# A NARX Model Reference Adaptive Control Scheme: Improved Disturbance Rejection Fractional-Order PID Control of an Experimental Magnetic Levitation System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- i.
- Linearization of a nonlinear ML system makes the reference model valid at the modeling conditions such as operating temperature, sphere motion ranges etc. This limitation decreases the accuracy of the reference model.
- ii.
- Identification of the inner loop is an initial process and this static reference model is not adaptive for changes in condition and behavior of the real systems.

## 2. Theoretical Background and Preliminaries

#### 2.1. Fractional Calculus and Fractional-Order Systems

#### 2.2. Multi-Loop Mrac

**Lemma**

**1.**

**Proof.**

**Theorem**

**1.**

**Proof.**

## 3. Mathematical Model of the Ml System: From a First Principles Model to a Narx Black Box Approximation

#### 3.1. Nn-Narx Modeling of the Ml System

#### 3.2. Off-Line Results

#### 3.3. Real-Life Results

## 4. Multi-Loop Mrac-Fopid Control with Narx Reference Model for Ml System Control Application

- i.
- The closed-loop retuning FOPID control system was implemented and FOPID controller was optimally tuned by using FOMCON toolbox [47].
- ii.
- The control signal and sphere position data from the designed closed-loop control system described above were collected and these data were used to train the NARX model in the virtual closed-loop control system. Thus, the virtual closed-loop PID control loop with the NARX model is used as reference model to represent closed-loop retuning FOPID control system.
- iii.
- The outer loop is connected to inner loop according to MIT rule as shown in Figure 10.

## 5. Conclusions and Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Alagoz, B.B.; Deniz, F.N.; Keles, C.; Tan, N. Implicit disturbance rejection performance analysis of closed loop control systems according to communication channel limitations. IET Control Theory Appl.
**2015**, 9, 2522–2531. [Google Scholar] [CrossRef] - Butler, H. Proceedings of the Model Reference Adaptive Control: From Theory to Practice; Prentice Hall International Series in Systems and Control Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 1992. [Google Scholar]
- Vinagre, B.; Petráš, I.; Podlubny, I.; Chen, Y. Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dyn.
**2002**, 29, 269–279. [Google Scholar] [CrossRef] - Lavretsky, E. Adaptive control: Introduction, overview, and applications. In Proceedings of the NASA Adaptive Control Workshop, NASA Marshall Space Center, Huntsville, AL, USA, 24 February 2009. [Google Scholar]
- Jain, P.; Nigam, M. Design of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System. Adv. Electron. Electr. Eng.
**2013**, 3, 477–484. [Google Scholar] - Swamkar, P.; Nema, R.; Swarnkar, P.; Kumar, J.; Nema, R. Comparative Analysis of MIT Rule and Lyapunov Rule in Model Reference Adaptive Control Scheme. Innov. Syst. Des. Eng.
**2011**, 2, 154–162. [Google Scholar] - Kavuran, G.; Ates, A.; Alagoz, B.B.; Yeroglu, C. An experimental study on model reference adaptive control of TRMS by error-modified fractional order MIT rule. Control Eng. Appl. Inform.
**2017**, 19, 101–111. [Google Scholar] - Alagoz, B.B.; Tepljakov, A.; Petlenkov, E.; Yeroglu, C. Multi-Loop model reference adaptive control of fractional-order PID control systems. In Proceedings of the 2017 IEEE 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017. [Google Scholar] [CrossRef]
- Tepljakov, A.; Alagoz, B.B.; Gonzalez, E.; Petlenkov, E.; Yeroglu, C. Model Reference Adaptive Control Scheme for Retuning Method-Based Fractional-Order PID Control with Disturbance Rejection Applied to Closed-Loop Control of a Magnetic Levitation System. J. Circuits Syst. Comput.
**2018**, 27. [Google Scholar] [CrossRef] - Rajesh, R.; Deepa, S. Design of direct MRAC augmented with 2 DoF PIDD controller: An application to speed control of a servo plant. J. King Saud Univ. Eng. Sci.
**2020**, 32, 310–320. [Google Scholar] [CrossRef] - Alagoz, B.B.; Tepljakov, A.; Petlenkov, E.; Yeroglu, C. Multi-Loop Model Reference Proportional Integral Derivative Controls: Design and Performance Evaluations. Algorithms
**2020**, 13, 38. [Google Scholar] [CrossRef] [Green Version] - Chen, Y.; Petras, I.; Xue, D. Fractional order control-a tutorial. In Proceedings of the 2009 IEEE American Control Conference, St. Louis, MO, USA, 10–12 June 2009. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Zhao, C.; Xue, D.; Chen, Y.Q. A fractional order PID tuning algorithm for a class of fractional order plants. In Proceedings of the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005; Volume 1, pp. 216–221. [Google Scholar] [CrossRef]
- Padula, F.; Visioli, A. Advances in Robust Fractional Control; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Tepljakov, A.; Petlenkov, E.; Belikov, J.; Gonzalez, E.A. Design of retuning fractional PID controllers for a closed-loop magnetic levitation control system. In Proceedings of the 2014 13th International Conference on Control, Automation, Robotics & Vision, ICARCV, Singapore, 10–12 December 2014; pp. 1345–1350. [Google Scholar]
- Tepljakov, A.; Gonzalez, E.A.; Petlenkov, E.; Belikov, J.; Monje, C.A.; Petráš, I. Incorporation of fractional-order dynamics into an existing PI/PID DC motor control loop. ISA Trans.
**2016**, 60, 262–273. [Google Scholar] [CrossRef] - Trisanto, A. PID controllers using neural network for multi-input multioutput magnetic levitation system. Electrician
**2007**, 1, 62–68. [Google Scholar] - Vassiljeva, K.; Tepljakov, A.; Petlenkov, E. NN-ANARX model based control of liquid level using visual feedback. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, N.; Yao, Q.; Wu, Z.; Jin, W. Real-time moisture control in sintering process using offline–online NARX neural networks. Neurocomputing
**2020**, 396, 209–215. [Google Scholar] [CrossRef] - Abouelazayem, S.; Glavinić, I.; Wondrak, T.; Hlava, J. Adaptive Control of Meniscus Velocity in Continuous Caster based on NARX Neural Network Model. IFAC-PapersOnLine
**2019**, 52, 222–227. [Google Scholar] [CrossRef] - Petlenkov, E.; Nomm, S.; Kotta, U. Neural Networks Based ANARX Structure for Identification and Model Based Control. In Proceedings of the 2006 IEEE 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006. [Google Scholar] [CrossRef]
- Antić, D.; Milovanović, M.; Nikolić, S.; Milojković, M.; Perić, S. Simulation Model of Magnetic Levitation Based on NARX Neural Networks. Int. J. Intell. Syst. Appl.
**2013**, 5, 25–32. [Google Scholar] [CrossRef] [Green Version] - Kumpati, S.N.; Kannan, P. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw.
**1990**, 1, 4–27. [Google Scholar] - Hagan, M.T.; Demuth, H.B. Neural Networks for Control. In Proceedings of the 1999 American Control Conference, Hyatt Regency, San Diego, San Diego, CA, USA, 2–4 June 1999; pp. 1642–1656. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199. [Google Scholar]
- Spooner, J.T.; Maggiore, M.; Ordonez, R.; Passino, K.M. Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 43. [Google Scholar]
- Fatemimoghadam, A.; Toshani, H.; Manthouri, M. Control of magnetic levitation system using recurrent neural network-based adaptive optimal backstepping strategy. Trans. Inst. Meas. Control
**2020**, 0142331220911821. [Google Scholar] [CrossRef] - Hajimani, M.; Gholami, M.; Dashti, Z.A.S.; Jafari, M.; Shoorehdeli, M.A. Neural adaptive controller for magnetic levitation system. In Proceedings of the 2014 IEEE Iranian Conference on Intelligent Systems (ICIS), Bam, Iran, 4–6 February 2014; pp. 1–6. [Google Scholar]
- Bidikli, B. An observer-based adaptive control design for the maglev system. Trans. Inst. Meas. Control.
**2020**, 0142331220932396. [Google Scholar] [CrossRef] - Zhang, J.; Wang, X.; Shao, X. Design and real-time implementation of Takagi–Sugeno fuzzy controller for magnetic levitation ball system. IEEE Access
**2020**, 8, 38221–38228. [Google Scholar] [CrossRef] - Ladaci, S.; Charef, A. On fractional adaptive control. Nonlinear Dyn.
**2006**, 43, 365–378. [Google Scholar] [CrossRef] - Wei, Y.; Sun, Z.; Hu, Y.; Wang, Y. On fractional order composite model reference adaptive control. Int. J. Syst. Sci.
**2016**, 47, 2521–2531. [Google Scholar] [CrossRef] - Aguila-Camacho, N.; Duarte-Mermoud, M.A. Fractional adaptive control for an automatic voltage regulator. ISA Trans.
**2013**, 52, 807–815. [Google Scholar] [CrossRef] - Keziz, B.; Ladaci, S.; Djouambi, A. Design of a MRAC-Based Fractional order PI λ D μ Regulator for DC Motor Speed Control. In Proceedings of the 3rd International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM 2018), Algiers, Algeria, 28–31 October 2018; pp. 1–6. [Google Scholar]
- Hartley, T.T.; Lorenzo, C.F. Dynamics and Control of Initialized Fractional-Order Systems. Nonlinear Dyn.
**2002**, 29, 201–233. [Google Scholar] [CrossRef] - Vinagre, B.M.; Podlubny, I.; Hernández, A.; Feliu, V. Some Approximations Of Fractional Order Operators Used In Control Theory And Applications. Fract. Calc. Appl. Anal.
**2000**, 3, 945–950. [Google Scholar] - Matignon, D. Stability Results For Fractional Differential Equations With Applications To Control Processing. Comput. Eng. Syst. Appl.
**1997**, 2, 963–968. [Google Scholar] - Radwan, A.; Soliman, A.; Elwakil, A.; Sedeek, A. On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals
**2009**, 40, 2317–2328. [Google Scholar] [CrossRef] - Senol, B.; Ates, A.; Baykant Alagoz, B.; Yeroglu, C. A numerical investigation for robust stability of fractional-order uncertain systems. ISA Trans.
**2014**, 53, 189–198. [Google Scholar] [CrossRef] [PubMed] - Alagoz, B.B. Hurwitz stability analysis of fractional order LTI systems according to principal characteristic equations. ISA Trans.
**2017**, 70, 7–15. [Google Scholar] [CrossRef] - Chen, Y.; Vinagre, B.M.; Podlubny, I. Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives?an Expository Review. Nonlinear Dyn.
**2004**, 38, 155–170. [Google Scholar] [CrossRef] - Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F. Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Trans. Circuits Syst. Fundam. Theory Appl.
**2000**, 47, 25–39. [Google Scholar] [CrossRef] - Deniz, F.N.; Alagoz, B.B.; Tan, N.; Koseoglu, M. Revisiting four approximation methods for fractional order transfer function implementations: Stability preservation, time and frequency response matching analyses. Annu. Rev. Control
**2020**, 49, 239–257. [Google Scholar] [CrossRef] - Tepljakov, A. Implementation of Fractional-Order Models and Controllers. In Fractional-order Modeling and Control of Dynamic Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 77–105. [Google Scholar] [CrossRef]
- Tepljakov, A.; Petlenkov, E.; Belikov, J. FOMCON toolbox for modeling, design and implementation of fractional-order control systems. In Applications in Control; Petráš, I., Ed.; De Gruyter: Berlin, Germany, 2019; pp. 211–236. [Google Scholar] [CrossRef]
- bo Zhou, H.; an Duan, J. Levitation mechanism modelling for maglev transportation system. J. Cent. South Univ. Technol.
**2010**, 17, 1230–1237. [Google Scholar] [CrossRef] - Yan, L. Development and Application of the Maglev Transportation System. IEEE Trans. Appl. Supercond.
**2008**, 18, 92–99. [Google Scholar] [CrossRef] - Dragos, C.A.; Preitl, S.; Precup, R.E.; Bulzan, R.G.; Petriu, E.M.; Tar, J.K. Experiments in fuzzy control of a Magnetic Levitation System laboratory equipment. In Proceedings of the IEEE 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 10–11 September 2010. [Google Scholar] [CrossRef]
- Gole, H.; Barve, P.; Kesarkar, A.A.; Selvaganesan, N. Investigation of fractional control performance for magnetic levitation experimental set-up. In Proceedings of the 2012 IEEE International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET), Tiruchirappalli, India, 13–14 December 2012. [Google Scholar] [CrossRef]
- Yu, P.; Li, J.; Li, J. The Active Fractional Order Control for Maglev Suspension System. Math. Probl. Eng.
**2015**, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version] - Muresan, C.I.; Ionescu, C.; Folea, S.; Keyser, R.D. Fractional order control of unstable processes: The magnetic levitation study case. Nonlinear Dyn.
**2014**, 80, 1761–1772. [Google Scholar] [CrossRef] - Dolga, V.; Dolga, L. Modeling and simulation of a magnetic levitation system. Ann. Oradea. Univ. Fascicle Manag. Technol. Eng.
**2007**, 6, 16. [Google Scholar] - Inteco Sp. z o.o. INTECO Official Webpage. Available online: http://www.inteco.com.pl/ (accessed on 13 July 2015).
- Rafiq, M.Y.; Bugmann, G.; Easterbrook, D.J. Neural network design for engineering applications. Comput. Struct.
**2001**, 79, 1541–1552. [Google Scholar] [CrossRef]

**Figure 1.**Implementation of the retuning fractional-order proportional integral derivative (FOPID) system by using the PID control loop [9].

**Figure 2.**Block diagram of multi-loop Model Reference Adaptive Control (MRAC)-FOPID system [9].

**Figure 4.**Representation of neural network (NN)-nonlinear autoregressive neural network with external inputs (NARX) structure. The first layer activation function ${f}_{1}$ is generally a nonlinear activation function to model nonlinear relations in the data. The second layer activation function ${f}_{2}$ is a linear activation function that rescales NARX output to original output data. Thus, it can yield satisfactory predictions of a nonlinear system dynamics.

**Figure 11.**Complete experimental configuration for evaluating the multi-loop control structure. There are three control loops in total: the original PID control loop with reference input ${r}^{\prime \prime}\left(t\right)$, the retuning loop with reference input ${r}^{\prime}\left(t\right)$ that replaces the dynamics of the original loop with those of the optimally tuned FOPID controller, and the MRAC loop to which the original reference input $r\left(t\right)$ is connected. By bypassing reference inputs in various ways, it is possible to achieve different simulation scenarios with the MRAC loop and retuning control loop enabled or disabled independently. This schematic diagram serves as the basis for both pure software simulations and real-time experiments in MATLAB/Simulink software.

**Figure 12.**Disturbance responses of the multi-loop MRAC-FOPID control with NARX reference model and the FOPID control loop (When MRAC is disabled).

**Figure 13.**Step disturbance responses of the multi-loop MRAC-FOPID control with NARX reference model and the FOPID control loop (When MRAC is disabled).

**Figure 14.**Sinusoidal disturbance responses of the multi-loop MRAC-FOPID control with NARX reference model and the FOPID control loop (When MRAC is disabled).

Parameter | Physical Description | Unit |
---|---|---|

$m=5.7100\times {10}^{-2}$ | mass of ball | [kg] |

$g=9.81$ | gravity constant | [$m/{s}^{2}$] |

${F}_{em}=f({x}_{1},{x}_{3})$ | [N] | |

${F}_{emP1}=1.7521\times {10}^{-2}$ | electromagnetic force | [H] |

${F}_{emP2}=5.8231\times {10}^{-3}$ | electromagnetic force | [m] |

${f}_{i}\left({x}_{1}\right)$ | [1/s] | |

${f}_{iP1}=1.4142\times {10}^{-4}$ | [ms] | |

${f}_{iP2}=4.5626\times {10}^{-3}$ | [m] | |

${c}_{i}=2.4300\times {10}^{-2}$ | actuator value | [A] |

${k}_{i}=2.5165$ | actuator value | [A] |

${x}_{3MIN}=3.8840\times {10}^{-2}$ | limitation for current | [A] |

${u}_{MIN}=4.9800\times {10}^{-3}$ | limitation for voltage |

Parameter | Value |
---|---|

Sample rate | $0.001$ s |

Simulation time | 30 s |

Hidden layer | 12 neurons |

X, input | Output of controller |

Delay (external input for control current) | 1 |

T, target | Output of system (ball position, velocity and coil current) |

Iteration | 1000 |

Reference signals | Pulse, Sine, Chirp (1 Hz to 6 Hz) |

Compare Type | MSE |
---|---|

ANN Model off-line (YEXP-YANN) | $2.32\times {10}^{-7}$ |

Real-Time Simulation (YEXP-UEXP) | $2.12\times {10}^{-7}$ |

Mathematical Model (YMATH-UEXP) | $8.02\times {10}^{-8}$ |

ANN Model (YANN-UEXP) | $2.83\times {10}^{-7}$ |

**Table 4.**Comparison of experimental performances of control systems with the MRAC loop disabled and enabled.

Control Structure | Peak Values of $\left|\mathit{y}\right(\mathit{t})-\mathit{r}(\mathit{t}\left)\right|$ in Disturbance Responses [m] | Settling Time after Step Disturbance [s] | Cumulative Absolute Control Error (Additive Disturbance) | Cumulative Absolute Control Error (Harmonic Disturbance) |
---|---|---|---|---|

FOPID control loop (MRAC disabled) | $3.603\times {10}^{-3}$ | $1.23$ | $8.6403$ | $28.6592$ |

Multi-loop MRAC-FOPID control with NARX reference model | $2.021\times {10}^{-3}$ | $0.43$ | $3.6240$ | $8.2300$ |

Multi-loop original PID control with NARX reference model | $5.552\times {10}^{-3}$ | $1.08$ | $16.3261$ | $18.4087$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alimohammadi, H.; Alagoz, B.B.; Tepljakov, A.; Vassiljeva, K.; Petlenkov, E.
A NARX Model Reference Adaptive Control Scheme: Improved Disturbance Rejection Fractional-Order PID Control of an Experimental Magnetic Levitation System. *Algorithms* **2020**, *13*, 201.
https://doi.org/10.3390/a13080201

**AMA Style**

Alimohammadi H, Alagoz BB, Tepljakov A, Vassiljeva K, Petlenkov E.
A NARX Model Reference Adaptive Control Scheme: Improved Disturbance Rejection Fractional-Order PID Control of an Experimental Magnetic Levitation System. *Algorithms*. 2020; 13(8):201.
https://doi.org/10.3390/a13080201

**Chicago/Turabian Style**

Alimohammadi, Hossein, Baris Baykant Alagoz, Aleksei Tepljakov, Kristina Vassiljeva, and Eduard Petlenkov.
2020. "A NARX Model Reference Adaptive Control Scheme: Improved Disturbance Rejection Fractional-Order PID Control of an Experimental Magnetic Levitation System" *Algorithms* 13, no. 8: 201.
https://doi.org/10.3390/a13080201