# COVID-19 Outbreak Prediction with Machine Learning

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

^{2}

^{2}+ Dx

^{3}

^{x}

^{B}

#### 2.1. Evolutionary Algorithms

#### 2.1.1. Genetic Algorithm (GA)

#### 2.1.2. Particle Swarm Optimization (PSO)

- Each particle independently looks for the optimal point.
- Each particle moves at the same speed at each step.
- Each particle remembers its best position in the space.
- The particles work together to inform each other of the places they are looking for.
- Each particle is in contact with its neighboring particles.
- Every particle is aware of the particles that are in the neighborhood.
- Every particle is known as one of the best particles in its neighborhood.

#### 2.1.3. Grey Wolf Optimizer (GWO)

#### 2.2. Machine Learning (ML)

^{t}be a time-series vector, in which x

_{t}is the outbreak at time point t and T is the set of all equidistant time points. To train ML methods effectively, we defined two scenarios, listed in Table 2.

#### 2.2.1. Multi-Layered Perceptron (MLP)

_{p}enters the cell from the previous cell p (Equation (19)). w

_{pc}is the weight of the input b

_{p}with respect to cell c and a

_{c}is the sum of the multiplications of the inputs and their weights [86]:

_{c}is applied to a

_{c}. Accordingly, b

_{c}can be calculated as Equation (20) [85]:

_{cn}is the weight of the b

_{cn}which is the output of c to n. W is the collection of all of the weights of the neural network in a set. For input x and output y, h

_{w}(x) is the output of the neural network. The main goal is to learn these weights to reduce the error values between y and h

_{w}(x). That is, the goal is to minimize the cost function Q(W), Equation (21) [86]:

#### 2.2.2. Adaptive Neuro Fuzzy Inference System (ANFIS)

- A fuzzy separator to cluster input–output data within multiple classes.
- A neural network for each class.
- Training neural networks with output–input data in the corresponding classes.

#### 2.2.3. Evaluation Criteria

## 3. Results

#### Machine Learning Results

#### Comparing the Fitted Models

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Nomenclature

MLP | Multi-layered perceptron |

ANFIS | Adaptive network-based fuzzy inference system |

SIR | Susceptible–infected–recovered |

CDR | Call data record |

CART | Classification and regression tree |

EA | Evolutionary algorithms |

GA | Genetic algorithm |

PSO | Particle swarm optimization |

MF | Membership function |

GWO | Grey wolf optimization |

MSE | Mean square error |

RMSE | Root mean square error |

AI | Artificial intelligence |

ANN | Artificial neural network |

Tri. | Triangular |

Gauss. | Gaussian |

Trap. | Trapezoidal |

ML | Machine learning |

## References

- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet
**2020**, 395, 1225–1228. [Google Scholar] [CrossRef] - Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E
**2020**, 136, 101922. [Google Scholar] [CrossRef] - Koolhof, I.S.; Gibney, K.B.; Bettiol, S.; Charleston, M.; Wiethoelter, A.; Arnold, A.-L.; Campbell, P.T.; Neville, P.J.; Aung, P.; Shiga, T.; et al. The forecasting of dynamical Ross River virus outbreaks: Victoria, Australia. Epidemics
**2020**, 30, 100377. [Google Scholar] [CrossRef] [PubMed] - Darwish, A.; Rahhal, Y.; Jafar, A. A comparative study on predicting influenza outbreaks using different feature spaces: Application of influenza-like illness data from Early Warning Alert and Response System in Syria. BMC Res. Notes
**2020**, 13, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rypdal, M.; Sugihara, G. Inter-outbreak stability reflects the size of the susceptible pool and forecasts magnitudes of seasonal epidemics. Nat. Commun.
**2019**, 10, 2374. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Scarpino, S.V.; Petri, G. On the predictability of infectious disease outbreaks. Nat. Commun.
**2019**, 10, 898. [Google Scholar] [CrossRef] [Green Version] - Zhan, Z.; Dong, W.; Lu, Y.; Yang, P.; Wang, Q.; Jia, P. Real-Time Forecasting of Hand-Foot-and-Mouth Disease Outbreaks using the Integrating Compartment Model and Assimilation Filtering. Sci. Rep.
**2019**, 9, 2661. [Google Scholar] [CrossRef] [PubMed] - Koike, F.; Morimoto, N. Supervised forecasting of the range expansion of novel non-indigenous organisms: Alien pest organisms and the 2009 H1N1 flu pandemic. Glob. Ecol. Biogeogr.
**2018**, 27, 991–1000. [Google Scholar] [CrossRef] - Dallas, T.; Carlson, C.J.; Poisot, T. Testing predictability of disease outbreaks with a simple model of pathogen biogeography. R. Soc. Open Sci.
**2019**, 6, 190883. [Google Scholar] [CrossRef] [PubMed] [Green Version] - De Groot, M.; Ogris, N. Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. For. Ecol. Manag.
**2019**, 450, 117495. [Google Scholar] [CrossRef] - Kelly, J.D.; Park, J.; Harrigan, R.J.; Hoff, N.A.; Lee, S.D.; Wannier, S.R.; Selo, B.; Mossoko, M.; Njoloko, B.; Okitolonda-Wemakoy, E.; et al. Real-time predictions of the 2018–2019 Ebola virus disease outbreak in the Democratic Republic of the Congo using Hawkes point process models. Epidemics
**2019**, 28, 100354. [Google Scholar] [CrossRef] [PubMed] - Maier, B.F.; Brockmann, D. Effective containment explains sub-exponential growth in confirmed cases of recent COVID-19 outbreak in Mainland China. medRxiv
**2020**. [Google Scholar] [CrossRef] [Green Version] - Pan, J.-R.; Huang, Z.-Q.; Chen, K. Evaluation of the effect of varicella outbreak control measures through a discrete time delay SEIR model. Zhonghua Yu Fang Yi Xue Za Zhi
**2012**, 46, 343–347. [Google Scholar] [PubMed] - Zha, W.-T.; Pang, F.-R.; Zhou, N.; Wu, B.; Liu, Y.; Du, Y.-B.; Hong, X.-Q.; Lv, Y. Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: Based on an SEIR dynamic model. Epidemiol. Infect.
**2020**, 148, e56. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dantas, E.; Tosin, M.; Cunha, A., Jr. Calibration of a SEIR–SEI epidemic model to describe the Zika virus outbreak in Brazil. Appl. Math. Comput.
**2018**, 338, 249–259. [Google Scholar] [CrossRef] [Green Version] - Leonenko, V.N.; Ivanov, S.V. Fitting the SEIR model of seasonal influenza outbreak to the incidence data for Russian cities. Russ. J. Numer. Anal. Math. Model.
**2016**, 31, 267–279. [Google Scholar] [CrossRef] - Imran, M.; Usman, M.; Dur-E-Ahmad, M.; Khan, A. Transmission Dynamics of Zika Fever: A SEIR Based Model. Differ. Equ. Dyn. Syst.
**2017**, 1–24. [Google Scholar] [CrossRef] - Miranda, G.H.B.; Baetens, J.M.; Bossuyt, N.; Bruno, O.M.; De Baets, B. Real-time prediction of influenza outbreaks in Belgium. Epidemics
**2019**, 28, 100341. [Google Scholar] [CrossRef] - Sinclair, D.R.; Grefenstette, J.J.; Krauland, M.G.; Galloway, D.D.; Frankeny, R.J.; Travis, C.; Burke, N.S.; Roberts, M.S. Forecasted Size of Measles Outbreaks Associated With Vaccination Exemptions for Schoolchildren. JAMA Netw. Open
**2019**, 2, e199768. [Google Scholar] [CrossRef] - Zhao, S.; Musa, S.S.; Fu, H.; He, D.; Qin, J. Simple framework for real-time forecast in a data-limited situation: The Zika virus (ZIKV) outbreaks in Brazil from 2015 to 2016 as an example. Parasites Vectors
**2019**, 12, 344. [Google Scholar] [CrossRef] [Green Version] - Fast, S.M.; Kim, L.; Cohn, E.L.; Mekaru, S.R.; Brownstein, J.S.; Markuzon, N. Predicting social response to infectious disease outbreaks from internet-based news streams. Ann. Oper. Res.
**2018**, 263, 551–564. [Google Scholar] [CrossRef] [PubMed] - McCabe, C.M.; Nunn, C. Effective Network Size Predicted From Simulations of Pathogen Outbreaks Through Social Networks Provides a Novel Measure of Structure-Standardized Group Size. Front. Vet. Sci.
**2018**, 5, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bragazzi, N.L.; Mahroum, N.; Cruvinel, T.; Mavragani, A. Google Trends Predicts Present and Future Plague Cases During the Plague Outbreak in Madagascar: Infodemiological Study. JMIR Public Health Surveill.
**2019**, 5, e13142. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Jain, R.; Sontisirikit, S.; Iamsirithaworn, S.; Prendinger, H. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect. Dis.
**2019**, 19, 272. [Google Scholar] [CrossRef] - Kim, T.H.; Hong, K.J.; Shin, S.D.; Park, G.J.; Kim, S.; Hong, N. Forecasting respiratory infectious outbreaks using ED-based syndromic surveillance for febrile ED visits in a Metropolitan City. Am. J. Emerg. Med.
**2019**, 37, 183–188. [Google Scholar] [CrossRef] [Green Version] - Zhong, L.; Mu, L.; Li, J.; Wang, J.; Yin, Z.; Liu, D. Early Prediction of the 2019 Novel Coronavirus Outbreak in the Mainland China Based on Simple Mathematical Model. IEEE Access
**2020**, 8, 51761–51769. [Google Scholar] [CrossRef] - Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet
**2020**, 395, 689–697. [Google Scholar] [CrossRef] [Green Version] - Reis, J.; Yamana, T.K.; Kandula, S.; Shaman, J. Superensemble forecast of respiratory syncytial virus outbreaks at national, regional, and state levels in the United States. Epidemics
**2019**, 26, 1–8. [Google Scholar] [CrossRef] - Burke, R.M.; Shah, M.P.; Wikswo, M.E.; Barclay, L.; Kambhampati, A.; Marsh, Z.; Cannon, J.L.; Parashar, U.D.; Vinjé, J.; Hall, A.J. The Norovirus Epidemiologic Triad: Predictors of Severe Outcomes in US Norovirus Outbreaks, 2009–2016. J. Infect. Dis.
**2019**, 219, 1364–1372. [Google Scholar] [CrossRef] - Carlson, C.J.; Dougherty, E.R.; Boots, M.; Getz, W.M.; Ryan, S.J. Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Sci. Rep.
**2018**, 8, 4921. [Google Scholar] [CrossRef] [Green Version] - Kleiven, E.F.; Henden, J.; Ims, R.A.; Yoccoz, N.G. Seasonal difference in temporal transferability of an ecological model: Near-term predictions of lemming outbreak abundances. Sci. Rep.
**2018**, 8, 15252. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rivers-Moore, N.A.; Hill, T. A predictive management tool for blackfly outbreaks on the Orange River, South Africa. River Res. Appl.
**2018**, 34, 1197–1207. [Google Scholar] [CrossRef] - Yin, R.; Tran, V.H.; Zhou, X.; Zheng, J.; Kwoh, C.K. Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model. PLoS ONE
**2018**, 13, e0207777. [Google Scholar] [CrossRef] [PubMed] - Agarwal, N.; Koti, S.R.; Saran, S.; Kumar, A.S. Data Mining Techniques for Predicting Dengue Outbreak in Geospatial Domain Using Weather Parameters for New Delhi, India. Curr. Sci.
**2018**, 114, 2281–2291. [Google Scholar] [CrossRef] - Anno, S.; Hara, T.; Kai, H.; Lee, M.-A.; Chang, Y.; Oyoshi, K.; Mizukami, Y.; Tadono, T. Spatiotemporal dengue fever hotspots associated with climatic factors in Taiwan including outbreak predictions based on machine-learning. Geospat. Health
**2019**, 14, 183–194. [Google Scholar] [CrossRef] [PubMed] - Chenar, S.S.; Deng, Z. Development of artificial intelligence approach to forecasting oyster norovirus outbreaks along Gulf of Mexico coast. Environ. Int.
**2018**, 111, 212–223. [Google Scholar] [CrossRef] [PubMed] - Chenar, S.S.; Deng, Z. Development of genetic programming-based model for predicting oyster norovirus outbreak risks. Water Res.
**2018**, 128, 20–37. [Google Scholar] [CrossRef] [PubMed] - Iqbal, N.; Islam, M. Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers. Informatica
**2019**, 43, 363–371. [Google Scholar] [CrossRef] [Green Version] - Liang, R.; Lu, Y.; Qu, X.; Su, Q.; Li, C.; Xia, S.; Liu, Y.; Zhang, Q.; Cao, X.; Chen, Q.; et al. Prediction for global African swine fever outbreaks based on a combination of random forest algorithms and meteorological data. Transbound. Emerg. Dis.
**2020**, 67, 935–946. [Google Scholar] [CrossRef] - Mezzatesta, S.; Torino, C.; De Meo, P.; Fiumara, G.; Vilasi, A. A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis. Comput. Methods Programs Biomed.
**2019**, 177, 9–15. [Google Scholar] [CrossRef] - Raja, D.B.; Mallol, R.; Ting, C.Y.; Kamaludin, F.; Ahmad, R.; Ismail, S.; Jayaraj, V.J.; Sundram, B.M. Artificial Intelligence Model as Predictor for Dengue Outbreaks. Malays. J. Public Health Med.
**2019**, 19, 103–108. [Google Scholar] [CrossRef] - Tapak, L.; Hamidi, O.; Fathian, M.; Karami, M. Comparative evaluation of time series models for predicting influenza outbreaks: Application of influenza-like illness data from sentinel sites of healthcare centers in Iran. BMC Res. Notes
**2019**, 12, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Muurlink, O.; Stephenson, P.; Islam, M.Z.; Taylor-Robinson, A.W. Long-term predictors of dengue outbreaks in Bangladesh: A data mining approach. Infect. Dis. Model.
**2018**, 3, 322–330. [Google Scholar] [CrossRef] [PubMed] - Choubin, B.; Mosavi, A.; Alamdarloo, E.H.; Hosseini, F.S.; Shamshirband, S.; Dashtekian, K.; Ghamisi, P. Earth fissure hazard prediction using machine learning models. Environ. Res.
**2019**, 179, 108770. [Google Scholar] [CrossRef] - Choubin, B.; Abdolshahnejad, M.; Moradi, E.; Querol, X.; Mosavi, A.; Shamshirband, S.; Ghamisi, P. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. Sci. Total Environ.
**2020**, 701, 134474. [Google Scholar] [CrossRef] - Reported Cases and Deaths by Country, Territory, or Conveyance. Available online: https://www.worldometers.info/coronavirus/#countries (accessed on 30 September 2020).
- Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 16. [Google Scholar]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput.
**2000**, 8, 173–195. [Google Scholar] [CrossRef] [Green Version] - Ghamisi, P.; Benediktsson, J.A. Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization. IEEE Geosci. Remote. Sens. Lett.
**2014**, 12, 309–313. [Google Scholar] [CrossRef] [Green Version] - Dineva, A.A.; Mosavi, A.; Ardabili, S.F.; Vajda, I.; Shamshirband, S.; Rabczuk, T.; Chau, K.-W. Review of Soft Computing Models in Design and Control of Rotating Electrical Machines. Energies
**2019**, 12, 1049. [Google Scholar] [CrossRef] [Green Version] - Mosavi, A.; Salimi, M.; Ardabili, S.F.; Rabczuk, T.; Shamshirband, S.; Várkonyi-Kóczy, A.R. State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies
**2019**, 12, 1301. [Google Scholar] [CrossRef] [Green Version] - Mühlenbein, H.; Schomisch, M.; Born, J. The parallel genetic algorithm as function optimizer. Parallel Comput.
**1991**, 17, 619–632. [Google Scholar] [CrossRef] - Whitley, D. A genetic algorithm tutorial. Stat. Comput.
**1994**, 4, 65–85. [Google Scholar] [CrossRef] - Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation: IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 27–29 June 2002; pp. 82–87. [Google Scholar]
- Reeves, C.R. A genetic algorithm for flowshop sequencing. Comput. Oper. Res.
**1995**, 22, 5–13. [Google Scholar] [CrossRef] - Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol.
**1997**, 267, 727–748. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ardabili, S.F.; Mosavi, A.; Várkonyi-Kóczy, A.R. Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble Methods. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–9 September 2020; pp. 215–227. [Google Scholar]
- Houck, C.R.; Joines, J.; Kay, M.G. A genetic algorithm for function optimization: A Matlab implementation. Ncsu-ie tr
**1995**, 95, 1–10. [Google Scholar] - Whitley, D.; Starkweather, T.; Bogart, C. Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Comput.
**1990**, 14, 347–361. [Google Scholar] [CrossRef] - Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell.
**2007**, 1, 33–57. [Google Scholar] [CrossRef] - Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93. [Google Scholar]
- Angeline, P.J. Using selection to improve particle swarm optimization. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings IEEE World Congress on Computational Intelligence (Cat No 98TH8360), Anchorage, AK, USA, 4–9 May 1988; pp. 84–89. [Google Scholar]
- Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat No 04TH8753), Portland, OR, USA, 19–23 June 2004; pp. 325–331. [Google Scholar]
- Parsopoulos, K.; Vrahatis, M. Recent approaches to global optimization problems through Particle Swarm Optimization. Nat. Comput.
**2002**, 1, 235–306. [Google Scholar] [CrossRef] - Bai, Q. Analysis of Particle Swarm Optimization Algorithm. Comput. Inf. Sci.
**2010**, 3, 180. [Google Scholar] [CrossRef] [Green Version] - Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization method in multiobjective problems. In Proceedings of the 2002 ACM Symposium on Applied Computing, Madrid, Spain, 10–14 March 2002; pp. 603–607. [Google Scholar]
- Ghamisi, P.; Couceiro, M.S.; Benediktsson, J.A.; Ferreira, N.M.F. An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl.
**2012**, 39, 12407–12417. [Google Scholar] [CrossRef] - Ghamisi, P.; Couceiro, M.S.; Martins, F.M.L.; Benediktsson, J.A. Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization. IEEE Trans. Geosci. Remote. Sens.
**2013**, 52, 2382–2394. [Google Scholar] [CrossRef] [Green Version] - Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw.
**2014**, 69, 46–61. [Google Scholar] [CrossRef] [Green Version] - Ardabili, S.; Mosavi, A.; Varkonyi-Koczy, A. Building Energy information: Demand and consumption prediction with Machine Learning models for sustainable and smart cities. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019. [Google Scholar]
- Ardabili, S.F.; Mosavi, A.; Várkonyi-Kóczy, A.R. Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019. [Google Scholar]
- Gundoshmian, T.M.; Ardabili, S.F.; Mosavi, A.; Várkonyi-Kóczy, A.R. Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019. [Google Scholar]
- Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.-W.; Ardabili, S.F.; Piran, J. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Eng. Appl. Comput. Fluid Mech.
**2018**, 12, 411–437. [Google Scholar] [CrossRef] [Green Version] - Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994; Volume 2. [Google Scholar]
- Ardabili, S.F.; Mosavi, A.; Mahmoudi, A.; Gundoshmian, T.M.; Nosratabadi, S.; Várkonyi-Kóczy, A.R. Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019. [Google Scholar]
- Khosravi, A.; Koury, R.; Machado, L.; Pabon, J.J. Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustain. Energy Technol. Assess.
**2018**, 25, 146–160. [Google Scholar] [CrossRef] - Amid, S.; Gundoshmian, T.M. Prediction of output energies for broiler production using linear regression, ANN (MLP, RBF), and ANFIS models. Environ. Prog. Sustain. Energy
**2017**, 36, 577–585. [Google Scholar] [CrossRef] - Hossain, M.A.; Ayodele, B.V.; Cheng, C.K.; Khan, M.R. Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts. Int. J. Hydrog. Energy
**2016**, 41, 11119–11130. [Google Scholar] [CrossRef] [Green Version] - Taghavifar, H.; Mardani, A. Wavelet neural network applied for prognostication of contact pressure between soil and driving wheel. Inf. Process. Agric.
**2014**, 1, 51–56. [Google Scholar] [CrossRef] [Green Version] - Sharabiani, V.; Kassar, F.; Gilandeh, Y.; Ardabili, S. Application of Soft Computing Methods and Spectral Reflectance Data for Wheat Growth Monitoring. Iraqi J. Agric. Sci.
**2019**, 50, 1064–1076. [Google Scholar] - Mirzazadeh, A.; Abdollahpour, S.; Mahmoudi, A.; Bukat, A. Intelligent modeling of material separation in combine harvester’s thresher by ANN. Int. J. Agric. Crop Sci.
**2012**, 4, 1767–1777. [Google Scholar] - Khalesi, S.; Mahmoudi, A.; Hosainpour, A.; Alipour, A. Detection of Walnut Varieties Using Impact Acoustics and Artificial Neural Networks (ANNs). Mod. Appl. Sci.
**2012**, 6, 43. [Google Scholar] [CrossRef] [Green Version] - Reshadsedghi, A.; Mahmoudi, A. Detection of almond varieties using impact acoustics and artificial neural networks. Int. J. Agric. Crop Sci.
**2013**, 6, 1008. [Google Scholar] - Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern.
**1993**, 23, 665–685. [Google Scholar] [CrossRef] - Ardabili, S.F.; Mahmoudi, A.; Gundoshmian, T.M. Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. J. Build. Eng.
**2016**, 6, 301–308. [Google Scholar] [CrossRef] - Amid, S.; Gundoshmian, T.M. Prediction of Output Energy based on Different Energy Inputs on Broiler Production using Application of Adaptive Neural-Fuzzy Inference System. Agric. Sci. Dev.
**2016**, 5, 14–21. [Google Scholar] [CrossRef] - Ardabili, S.F.; Mosavi, A.; Dehghani, M.; Várkonyi-Kóczy, A.R. Deep Learning and Machine Learning in Hydrological Processes Climate Change and Earth Systems a Systematic Review. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019; pp. 52–62. [Google Scholar]
- Nosratabadi, S.; Mosavi, A.; M-Keivani, R.; Ardabili, S.F.; Aram, F. State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability. In Proceedings of the 18th International Conference on Global Research and Education, Budapest, Hungary, 4–7 September 2019; pp. 228–238. [Google Scholar]
- Güler, I.; Übeyli, E.D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods
**2005**, 148, 113–121. [Google Scholar] [CrossRef] [PubMed] - Chang, J.-R.; Wei, L.-Y.; Cheng, C.-H. A hybrid ANFIS model based on AR and volatility for TAIEX forecasting. Appl. Soft Comput.
**2011**, 11, 1388–1395. [Google Scholar] [CrossRef] - Chang, F.-J.; Chang, Y.-T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour.
**2006**, 29, 1–10. [Google Scholar] [CrossRef] - Moghaddamnia, A.; Gousheh, M.G.; Piri, J.; Amin, S.; Han, D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv. Water Resour.
**2009**, 32, 88–97. [Google Scholar] [CrossRef] - Çaydaş, U.; Hasçalık, A.; Ekici, S. An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Syst. Appl.
**2009**, 36, 6135–6139. [Google Scholar] [CrossRef] - Yadav, D.; Chhabra, D.; Gupta, R.K.; Phogat, A.; Ahlawat, A. Modeling and analysis of significant process parameters of FDM 3D printer using ANFIS. Mater. Today Proc.
**2020**, 21, 1592–1604. [Google Scholar] [CrossRef] - Ardabili, S.F.; Mahmoudi, A.; Gundoshmian, T.M.; Roshanianfard, A. Modeling and comparison of fuzzy and on/off controller in a mushroom growing hall. Measurement
**2016**, 90, 127–134. [Google Scholar] [CrossRef]

**Figure 1.**Italy’s COVID-19 outbreak: the actual number of confirmed infections vs. epidemiological model.

**Figure 27.**An overview of the current state of the COVID-19 outbreak including daily cases for the four countries of the study (source: World Health Organization).

Authors | Journal | Outbreak Infection | Machine Learning |
---|---|---|---|

[39] | Transboundary and Emerging Diseases | Swine fever | Random Forest |

[35] | Geospatial Health | Dengue fever | Neural Network |

[42] | BMC Research Notes | Influenza | Random Forest |

[41] | Journal of Public Health Medicine | Dengue/Aedes | Bayesian Network |

[38] | Informatica | Dengue | LogitBoost |

[8] | Global Ecology and Biogeography | H1N1 flu | Neural Network |

[34] | Current Science | Dengue | Adopted multi-regression and Naïve Bayes |

[36] | Environment International | Oyster norovirus | Neural Network |

[37] | Water Research | Oyster norovirus | Genetic programming |

[43] | Infectious Disease Modelling | Dengue | Classification and regression tree (CART) |

Inputs | Input Number | Output | |
---|---|---|---|

Scenario 1 | x_{t−1}, x_{t−7}, x_{t−14}, and x_{t−21} | Four inputs | x_{t} (outbreak) |

Scenario 2 | x_{t−1}, x_{t−2}, x_{t−3}, x_{t−4}, and x_{t−5} | Five inputs | x_{t} (outbreak) |

Country | Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 82 s | 1028.98 | 0.996 |

PSO | 1000 | 500 | 36 s | 3358.1 | 0.997 | |

GWO | 500 | 1000 | 14 s | 187.15 | 0.999 | |

China | GA | 300 | 500 | 79 s | 42,160.4 | 0.982 |

PSO | 1000 | 500 | 35 s | 2524.44 | 0.994 | |

GWO | 500 | 1000 | 13 s | 2270.58 | 0.995 | |

Iran | GA | 300 | 500 | 81 s | 1267.04 | 0.992 |

PSO | 1000 | 500 | 36 s | 628.62 | 0.997 | |

GWO | 500 | 1000 | 13 s | 392.88 | 0.996 | |

USA | GA | 300 | 500 | 82 s | 1028.98 | 0.999 |

PSO | 1000 | 500 | 38 s | 350.33 | 0.999 | |

GWO | 500 | 1000 | 15 s | 22.35 | 0.999 | |

Germany | GA | 300 | 500 | 86 s | 5339.5 | 0.983 |

PSO | 1000 | 500 | 39 s | 555.32 | 0.997 | |

GWO | 500 | 1000 | 16 s | 55.54 | 0.999 |

Country | Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 92 s | 3774.06 | 0.845 |

PSO | 1000 | 500 | 42 s | 3645.76 | 0.844 | |

GWO | 500 | 1000 | 16 s | 3642.44 | 0.844 | |

China | GA | 300 | 500 | 91 s | 7188.95 | 0.981 |

PSO | 1000 | 500 | 39 s | 6644.16 | 0.982 | |

GWO | 500 | 1000 | 14 s | 5039.48 | 0.982 | |

Iran | GA | 300 | 500 | 96 s | 3330.45 | 0.943 |

PSO | 1000 | 500 | 45 s | 2072.71 | 0.944 | |

GWO | 500 | 1000 | 18 s | 1981.97 | 0.944 | |

USA | GA | 300 | 500 | 88 s | 850.22 | 0.745 |

PSO | 1000 | 500 | 40 s | 596.69 | 0.746 | |

GWO | 500 | 1000 | 17 s | 592.48 | 0.746 | |

Germany | GA | 300 | 500 | 93 s | 1118.77 | 0.758 |

PSO | 1000 | 500 | 47 s | 964.46 | 0.759 | |

GWO | 500 | 1000 | 20 s | 951.63 | 0.759 |

Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient | |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 98 s | 8325.33 | 0.634 |

PSO | 1000 | 500 | 51 s | 8818.2 | 0.634 | |

GWO | 500 | 1000 | 20 s | 9296.59 | 0.634 | |

China | GA | 300 | 500 | 96 s | 40,828.2 | 0.847 |

PSO | 1000 | 500 | 42 s | 43,835.37 | 0.847 | |

GWO | 500 | 1000 | 17 s | 42,714.93 | 0.847 | |

Iran | GA | 300 | 500 | 102 s | 4929.97 | 0.757 |

PSO | 1000 | 500 | 59 s | 8775.56 | 0.757 | |

GWO | 500 | 1000 | 22 s | 8995.52 | 0.756 | |

USA | GA | 300 | 500 | 94 s | 889.15 | 0.538 |

PSO | 1000 | 500 | 37 s | 1130.33 | 0.538 | |

GWO | 500 | 1000 | 15 s | 1135.12 | 0.538 | |

Germany | GA | 300 | 500 | 95 s | 1552.22 | 0.548 |

PSO | 1000 | 500 | 45 s | 1966.81 | 0.548 | |

GWO | 500 | 1000 | 21 s | 1878.67 | 0.548 |

Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient | |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 102 s | 6710.01 | 0.976 |

PSO | 1000 | 500 | 54 s | 5102.4 | 0.953 | |

GWO | 500 | 1000 | 26 s | 1272.1 | 0.982 | |

China | GA | 300 | 500 | 100 s | 7921.33 | 0.992 |

PSO | 1000 | 500 | 46 s | 4328.71 | 0.993 | |

GWO | 500 | 1000 | 20 s | 3710.16 | 0.993 | |

Iran | GA | 300 | 500 | 105 s | 6771.74 | 0.995 |

PSO | 1000 | 500 | 62 s | 822.09 | 0.998 | |

GWO | 500 | 1000 | 24 s | 310.02 | 0.998 | |

USA | GA | 300 | 500 | 98 s | 754.6 | 0.931 |

PSO | 1000 | 500 | 38 s | 791.92 | 0.853 | |

GWO | 500 | 1000 | 19 s | 307.58 | 0.938 | |

Germany | GA | 300 | 500 | 101 s | 7577 | 0.904 |

PSO | 1000 | 500 | 49 s | 752.95 | 0.923 | |

GWO | 500 | 1000 | 26 s | 472.62 | 0.946 |

Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient | |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 112 s | 7973.11 | 0.993 |

PSO | 1000 | 500 | 61 s | 4827.08 | 0.996 | |

GWO | 500 | 1000 | 34 s | 324.33 | 0.998 | |

China | GA | 300 | 500 | 113 s | 15,697.84 | 0.971 |

PSO | 1000 | 500 | 59 s | 3611.15 | 0.995 | |

GWO | 500 | 1000 | 34 s | 2429.45 | 0.995 | |

Iran | GA | 300 | 500 | 120 s | 5852.66 | 0.995 |

PSO | 1000 | 500 | 88 s | 3809.76 | 0.997 | |

GWO | 500 | 1000 | 39 s | 250.2 | 0.999 | |

USA | GA | 300 | 500 | 110 s | 37,766.56 | 0.875 |

PSO | 1000 | 500 | 49 s | 678.36 | 0.979 | |

GWO | 500 | 1000 | 25 s | 118.24 | 0.991 | |

Germany | GA | 300 | 500 | 116 s | 1709.06 | 0.744 |

PSO | 1000 | 500 | 59 s | 1812.78 | 0.967 | |

GWO | 500 | 1000 | 29 s | 196.8 | 0.99 |

Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient | |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 92 s | 8347.51 | 0.912 |

PSO | 1000 | 500 | 53 s | 195,705.52 | 0.918 | |

GWO | 500 | 1000 | 22 s | 12,585.79 | 0.951 | |

China | GA | 300 | 500 | 90 s | 41,544.05 | 0.986 |

PSO | 1000 | 500 | 48 s | 40,195.9 | 0.988 | |

GWO | 500 | 1000 | 23 s | 24,987.34 | 0.895 | |

Iran | GA | 300 | 500 | 99 s | 1,487,501.93 | 0.782 |

PSO | 1000 | 500 | 81 s | 8216.81 | 0.986 | |

GWO | 500 | 1000 | 26 s | 13,635.01 | 0.864 | |

USA | GA | 300 | 500 | 96 s | 655.62 | 0.994 |

PSO | 1000 | 500 | 32 s | 1026.03 | 0.827 | |

GWO | 500 | 1000 | 16 s | 364.87 | 0.988 | |

Germany | GA | 300 | 500 | 98 s | 15,333,537.7 | 0.93 |

PSO | 1000 | 500 | 72 s | 1557.23 | 0.976 | |

GWO | 500 | 1000 | 20 s | 431.97 | 0.998 |

Model | Pop. Size | Iteration | Processing Time | RMSE | Correlation Coefficient | |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 72 s | 7063.4 | 0.983 |

PSO | 1000 | 500 | 40 s | 6150.52 | 0.982 | |

GWO | 500 | 1000 | 13 s | 3450.96 | 0.991 | |

China | GA | 300 | 500 | 65 s | 39,669.92 | 0.976 |

PSO | 1000 | 500 | 39 s | 19,365.58 | 0.987 | |

GWO | 500 | 1000 | 12 s | 4078.99 | 0.989 | |

Iran | GA | 300 | 500 | 83 s | 2,343,032.5 | 0.951 |

PSO | 1000 | 500 | 65 s | 92,755.53 | 0.975 | |

GWO | 500 | 1000 | 15 s | 1031.6 | 0.991 | |

USA | GA | 300 | 500 | 79 s | 1030.01 | 0.779 |

PSO | 1000 | 500 | 24 s | 1005.27 | 0.751 | |

GWO | 500 | 1000 | 11 s | 790.16 | 0.837 | |

Germany | GA | 300 | 500 | 85 s | 1475.39 | 0.871 |

PSO | 1000 | 500 | 69 s | 1387.94 | 0.916 | |

GWO | 500 | 1000 | 14 s | 1341.91 | 0.875 |

Model | POP. SIZE | Iteration | Processing Time | RMSE | Correlation Coefficient | |
---|---|---|---|---|---|---|

Italy | GA | 300 | 500 | 79 s | 8163.1 | 0.995 |

PSO | 1000 | 500 | 48 s | 52,075,925.37 | 0.839 | |

GWO | 500 | 1000 | 18 s | 12,585.79 | 0.951 | |

China | GA | 300 | 500 | 71 s | 68,991.73 | 0.866 |

PSO | 1000 | 500 | 45 s | 80,104.27 | 0.865 | |

GWO | 500 | 1000 | 17 s | 24,987.34 | 0.895 | |

Iran | GA | 300 | 500 | 89 s | 1,436,025.84 | 0.767 |

PSO | 1000 | 500 | 70 s | 3,745,673.26 | 0.744 | |

GWO | 500 | 1000 | 21 s | 13,635.01 | 0.864 | |

USA | GA | 300 | 500 | 84 s | 457,051.4 | 0.974 |

PSO | 1000 | 500 | 30 s | 982.37 | 0.932 | |

GWO | 500 | 1000 | 15 s | 364.87 | 0.988 | |

Germany | GA | 300 | 500 | 87 s | 8176.54 | 0.981 |

PSO | 1000 | 500 | 74 s | 3278.55 | 0.998 | |

GWO | 500 | 1000 | 19 s | 431.97 | 0.998 |

Model Name | Description | RMSE | r-Square |
---|---|---|---|

Linear | $\mathrm{R}=3036.4\times \mathrm{x}-13509.84$ | 5039.48 | 0.964 |

Logarithmic | $\mathrm{R}=-33948.15+27124.70\times \mathrm{log}\left(\mathrm{x}\right)$ | 42,714.93 | 0.718 |

Quadratic | $\mathrm{R}=-5080.88+1455.98\times \mathrm{x}+50.98\times {\mathrm{x}}^{2}$ | 3710.16 | 0.98 |

Cubic | $\mathrm{R}=3984.73-1790.2\times \mathrm{x}+308.52\times {\mathrm{x}}^{2}-5.53\times {\mathrm{x}}^{3}$ | 2429.45 | 0.99 |

Compound | $\mathrm{R}=1601.03\times {1.16}^{\mathrm{x}}$ | 24,987.34 | 0.801 |

Power | $\mathrm{R}=262.27\times {\mathrm{x}}^{1.69}$ | 4078.99 | 0.98 |

Exponential | $\mathrm{R}=1601.03\times \mathrm{EXP}\left(0.15\times \mathrm{x}\right)$ | 24,987.34 | 0.801 |

Logistic | $\mathrm{R}=85011.297/\left(1+\mathrm{EXP}\left(\left(\left(4\times 4483.304\right)\ast \left(9.423-\mathrm{x}\right)/85011.297\right)+2\right)\right)$ | 2270.58 | 0.992 |

Model Name | Description | RMSE | r-Square |
---|---|---|---|

Linear | $\mathrm{R}=663.71\times \mathrm{x}-5437.25$ | 3642.44 | 0.713 |

Logarithmic | $\mathrm{R}=-7997.93+5162.83\times \mathrm{log}\left(\mathrm{x}\right)$ | 9296.59 | 0.402 |

Quadratic | $\mathrm{R}=2998.21-917.93\times \mathrm{x}+51.02\times {\mathrm{x}}^{2}$ | 1272.1 | 0.965 |

Cubic | $\mathrm{R}=-978.55+506.05\times \mathrm{B}2-61.95\times {\mathrm{x}}^{2}+2.42\times {\mathrm{x}}^{3}$ | 324.33 | 0.997 |

Compound | $\mathrm{R}=2.78\times {1.406}^{\mathrm{x}}$ | 12,585.79 | 0.904 |

Power | $\mathrm{R}=0.096\times {\mathrm{x}}^{3.476}$ | 3450.96 | 0.984 |

Exponential | $\mathrm{R}=2.786\times \mathrm{EXP}\left(0.341\times \mathrm{x}\right)$ | 12,585.79 | 0.904 |

Logistic | $\mathrm{R}=70731.084/\left(1+\mathrm{EXP}\left(\left(\left(4\times 3962.88\right)\times \left(23.88-\mathrm{x}\right)/70731.08\right)+2\right)\right)$ | 187.15 | 0.999 |

Model Name | Description | RMSE | r-Square |
---|---|---|---|

Linear | $\mathrm{R}=656.068\times \mathrm{x}-4527.69$ | 1981.97 | 0.891 |

Logarithmic | $\mathrm{R}=-7921.009+5449.784\times \mathrm{log}\left(\mathrm{x}\right)$ | 8995.52 | 0.574 |

Quadratic | $\mathrm{R}=310.48-251.09\times \mathrm{x}+29.26\times {\mathrm{x}}^{2}$ | 310.027 | 0.997 |

Cubic | $\mathrm{R}=902.33-463.02\times \mathrm{x}+46.07\times {\mathrm{x}}^{2}-0.36\times {\mathrm{x}}^{3}$ | 250.204 | 0.998 |

Compound | $\mathrm{R}=13.26\times {1.33}^{\mathrm{x}}$ | 13,635.014 | 0.748 |

Power | $\mathrm{R}=0.51\times {\mathrm{x}}^{3.09}$ | 1031.607 | 0.982 |

Exponential | $\mathrm{R}=13.26\times \mathrm{EXP}\left(0.28\times \mathrm{x}\right)$ | 13,635.014 | 0.748 |

Logistic | $\mathrm{R}=21936.052/\left(1+\mathrm{EXP}\left(\left(\left(4\ast 1255.36\right)\times \left(14.66-\mathrm{x}\right)/21936.052\right)+2\right)\right)$ | 392.88 | 0.996 |

Model Name | Description | RMSE | r-Square |
---|---|---|---|

Linear | $\mathrm{R}=128.421\times \mathrm{x}-1130.294$ | 951.635 | 0.577 |

Logarithmic | $\mathrm{R}=-1528.684+959.941\times \mathrm{log}\left(\mathrm{x}\right)$ | 1878.672 | 0.3 |

Quadratic | $\mathrm{R}=911.113-254.342\times \mathrm{x}+12.347\times {\mathrm{x}}^{2}$ | 472.624 | 0.895 |

Cubic | $\mathrm{R}=-478.087+243.097\times \mathrm{x}-27.118\times {\mathrm{x}}^{2}+0.848\times {\mathrm{x}}^{3}$ | 196.809 | 0.981 |

Compound | $\mathrm{R}=3.821\times {1.263}^{\mathrm{x}}$ | 431.975 | 0.996 |

Power | $\mathrm{R}=0.937{\mathrm{x}}^{2.021}$ | 1341.911 | 0.766 |

Exponential | $\mathrm{R}=3.821\times \mathrm{EXP}\left(0.233\times \mathrm{x}\right)$ | 431.975 | 0.996 |

Logistic | $\mathrm{R}=55179.669/\left(1+\mathrm{EXP}\left(\left(\left(4\times 3740.457\right)\times \left(30.49-\mathrm{x}\right)/55179.669\right)+2\right)\right)$ | 55.546 | 0.998 |

Model Name | Description | RMSE | r-Square |
---|---|---|---|

Linear | $\mathrm{R}=76.833\times \mathrm{x}-666.79$ | 592.486 | 0.557 |

Logarithmic | $\mathrm{R}=-902.637+573.32\times \mathrm{log}\left(\mathrm{x}\right)$ | 1135.124 | 0.289 |

Quadratic | $\mathrm{R}=584.76-157.831\times \mathrm{x}+7.569\times {\mathrm{x}}^{2}$ | 307.585 | 0.88 |

Cubic | $\mathrm{R}=-333.235+170.881\times \mathrm{x}-18.509\times {\mathrm{x}}^{2}+0.56\times {\mathrm{x}}^{3}$ | 118.247 | 0.982 |

Compound | $\mathrm{R}=6.296\times {1.214}^{\mathrm{x}}$ | 364.875 | 0.977 |

Power | $\mathrm{R}=1.707\times {\mathrm{x}}^{1.735}$ | 790.163 | 0.702 |

Exponential | $\mathrm{R}=6.296\times \mathrm{EXP}\left(0.194\times \mathrm{x}\right)$ | 364.875 | 0.977 |

Logistic | $\mathrm{R}=32604.552/\left(1+\mathrm{EXP}\left(\left(\left(4\times 2288.932\right)\times \left(30.303-\mathrm{x}\right)/32604.552\right)+2\right)\right)$ | 22.354 | 0.999 |

Scenario 1 | Scenario 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

MLP | ANFIS | MLP | ANFIS | |||||||||

No. of Neurons | r | RMSE | MF Type | r | RMSE | No. of Neurons | r | RMSE | MF Type | r | RMSE | |

Italy | 8 | 0.999 | 190.81 | Tri. | 0.999 | 189.76 | 8 | 0.999 | 199.52 | Tri. | 0.999 | 188.55 |

12 | 0.999 | 194.84 | Trap. | 0.841 | 3743.63 | 12 | 0.999 | 195.79 | Trap. | 0.876 | 3276 | |

16 | 0.999 | 188.18 | Gauss | 0.998 | 320.93 | 16 | 0.999 | 195.2 | Gauss | 0.999 | 206.66 | |

Average | 0.999 | 191.27 | 0.946 | 1418.1 | Average | 0.999 | 196.83 | 0.958 | 1223.73 | |||

China | 8 | 0.995 | 2287.55 | Tri. | 0.996 | 2293.09 | 8 | 0.996 | 2265.95 | Tri. | 0.996 | 2272.13 |

12 | 0.996 | 2259.95 | Trap. | 0.987 | 4231.05 | 12 | 0.996 | 2285.73 | Trap. | 0.989 | 3835.34 | |

16 | 0.995 | 2407.16 | Gauss | 0.996 | 2358.3 | 16 | 0.996 | 2260.05 | Gauss | 0.996 | 2272.58 | |

Average | 0.995 | 2318.22 | 0.993 | 2960.81 | Average | 0.996 | 2270.57 | 0.993 | 2793.35 | |||

Iran | 8 | 0.998 | 392.17 | Tri. | 0.998 | 395.33 | 8 | 0.998 | 404.21 | Tri. | 0.998 | 394.04 |

12 | 0.998 | 391.04 | Trap. | 0.977 | 1282.33 | 12 | 0.998 | 392.77 | Trap. | 0.986 | 994 | |

16 | 0.998 | 392.19 | Gauss | 0.998 | 396.51 | 16 | 0.998 | 395.43 | Gauss | 0.998 | 391.96 | |

Average | 0.998 | 391.8 | 0.991 | 391.39 | Average | 0.998 | 397.47 | 0.994 | 593.33 | |||

Germany | 8 | 0.999 | 55.6 | Tri. | 0.999 | 56.25 | 8 | 0.999 | 55.58 | Tri. | 0.999 | 55.63 |

12 | 0.999 | 55.38 | Trap. | 0.12 | 1658.7 | 12 | 0.999 | 55.56 | Trap. | 0.13 | 1537.26 | |

16 | 0.999 | 55.58 | Gauss | 0.998 | 154.99 | 16 | 0.999 | 55.56 | Gauss | 0.999 | 62.91 | |

Average | 0.999 | 55.52 | 0.705 | 623.31 | Average | 0.999 | 55.56 | 0.709 | 551.93 | |||

USA | 8 | 0.999 | 21.65 | Tri. | 0.999 | 21.75 | 8 | 0.999 | 22.31 | Tri. | 0.999 | 22.52 |

12 | 0.999 | 22.36 | Trap. | 0.22 | 861.08 | 12 | 0.999 | 22.3 | Trap. | 0.2 | 935.41 | |

16 | 0.999 | 22.31 | Gauss | 0.998 | 86.32 | 16 | 0.999 | 22.4 | Gauss | 0.999 | 25.03 | |

Average | 0.999 | 22.1 | 0.739 | 323.05 | Average | 0.999 | 22.33 | 0.739 | 327.65 |

Logistic by GWO | Linear by GWO | Logarithmic by GWO | Quadratic by GWO | Power by GWO | MLP | ANFIS | |
---|---|---|---|---|---|---|---|

Day 20th | 3794.045 | 7837.054 | −1280.93 | 5047.906 | 3225.523 | 3792.734 | 3796.738 |

Day 40th | 58,966.55 | 21,111.37 | 273.235 | 47,914.4 | 35,898.08 | 58,966.74 | 58,964.96 |

Day 60th | 70,571.86 | 34,385.68 | 1182.365 | 13,1597.7 | 14,6966.2 | 70,571.66 | 70,572.12 |

Day 80th | 70,729.28 | 47,659.99 | 1827.402 | 256,097.8 | 399,523.4 | 70,729.27 | 70,729.15 |

Day 100th | 70,731.06 | 60,934.31 | 2327.733 | 421,414.7 | 867,822 | 70,731.09 | 70,730.93 |

Day 120th | 70,731.08 | 74,208.62 | 2736.532 | 627,548.4 | 1,635,643 | 70,731.14 | 70,730.87 |

Day 140th | 70,731.08 | 87,482.94 | 3082.167 | 874,498.9 | 2,795,218 | 70,731.19 | 70,730.79 |

Day 150th | 70,731.08 | 94,120.09 | 3236.862 | 1,013,280 | 3,552,851 | 70,731.21 | 70,730.75 |

Logistic by GWO | Linear by GWO | Logarithmic by GWO | Quadratic by GWO | Power by GWO | MLP | ANFIS | |
---|---|---|---|---|---|---|---|

Day 20th | 47,397.6 | 47,218.47 | 1341.899 | 44,431.48 | 41,916.55 | 47,397.6 | 47,360.98 |

Day 40th | 84,030.16 | 107,946.8 | 9507.249 | 134,729.1 | 135,599.1 | 84,030.17 | 84,030.39 |

Day 60th | 84,996.7 | 168,675.1 | 14,283.67 | 265,812 | 269,471.3 | 84,996.7 | 84,996.67 |

Day 80th | 85,011.08 | 229,403.4 | 17,672.6 | 437,680.2 | 438,660.2 | 85,011.08 | 85,011.05 |

Day 100th | 85,011.29 | 290,131.7 | 20,301.26 | 650,333.6 | 640,132.8 | 85,011.3 | 85,011.22 |

Day 120th | 85,011.3 | 350,860 | 22,449.02 | 903,772.3 | 871,733.6 | 85,011.34 | 85,011.13 |

Day 140th | 85,011.3 | 411,588.3 | 24,264.94 | 1,197,996 | 1,131,815 | 85,011.38 | 85,011.05 |

Day 150th | 85,011.3 | 441,952.5 | 25,077.68 | 1,360,403 | 1,272,113 | 85,011.41 | 85,011.01 |

Logistic by GWO | Linear by GWO | Logarithmic by GWO | Quadratic by GWO | Power by GWO | MLP | ANFIS | |
---|---|---|---|---|---|---|---|

Day 20th | 6898.344 | 8593.676 | −830.677 | 6993.955 | 5494.377 | 6902.315 | 6875.585 |

Day 40th | 21,455.58 | 21,715.05 | 809.8719 | 37,087.98 | 47,060.48 | 21,457.4 | 21,456.65 |

Day 60th | 21,931.01 | 34,836.43 | 1769.531 | 90,592.56 | 165,300.1 | 21,932.24 | 21,930.68 |

Day 80th | 21,936 | 47,957.8 | 2450.42 | 167,507.7 | 403,082.8 | 21,935.1 | 21,935.54 |

Day 100th | 21,936.05 | 61,079.18 | 2978.559 | 267,833.4 | 804,764.4 | 21,935.11 | 21,935.6 |

Day 120th | 21,936.05 | 74,200.55 | 3410.08 | 391,569.6 | 1,415,829 | 21,935.12 | 21,935.63 |

Day 140th | 21,936.05 | 87,321.93 | 3774.925 | 538,716.4 | 2,282,679 | 21,935.13 | 21,935.65 |

Day 150th | 21,936.05 | 93,882.61 | 3938.219 | 621,068.7 | 2,826,737 | 21,935.13 | 21,935.67 |

Logistic by GWO | Linear by GWO | Logarithmic by GWO | Quadratic by GWO | Power by GWO | MLP | ANFIS | |
---|---|---|---|---|---|---|---|

Day 20th | 431.027 | 1438.128 | −279.772 | 763.1467 | 400.0548 | 432.8991 | 431.8119 |

Day 40th | 35,356.27 | 4006.551 | 9.199328 | 10,492.96 | 1624.405 | 35,355.14 | 35,355.72 |

Day 60th | 55,043.44 | 6574.974 | 178.2366 | 30,100.56 | 3687.126 | 55,036.14 | 55,044.03 |

Day 80th | 55,179.07 | 9143.397 | 298.1705 | 59,585.93 | 6595.829 | 55,179.05 | 55,178.88 |

Day 100th | 55,179.67 | 11,711.82 | 391.1984 | 98,949.09 | 10,355.87 | 55,179.9 | 55,179.47 |

Day 120th | 55,179.67 | 14,280.24 | 467.2078 | 148,190 | 14,971.42 | 55,179.92 | 55,179.42 |

Day 140th | 55,179.67 | 16,848.66 | 531.4728 | 207,308.7 | 20,445.86 | 55,179.94 | 55,179.37 |

Day 150th | 55,179.67 | 18,132.88 | 560.2357 | 240,572.3 | 23,506.09 | 55,179.96 | 55,179.35 |

Logistic by GWO | Linear by GWO | Logarithmic by GWO | Quadratic by GWO | Power by GWO | MLP | ANFIS | |
---|---|---|---|---|---|---|---|

Day 20th | 242.6091 | 869.8855 | −156.73 | 456.0663 | 309.616 | 244.0038 | 243.6504 |

Day 40th | 21,951.15 | 2406.562 | 15.85698 | 6383.264 | 1031.324 | 21,942.25 | 21,948.25 |

Day 60th | 32,547.08 | 3943.238 | 116.8138 | 18,366.35 | 2084.876 | 32,552.6 | 32,548.47 |

Day 80th | 32,604.34 | 5479.914 | 188.4437 | 36,405.33 | 3435.319 | 32,606.19 | 32,604.47 |

Day 100th | 32,604.55 | 7016.591 | 244.0043 | 60,500.21 | 5060.548 | 32,606.63 | 32,604.72 |

Day 120th | 32,604.55 | 8553.267 | 289.4005 | 90,650.97 | 6944.676 | 32,606.7 | 32,604.76 |

Day 140th | 32,604.55 | 10,089.94 | 327.7825 | 126,857.6 | 9075.446 | 32,606.78 | 32,604.8 |

Day 150th | 32,604.55 | 10,858.28 | 344.9611 | 147,231.9 | 10,230.16 | 32,606.81 | 32,604.82 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ardabili, S.F.; Mosavi, A.; Ghamisi, P.; Ferdinand, F.; Varkonyi-Koczy, A.R.; Reuter, U.; Rabczuk, T.; Atkinson, P.M.
COVID-19 Outbreak Prediction with Machine Learning. *Algorithms* **2020**, *13*, 249.
https://doi.org/10.3390/a13100249

**AMA Style**

Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, Rabczuk T, Atkinson PM.
COVID-19 Outbreak Prediction with Machine Learning. *Algorithms*. 2020; 13(10):249.
https://doi.org/10.3390/a13100249

**Chicago/Turabian Style**

Ardabili, Sina F., Amir Mosavi, Pedram Ghamisi, Filip Ferdinand, Annamaria R. Varkonyi-Koczy, Uwe Reuter, Timon Rabczuk, and Peter M. Atkinson.
2020. "COVID-19 Outbreak Prediction with Machine Learning" *Algorithms* 13, no. 10: 249.
https://doi.org/10.3390/a13100249