2019, 283, 643–677. [Google Scholar] [CrossRef]
- Mosallanezhad, B.; Chouhan, V.K.; Paydar, M.M.; Hajiaghaei-Keshteli, M. Disaster relief supply chain design for personal protection equipment during the COVID-19 pandemic. Appl. Soft Comput. 2021, 112, 107809. [Google Scholar] [CrossRef] [PubMed]
- Ramezanian, R.; Jani, S. Design a Relief Transportation Model with Uncertain Demand and Shortage Penalty: Solving with Meta-Heuristic Algorithms. Int. J. Ind. Eng. Prod. Res. 2021, 32, 1–17. [Google Scholar] [CrossRef]
- Sadeghi, M.E.; Khodabakhsh, M.; Ganjipoor, M.R.; Kazemipoor, H.; Nozari, H. A New Multi Objective Mathematical Model for Relief Distribution Location at Natural Disaster Response Phase. Int. J. Innov. 2021, 1, 29–54. [Google Scholar] [CrossRef]
- Buzon-Cantera, I.E.; Mora-Vargas, J.; Ruiz, A.; Soriano, P. A hybrid optimization model: An approach for the humanitarian aid distribution problem. Appl. Math. Sci. 2015, 9, 6329–6346. [Google Scholar] [CrossRef]
- Jiang, Y.; Bian, B.; Liu, Y. Integrated multi-item packaging and vehicle routing with split delivery problem for fresh agri-product emergency supply at large-scale epidemic disease context. J. Traffic Transp. Eng. 2021, 8, 196–208. [Google Scholar] [CrossRef]
- Wex, F.; Schryen, G.; Feuerriegel, S.; Neumann, D. Emergency response in natural disaster management: Allocation and scheduling of rescue units. Eur. J. Oper. Res. 2014, 235, 697–708. [Google Scholar] [CrossRef]
- Dávila de León, A.; Lalla-Ruiz, E.; Melián-Batista, B.; Moreno-Vega, J.M. A Simulated Annealing-Based Approach for Aid Distribution in Post-disaster Scenarios. In Computer Aided Systems Theory–EUROCAST 2019; Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A., Eds.; Springer: Las Palmas de Gran Canaria, Spain, 2020; pp. 335–343. [Google Scholar] [CrossRef]
- Edrisi, A.; Askari, M. Optimal Budget Allocation to Improve Critical Infrastructure during Earthquakes. Transp. J. 2020, 59, 369–398. [Google Scholar] [CrossRef]
- Sadeghi Moghadam, M.; Ghasemian Sahebi, I. A Mathematical Model to Improve the Quality of Demand Responding in Emergency Medical Centers in a Humanitarian Supply chain. Mod. Res. Dec. Mak. 2018, 3, 217–242. [Google Scholar]
- Ransikarbum, K.; Mason, S. A bi-objective optimisation of post-disaster relief distribution and short-term network restoration using hybrid NSGA-II algorithm. Int. J. Prod. Res. 2021. [Google Scholar] [CrossRef]
- Qi, C.; Hu, L. Optimization of vehicle routing problem for emergency cold chain logistics based on minimum loss. Phys. Commun. 2020, 40, 101085. [Google Scholar] [CrossRef]
- Zahedi, A.; Salehi-Amiri, A.; Smith, N.R.; Hajiaghaei-Keshtelia, M. Utilizing IoT to design a relief supply chain network for the SARS-COV-2 pandemic. Appl. Soft Comput. 2021, 104, 107210. [Google Scholar] [CrossRef] [PubMed]
- Babaei, A.; Shahanaghi, K. A Novel Algorithm for Identifying and Analyzing Humanitarian Relief Logistics Problems: Studying Uncertainty on the Basis of Interaction with the Decision Maker. Process Integr. Optim. Sustain. 2018, 2, 27–45. [Google Scholar] [CrossRef]
- Eskandari-Khanghahi, M.; Tavakkoli-Moghaddam, R.; Taleizadeh, A.A.; Amin, S.H. Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Eng. Appl. Artif. Intell. 2018, 71, 236–250. [Google Scholar] [CrossRef]
- Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R.; Smith, N.R. Bi-level programming for home health care supply chain considering outsourcing. J. Ind. Inf. Integr. 2021, in press. [Google Scholar] [CrossRef]
- Kim, S.; Shin, Y.; Lee, G.M.; Moon, I. Network repair crew scheduling for short-term disasters. Appl. Math. Model. 2018, 64, 510–523. [Google Scholar] [CrossRef]
- Fathollahi-Fard, A.M.; Govindan, K.; Hajiaghaei-Keshteli, M.; Ahmadi, A. A green home health care supply chain: New modified simulated annealing algorithms. J. Clean. Prod. 2019, 240, 118200. [Google Scholar] [CrossRef]
- Saeidian, B.; Mesgari, M.S.; Ghodousi, M. Evaluation and comparison of Genetic Algorithm and Bees Algorithm for location–allocation of earthquake relief centers. Int. J. Disaster Risk Reduct. 2016, 15, 94–107. [Google Scholar] [CrossRef]
- Cao, C.; Li, C.; Yang, Q.; Liu, Y.; Qu, T. A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters. J. Clean. Prod. 2018, 174, 1422–1435. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiong, S. Routing optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithm. Appl. Soft. Comput. 2018, 71, 917–925. [Google Scholar] [CrossRef]
- Agarwal, S.; Kant, R.; Shankar, R. Humanitarian supply chain management: Modeling the pre and post-disaster relief operations. Int. J. Disaster Resil. Built Environ 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Javadian, N.; Modares, S.; Bozorgi, A. A Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms. Int. J. Eng. 2017, 30, 1526–1537. [Google Scholar] [CrossRef]
- Korkou, T.; Souravlias, D.; Parsopoulos, K.E.; Skouri, K. Metaheuristic Optimization for Logistics in Natural Disasters. In Dynamics of Disasters—Key Concepts, Models, Algorithms, and Insights; Kotsireas, I., Nagurney, A., Pardalos, P.M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Ferrer, J.M.; Ortuño, M.T.; Tirado, G. A GRASP metaheuristic for humanitarian aid distribution. J. Heuristics 2015, 22, 55–87. [Google Scholar] [CrossRef]
- Tofighi, S.; Torabi, S.A.; Mansouri, S.A. Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 2015, 250, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Forughi, A.; Moghaddam, B.F.; Behzadi, M.H.; Sobhani, F.M. Addressing a Humanitarian Relief Chain Considering Uncertain Demand and Deprivation Costs by a Hybrid LP-GA Method: An Earthquake in Kermanshah. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, Y.; Xu, Y.; Gu, J. Emergency relief routing models for injured victims considering equity and priority. Ann. Oper. Res. 2019, 283, 1573–1606. [Google Scholar] [CrossRef]
- Danesh Alagheh Band, T.; Aghsami, A.; Rabbani, M. A Post-disaster Assessment Routing Multi-objective Problem under Uncertain Parameters. Int. J. Eng. 2020, 33, 2503–2508. [Google Scholar] [CrossRef]
- Hoseininezhad, F.; Makui, A.; Tavakkoli-Moghaddam, R. Pre-positioning of a relief chain in humanitarian logistics under uncertainty in road accidents: A real-case study. S. Afr. J. Ind. Eng. 2021, 32, 86–104. [Google Scholar] [CrossRef]
- Torabi, S.A.; Shokr, I.; Tofighi, S.; Heydari, J. Integrated relief pre-positioning and procurement planning in humanitarian supply chains. Transp. Res. Part E Logist. Transp. Rev. 2018, 113, 123–146. [Google Scholar] [CrossRef]
- Ghasemi, P.; Khalili Damghani, K.; Hafezalkotob, A.; Raissi, S. Multi-Objective Mathematical Model for Location, Allocation and Distribution of Relief Commodities under Uncertainty. Ind. Mgmt. Stud. 2018, 16, 107–144. [Google Scholar] [CrossRef]
- Hu, C.L.; Liu, X.; Hua, Y.K. A bi-objective robust model for emergency resource allocation under uncertainty. Int. J. Prod. Res. 2016, 54, 7421–7438. [Google Scholar] [CrossRef]
- Nayeri, S.; Tavakkoli-Moghaddam, R.; Sazvar, Z.; Heydari, J. Solving an Emergency Resource Planning Problem with Deprivation Time with Hybrid Meta Heuristic Algorithm. J. Qual. Eng. Prod. Optim. 2020, 5, 65–86. [Google Scholar] [CrossRef]
- Wang, F.; Pei, Z.; Dong, L.; Ma, J. Emergency Resource Allocation for Multi-Period Post-Disaster Using Multi-Objective Cellular Genetic Algorithm. IEEE Access 2020, 8, 82255–82265. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Q.; Zhang, H.; Hong, M.; Akerkar, R.; Liang, Y. Global optimization for multi-stage construction of rescue units in disaster response. Sustain. Cities Soc. 2019, 51, 101768. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Hui, S.; Nagaratman, P.; Herrera, P. Analyzing convergence performance of evolutionary algorithms: A statistical approach. J. Inf. Sci. 2014, 2014. 289, 41–58. [Google Scholar] [CrossRef]
- Carrasco, J.; Rueda, M.; Das, S.; Herrera, F. Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review. Swarm Evol. 2020, 54, 100665. [Google Scholar] [CrossRef] [Green Version]
Authors | Phase of Disaster | Model Type | Problem Type | Metaheuristic Algorithm | Time Period | Objective Type | Objective Function Minimize (−) Maximize (+) (the Number Indicates the Consecutive of the Objectives) | Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre- Disaster | Post- Disaster | Integrated | Deterministic | Non- Deterministic | Facility Location | Distribution | Inventory | Mass Evacuation | Single | Multi | Single | Bi/ Multi | Random Data | Case Study | |||
Tavanaa et al. [79] | * | * | * | * | * | NSGA-II, RPBNSGA-II | * | * | (1) (−) Total cost of procurement and preparation pre-disaster phases, (2) (−) the total relief operational cost on post-disaster, (3) (−) the total operational relief time on post-disaster. | * | |||||||
Molina et al. [59] | * | * | * | MSINS | * | * | (1) (−) The number of vehicles, (2) (−) total traveling cost, (3) (−) the maximum latency. | * | |||||||||
Babaei and Shahanaghi [99] | * | * | * | * | SA | * | * | (1) (−) Total cost of establishing the emergency location, (2) (−) the cost of constructing the path, (3) the number of required ambulances in each scenario. | * | ||||||||
Wu et al. [74] | * | * | * | ACO-VNS | * | * | (−) The sum of customers waiting times taking peer induced fairness into account. | * | |||||||||
Vahdani et al. [75] | * | * | * | * | NSGA-II MOPSO | * | * | (−) The travel time and total cost and increases reliability of the routes | * | ||||||||
Mollah et al. [60] | * | * | * | * | GA | * | * | (−) Total cost for transporting population and relief-kits and penalty cost associated with one un-evacuated in-need population. | * | ||||||||
Rezaei et al. [57] | * | * | * | MOEAs, NSGA-II, MOPSO | * | * | (1) (−) The penalties due to both delayed and unsatisfied fuel demands, (2) (−) the difference between the satisfied demand in different earthquake-affected areas. | * | |||||||||
Abazari et al. [84] | * | * | * | * | * | GOA | * | * | (1) (−) Distance traveled by relief items, (2) (−) RC establishing cost, (3) (−) the maximum traveling time from facility to demand location, (4) (−) the total quantity of perished items. | * | |||||||
Mohammadi et al. [80] | * | * | * | * | MOPSO, PSO | * | * | (1) (−) Total expected demand coverage, (2) (−) the total expected cost, (3) (−) the difference in the satisfaction rates between nodes. | * | ||||||||
Jiang, Bian and Liu [91] | * | * | * | IGA-SF | * | * | (1) Average response time, (2) the infectious possibility, (3) the transportation resource utilization | * | |||||||||
Goodarzian et al. [76]. | * | * | * | * | * | ACO, FSA, FA | * | * | (1) (+) Social factors, (2) (−) the cost of establishing DCs, inventory holding, transportation cost, production cost, (3) (−) the maximum unmet demand. | * | |||||||
Wang et al. [77] | * | * | * | ABC | * | * | (−) Total service completion time among all demand points. | * | |||||||||
Jha, Acharya, and Tiwari [61] | * | * | * | * | NSGA-III | * | * | (1) (−) The cost of set-up, procurement, transportation between supplier and relief camps, (2) (−) gap between demand and supply of the relief chain. | * | ||||||||
Noham and Tzur [65] | * | * | * | * | TS | * | * | (+) The ratio of units distributed to their delivery time. | * | * | |||||||
Razavi et al. [48] | * | * | * | GA | * | * | (1) (−) The cost of the blood supply chain, (2) (−) the maximum degree of discontent with unfairness among affected areas, (3) (+) coverage of the demand of blood in field hospitals. | * | |||||||||
Davoodi and Goli, [49] | * | * | * | * | VSN | * | * | (−) The maximum interval times of vehicles to depot R + 1. | * | ||||||||
Shavarani [44] | * | * | * | NSGA-II | * | * | (−) The total travel distance to meet the demand on each point. | * | |||||||||
Boonme et al. [50] | * | * | * | PSO, DE | * | * | (1) (−) The financial effects of the fixed and variable costs, (2) (+) revenue from sellable waste. | * | |||||||||
Ghaffari et al. [51] | * | * | * | PSO | * | * | (−) Total weighted completion times of services at hospitals. | * | |||||||||
Eskandari-Khanghahi et al. [100] | * | * | * | * | SA | * | * | (1) (−) The total environmental impacts, (2) (+) The social impacts, (3) (−) the total variable and fixed cost in the network. | * | ||||||||
Beiki et al. [52] | * | * | * | NSGA-II, MOPSO | * | * | (1) (−) The maximum number of the unserved injured people, (2) (−) the sum of cost. | * | |||||||||
Macias et al. [53] | * | * | * | LNS | * | * | (+) The state of charge by the end of the flaying. | * | |||||||||
Zahedi et al. [98] | * | * | * | SA, SEO, PSO | * | * | (1) (−) The starting time of visiting the suspected case with lowest priority by each ambulance and penalty time of visitation, (2) (−) the critical response time. | * | |||||||||
Mamashli et al. [54] | * | * | * | HBMCGP-UF | * | * | (1) (−) Total time traveled of vehicles, (2) (−) the total environmental impacts of the system, (3) (−) the total demand’s loss of all crisis points. | * | |||||||||
Madani et al. [46] | * | * | * | * | * | NSGA-II, SA, VNS | * | * | (1) (+) the system reliability, (2) (−) the total cost of the relief logistic system. | * | |||||||
Khorsi et al. [47] | * | * | * | MOGF3EA | * | * | (1) (−) The arrival times of vehicles at the demand nodes during the planning, (2) (+) the reliability of the routes. | * | |||||||||
Talebian Sharif and Salari [55] | * | * | * | GRASP | * | * | (−) The routing cost plus the allocation cost. | * | |||||||||
Molladavoodi et al. [56] | * | * | * | GA | * | * | (1) (−) The total cost, (2) (−) the maximum unfulfilled demand. | * | |||||||||
Akdoğan, et al. [70] | * | * | * | GA | * | * | (−) The frequency weighted mean response time of the system. | * | |||||||||
Vahdani et al. [75] | * | * | * | * | NSGA-II, MOPSO | * | * | (1) (−) The maximum vehicle route traveling time, (2) (−) the total cost. | * | ||||||||
Huang and Song, [66] | * | * | * | CGA | * | * | (−) The total arrival time of the needed material. | * | |||||||||
Babaei and Shahanaghi [67] | * | * | * | NSGA-II | * | * | (1) (−) The lost or logistics cost, (2) (+) demand satisfaction, (3) (+) the budget and the amount of demand response. | * | |||||||||
Fathollahi-Fard et al. [101] | * | * | * | MICA, MWWO, MSSA, HWSA, HSIA | * | * | (1) (−) The cost of Hospital services and transportation. | * | * | ||||||||
Kim et al. [102] | * | * | * | AC | * | * | (1) (−) The weighted sum of total damages, (2) (−) competition time | * | |||||||||
Sujaree and Samattapapong, [64] | * | * | * | HACROA | * | * | (−) Distance | * | |||||||||
Shi et al. [81] | * | * | * | HGA | * | * | (−) Transportation cost | * | |||||||||
Frifita et al. [63] | * | * | * | VNS | * | * | (1) (+) The number of visits assigned to each route, (2) (−) the traveling time. | * | |||||||||
Decerle et al. [62] | * | * | * | HM-ACA | * | * | (−) The time needed to perform the care. | * | |||||||||
Fathollahi-Fard [103] | * | * | * | * | SA | * | * | (1) (−) The total cost of opening pharmacies and laboratories, (2) (−) environmental impact and green emissions. | * | ||||||||
Saeidian et al. [104] | * | * | * | GA, BA | * | * | (−) The sum of all distances between centers and parcels. | * | * | ||||||||
Cao et al. [105] | * | * | * | GA | * | * | (1) (+) The lowest VPS (victims’ perceived satisfaction) for all RDPs (relief demand points), (2) (−) the largest deviation on perceived satisfaction | * | |||||||||
Qi and Hu [97] | * | * | * | ACS, PLS | * | * | (−) Total cost of distribution | * | |||||||||
Su et al. [82] | * | * | * | SA | * | * | (−) Total travel time of disaster response coalitions and the total cost of the allocated emergency resources | * | |||||||||
Zhang and Xiong, [106] | * | * | * | IACO | * | * | (1) (+) Demand satisfaction, (2) (−) total cost of grain distribution, (3) (−) distribution time | * | |||||||||
Sharma et al. [83] | * | * | * | * | TS | * | * | (−) Distance between hospitals and temporary blood centers | * | ||||||||
Adarang et al. [69] | * | * | * | SFLA NSGA-II | * | * | (1) (−) Relief time, (2) (−) the total cost including location costs and the cost of route coverage by the vehicles | * | |||||||||
Agarwal, Kant & Shankar [107] | * | * | * | * | * | PSA, GA | * | * | (1) (−) Total cost of facility establishment and drone procurement, (2) (−) The total number of uncovered customers | * | |||||||
Shavarani et al. [45] | * | * | * | NSGA-II, NSGA-III | * | * | (−) The total relief items supply chain cost | * | |||||||||
Sadeghi moghadam and Ghasemian sahebi [89] | * | * | * | SA | * | * | (+) The demand coverage and reduce the rescue time | * | |||||||||
Javadian et al. [108] | * | * | * | * | NSGA-II, NRGA | * | * | (1) (−) The total operating cost of selected CWs and LDCs and inventory cost, (2) (−) the maximum travel time between each pair CW/LDC and demand point for the item | * | ||||||||
Mosallanezhad et al. [87] | * | * | * | MOKA, MOSA, NSGA-II, MOKASA | * | * | (1) (−) Cost of the Personal Protection Equipment Supply Chain (2) (−) The amount of unsatisfied demands | * | |||||||||
Buzón-Cantera et al. [90] | * | * | * | SA | * | * | (−) The penalty due to delays | * | |||||||||
Korkou et al. [109] | * | * | * | DE, eDE, PSO, AP | * | * | (−) The shortages of different relief products | * | |||||||||
Ferrer et al. [110] | * | * | * | RCA, ESCA, GRASP | * | * | (−) Total cost | * | |||||||||
Hajipour et al. [58] | * | * | * | * | MOVDO | * | * | (1) (−) The chain’s total cost (2) (−) The number of undamaged items received by warehouses | * | ||||||||
Ramezanian et al. [88] | * | * | * | MUCSOA | * | * | (1) (−) The total fuzzy transportation and inventory holding cost, (2) (−) unsatisfied demand, (3) (+) the minimum estimated demand ratios. | * | |||||||||
Sadeghi et al. [89] | * | * | * | NSGA-II | * | * | (1) (−) The total cost of supplies shortage, (2) (−) the total cost of delivering supplies and the cost of constructing the distribution center, (3) (−) the total response time | * | |||||||||
Caballero-Morales et al. [78] | * | * | * | KCM, GRASP-CKMC | * | * | (−) Total distance from each cluster to each assigned point | * | |||||||||
Ransikarbum and Mason [96] | * | * | * | HNSGA-II | * | * | (−) Total cost of distribution | * | |||||||||
Tofighi et al. [111] | * | * | * | * | * | DE | * | * | (−) Total operation cost of selected CWs | * | |||||||
Mardaninejad and Nastaran [71] | * | * | * | SA, PSO, ICA, ACO, ABC, FA, LAFA | * | * | (−) The distance and fixed cost of equipping a temporary accommodation center | * | |||||||||
Forughi et al. [112] | * | * | * | LP-GA | * | * | (1) (−) Total cost, (2) (+) each facility’s weighted resilience levels | * | |||||||||
Golabi et al. [85] | * | * | * | GA, MA, SA | * | * | (−) The aggregate traveling time | * | |||||||||
Nayeri et al. [72] | * | * | * | * | * | SA, PSO, SA-PSO | * | * | (1) (−) the sum of the weighted completion time of the relief operation | * | |||||||
Dávila de León et al. [93] | * | * | * | SA, GRA | * | * | (−) The time required to provide humanitarian aid | * | |||||||||
Hasani and Mokhtari [73] | * | * | * | * | NSGA-II, PSO | * | * | (1) (+) The total coverage by the relief network, (2) (−) the total cost, (3) (−) the maximum risk of total demand nodes | * | ||||||||
Zhu et al. [113] | * | * | * | ACO | * | * | (1) (−) The transportation cost, (2) (−) the absolute deprivation cost, (3) (−) relative deprivation cost | * | |||||||||
Danesh et al. [114] | * | * | * | GOA | * | * | (1) (+) The total value made by evaluating the sites and roads, (2) (+) the minimum cover of sites, (3) (+) the minimum cover of roads | * | |||||||||
Hoseininezhad et al. [115] | * | * | * | NSGA II | * | * | (1) (−) The transportation cost of injured people, (2) (+) the impact of factor k on the location of relief chain h, (3)(−) the time of transferring injured people, (4) (−) the deviation of the capacity | * | |||||||||
Edrisi et al. [94] | * | * | * | PSO | * | * | (−) death toll | * | |||||||||
Torabi et al. [116] | * | * | * | DE | * | * | (−) total cost | * | |||||||||
Ghasemi et al. [117] | * | * | * | * | NSGA II | * | * | (1) (−) The number of injured people who a not serviced, (2) (−) the cost of relief supplies | * | ||||||||
Hu et al. [118] | * | * | * | PSO | * | * | (1) (+) The overall utility the relief resources to achieve the efficiency purpose, (2) (+) the minimal satisfaction rate | * | |||||||||
Nayeri et al. [119] | * | * | * | GA, PSO | * | * | (1) (−) the sum of the weighted completion time of the relief operation, (2) (−) the sum of deprivation times | * | |||||||||
Wang et al. [120] | * | * | * | MOCGA | * | * | (1) (−) Disaster losses, (2) (−) transportation risks | * | |||||||||
Xu et al. [121] | * | * | * | PSO | * | * | (−) Cost of rescue plan | * | |||||||||
Sabouhi and Bozorgi-Amiri [86] | * | * | * | MA | * | * | (−) The total waiting time of evacuees and delivery time of supplies | * | |||||||||
Wex et al. [92] | * | * | * | GRASP | * | * | (−) The sum of completion times | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana Robles, F.; Hernández-Gress, E.S.; Hernández-Gress, N.; Granillo Macias, R. Metaheuristics in the Humanitarian Supply Chain. Algorithms 2021, 14, 364. https://doi.org/10.3390/a14120364
Santana Robles F, Hernández-Gress ES, Hernández-Gress N, Granillo Macias R. Metaheuristics in the Humanitarian Supply Chain. Algorithms. 2021; 14(12):364. https://doi.org/10.3390/a14120364
Chicago/Turabian StyleSantana Robles, Francisca, Eva Selene Hernández-Gress, Neil Hernández-Gress, and Rafael Granillo Macias. 2021. "Metaheuristics in the Humanitarian Supply Chain" Algorithms 14, no. 12: 364. https://doi.org/10.3390/a14120364
APA StyleSantana Robles, F., Hernández-Gress, E. S., Hernández-Gress, N., & Granillo Macias, R. (2021). Metaheuristics in the Humanitarian Supply Chain. Algorithms, 14(12), 364. https://doi.org/10.3390/a14120364