# Planning the Schedule for the Disposal of the Spent Nuclear Fuel with Interactive Multiobjective Optimization

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Model

#### 2.1. Parameters

N | be a total number of disposal periods |

Z | be a total number of removals from the reactor. |

a | the last removal before the first disposal period |

b | the disposal period when the last removal is done. |

${M}_{i}$ | number of assemblies belonging to the removal $i\in \mathcal{Z}$ |

Q | length of one disposal tunnel [m] |

${A}_{i,j}$ | storage time of an assembly belonging to the removal $i\in \mathcal{Z}$ |

in the period $j\in \mathcal{N}$ [period] | |

${P}_{i,j}$ | decay heat power of an assembly belonging to the removal $i\in \mathcal{Z}$ |

in the period $j\in \mathcal{N}$ [W]. |

${C}_{AS}$ | storage cost per one assembly per period [€] |

${C}_{IS}$ | costs related to the interim storage per period [€] |

${C}_{SP}$ | cost of a storage place per one assembly [€] |

${C}_{CA}$ | cost of one canister [€] |

${C}_{EF}$ | costs related to operating the encapsulation facility per period [€] |

${C}_{DT}$ | cost of a disposal tunnel per meter [€] |

${C}_{CT}$ | cost of a central tunnel per meter [€]. |

R | minimum storage time of an assembly [period] |

K | maximum capacity of a canister |

T | minimum number of canisters disposed in one period |

U | maximum number of canisters disposed in one period |

${p}_{max}^{low}$, ${p}_{max}^{up}$ | lower and upper bound for the maximum average power of |

a canister [W] | |

${d}_{CA}^{low}$, ${d}_{CA}^{up}$ | lower and upper bound for the distance between canisters [m] |

${d}_{DT}^{low},$${d}_{DT}^{up}$ | lower and upper bound for the distance between disposal |

tunnels [m]. |

#### 2.2. Continuous Variables

${x}_{i,j}$ | number of assemblies belonging to the removal $i\in \mathcal{Z}$ disposed during |

the period $j\in \mathcal{N}$ | |

${y}_{j}$ | number of canisters disposed during the period $j\in \mathcal{N}$ |

${z}_{i,j}$ | number of assemblies belonging to the removal $i\in \mathcal{Z}$ being in storage |

at the end of the period $j\in \mathcal{N}$ | |

${p}_{max}$ | maximum average power of a canister |

${d}_{DT}$ | distance between two adjacent disposal tunnels |

${d}_{CA}$ | distance between two adjacent canisters in a disposal tunnel. |

#### 2.3. Binary Variables

${e}_{ON}^{j}$ | encapsulation starts in the beginning of the period $j\in \mathcal{N}$ |

${e}_{OFF}^{j}$ | encapsulation ends in the beginning of the period $j\in \mathcal{N}$ |

${e}_{j}$ | encapsulation facility is in operation during the period $j\in \mathcal{N}$ |

${s}_{i,j}$ | assemblies belonging to the removal $i\in \mathcal{Z}$ take off from disposal |

at the beginning of the period $j\in \mathcal{N}$ | |

${r}_{i,j}$ | indicates that assemblies belonging to the removal $i\in \mathcal{Z}$ |

can be disposed during the period $j\in \mathcal{N}$. |

#### 2.4. Objectives

#### 2.5. Constraints—Interim Storage

#### 2.6. Constraints—Encapsulation Facility

#### 2.7. Constraints—Disposal Facility

## 3. Multiobjective Optimization Approach

#### 3.1. Mathematical Background

#### 3.2. Two-Slope Parameterized ASFs

**Theorem**

**1**

**Proof.**

#### 3.3. Multiobjective Interactive Method Utilizing the Two-Slope Parameterized ASFs

- Step 0.
- Give the ideal vector ${\mathit{f}}^{id}$, the nadir vector ${\mathit{f}}^{nad}$, and/or some Pareto optimal solution ${\mathit{f}}_{0}$ to the decision maker in order to illustrate the Pareto set.
- Step 1.
- Set the iteration counter $h=1$ and select the maximum number of iterations ${h}_{max}$. Ask the decision maker to provide the reference point ${\mathit{f}}_{h}^{R}$ and the number of solutions $s\in \{1,\dots ,k\}$ presented for each reference point. Initialize the positive coefficients ${\mathit{\lambda}}^{U}$ and ${\mathit{\lambda}}^{A}$.
- Step 2.
- Step 3.
- Present s solutions to the decision maker and ask the decision maker to select the most preferable solution among them as the current solution ${\mathit{f}}_{h}$ and go to Step 5 or if more solutions for the current reference point ${\mathit{f}}_{h}^{R}$ are needed go to Step 4.
- Step 4.
- Present supplementary solutions to the decision maker. Ask the decision maker to select the most preferable solution among the previous s solutions and the supplementary solutions as the current solution ${\mathit{f}}_{h}$ and go to Step 5.
- Step 5.
- If $h={h}_{max}$ or the decision maker is satisfied with the current solution ${\mathit{f}}_{h}$, stop with the current solution as the final solution ${\mathit{f}}^{*}$. Otherwise, ask the decision maker to specify the new reference point ${\mathit{f}}_{h+1}^{R}$ as the current reference point, set $h=h+1$, and go to Step 2.

## 4. Case Study: The Disposal in Finland

- Interim storage versus disposal facility: The interim storage-related goals all imply transferring the spent nuclear fuel from the interim storage as rapidly as possible. However, in order to minimize the disposal facility-related goals, the cooling times should be maximized.
- Encapsulation facility versus interim storage: By delaying the start of disposal, it is possible to shorten the operation time of the encapsulation facility, and thus, decrease the operating costs. Again, the delay at the start of the encapsulation can cause an increase of the inventories in the interim storage.
- Encapsulation facility versus disposal facility: The disposal should be started and ended as soon as possible. Both of these aims have a tendency to increase the canister heat load, and hence, affect the disposal facility goals. To minimize the operation time of the encapsulation facility, empty assembly positions can be used. However, the price to pay is the increased number of canisters. In addition, a larger number of canisters necessitates an increase in the disposal facility area.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Parameters of the Case Study

${M}_{i}=360,$$i\in \{1,3,5,7,9,11\}$ | $R=4$ | ${p}_{max}^{low}=1300$ |

${M}_{i}=240,$$i\in \{2,4,6,8,10\}$ | $U=500$ | ${d}_{DT}^{up}=50$ |

$a=5$ | $T=50$ | ${d}_{DT}^{low}=25$ |

$b=6$ | $Q=350$ | ${d}_{CA}^{up}=15$ |

$K=4$ | ${p}_{max}^{up}=1830$ | ${d}_{CA}^{low}=6$ |

$\mathit{j}=1$ | $\mathit{j}=2$ | $\mathit{j}=3$ | $\mathit{j}=4$ | $\mathit{j}=5$ | $\mathit{j}=6$ | $\mathit{j}=7$ | $\mathit{j}=8$ | $\mathit{j}=9$ | $\mathit{j}=10$ | $\mathit{j}=11$ | $\mathit{j}=12$ | $\mathit{j}=13$ | $\mathit{j}=14$ | $\mathit{j}=15$ | $\mathit{j}=16$ | $\mathit{j}=17$ | $\mathit{j}=18$ | $\mathit{j}=19$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

$i=1$ | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |

$i=2$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

$i=3$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

$i=4$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |

$i=5$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

$i=6$ | $-1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

$i=7$ | $-2$ | $-1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

$i=8$ | $-3$ | $-2$ | $-1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

$i=9$ | $-4$ | $-3$ | $-2$ | $-1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

$i=10$ | $-5$ | $-4$ | $-3$ | $-2$ | $-1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

$i=11$ | $-6$ | $-5$ | $-4$ | $-3$ | $-2$ | $-1$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

$\mathit{j}=1$ | $\mathit{j}=2$ | $\mathit{j}=3$ | $\mathit{j}=4$ | $\mathit{j}=5$ | $\mathit{j}=6$ | $\mathit{j}=7$ | $\mathit{j}=8$ | $\mathit{j}=9$ | $\mathit{j}=10$ | $\mathit{j}=11$ | $\mathit{j}=12$ | $\mathit{j}=13$ | $\mathit{j}=14$ | $\mathit{j}=15$ | $\mathit{j}=16$ | $\mathit{j}=17$ | $\mathit{j}=18$ | $\mathit{j}=19$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

$i=1$ | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 | 264 | 251 | 238 | 227 | 216 | 207 |

$i=2$ | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 | 264 | 251 | 238 | 227 | 216 |

$i=3$ | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 | 264 | 251 | 238 | 227 |

$i=4$ | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 | 264 | 251 | 238 |

$i=5$ | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 | 264 | 251 |

$i=6$ | inf | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 | 264 |

$i=7$ | inf | inf | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 | 280 |

$i=8$ | inf | inf | inf | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 | 297 |

$i=9$ | inf | inf | inf | inf | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 | 316 |

$i=10$ | inf | inf | inf | inf | inf | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 | 338 |

$i=11$ | inf | inf | inf | inf | inf | inf | inf | inf | inf | inf | 695 | 632 | 578 | 531 | 489 | 451 | 418 | 388 | 361 |

## References

- IAEA. The Long Term Storage of Radioactive Waste: Safety and Sustainability. A Position Paper of International Experts IAEA-LTS/RW; IAEA: Vienna, Austria, 2003. [Google Scholar]
- Posiva Oy. General Time Schedule for Final Disposal. Available online: http://www.posiva.fi/en/final_disposal/general_time_schedule_for_final_disposal#.XNUcxIpS-Uk (accessed on 10 May 2019).
- Taji, K.; Levy, J.K.; Hartmann, J.; Bell, M.L.; Anderson, R.M.; Hobbs, B.F.; Feglar, T. Identifying potential repositories for radioactive waste: Multiple criteria decision analysis and critical infrastructure systems. Int. J. Crit. Infrastruct.
**2005**, 1, 404–422. [Google Scholar] [CrossRef] - Alumur, S.; Kara, B.Y. A new model for the hazardous waste location-routing problem. Comput. Oper. Res.
**2007**, 34, 1406–1423. [Google Scholar] [CrossRef] - ReVelle, C.; Cohon, J.; Shobrys, D. Simultaneous siting and routing in the disposal of hazardous wastes. Transp. Sci.
**1991**, 25, 138–145. [Google Scholar] [CrossRef] - Johnson, B.L.; Porter, A.T.; King, J.C.; Newman, A.M. Optimally configuring a measurement system to detect diversions from a nuclear fuel cycle. Ann. Oper. Res.
**2019**, 275, 393–420. [Google Scholar] [CrossRef] - Shugart, N.; Johnson, B.; King, J.; Newman, A. Optimizing nuclear material accounting and measurement systems. Nucl. Technol.
**2018**, 204, 260–282. [Google Scholar] [CrossRef] - Tosoni, E.; Salo, A.; Govaerts, J.; Zio, E. Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories. Reliab. Eng. Syst. Saf.
**2019**, 188, 561–573. [Google Scholar] [CrossRef] - Ranta, T. Optimization in the Final Disposal of Spent Nuclear Fuel. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2012. [Google Scholar]
- Rautman, C.A.; Reid, R.A.; Ryder, E.E. Scheduling the disposal of nuclear waste material in a geologic repository using the transportation model. Oper. Res.
**1993**, 41, 459–469. [Google Scholar] - Johnson, B.; Newman, A.; King, J. Optimizing high-level nuclear waste disposal within a deep geologic repository. Ann. Oper. Res.
**2017**, 253, 733–755. [Google Scholar] [CrossRef] - Ranta, T.; Cameron, F. Heuristic methods for assigning spent nuclear fuel assemblies to canisters for final disposal. Nucl. Sci. Eng.
**2012**, 171, 41–51. [Google Scholar] [CrossRef] - Žerovnik, G.; Snoj, L.; Ravnik, M. Optimization of spent nuclear fuel filling in canisters for deep repository. Nucl. Sci. Eng.
**2009**, 163, 183–190. [Google Scholar] [CrossRef] - Vlassopoulos, E.; Volmert, B.; Pautz, A. Logistics optimization code for spent fuel assembly loading into final disposal canisters. Nucl. Eng. Des.
**2017**, 325, 246–255. [Google Scholar] [CrossRef] - Bagirov, A.; Karmitsa, N.; Mäkelä, M.M. Introduction to Nonsmooth Optimization: Theory, Practice and Software; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley & Sons, Inc.: New York, NY, USA, 1983. [Google Scholar]
- Karmitsa, N.; Bagirov, A.; Mäkelä, M.M. Comparing different nonsmooth minimization methods and software. Optim. Methods Softw.
**2012**, 27, 131–153. [Google Scholar] [CrossRef] - Bagirov, A.M.; Churilov, L. An Optimization-Based Approach to Patient Grouping for Acute Healthcare in Australia. In Computational Science—ICCS 2003; Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 20–29. [Google Scholar]
- Bagirov, A.M.; Mahmood, A. A comparative assessment of models to predict monthly rainfall in Australia. Water Resour. Manag.
**2018**, 32, 1777–1794. [Google Scholar] [CrossRef] - Mäkelä, M.M.; Neittaanmäki, P. Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control; World Scientific Publishing Co.: Singapore, 1992. [Google Scholar]
- Handl, J.; Kell, D.B.; Knowles, J. Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans. Comput. Biol. Bioinform.
**2007**, 4, 279–292. [Google Scholar] [CrossRef] [PubMed] - Mala-Jetmarova, H.; Barton, A.; Bagirov, A. Sensitivity of algorithm parameters and objective function scaling in multi-objective optimisation of water distribution systems. J. Hydroinform.
**2015**, 17, 891–916. [Google Scholar] [CrossRef] - Mala-Jetmarova, H.; Barton, A.; Bagirov, A. Exploration of the trade-offs between water quality and pumping costs in optimal operation of regional multiquality water distribution systems. J. Water Resour. Plan. Manag.
**2015**, 141, 4014077. [Google Scholar] [CrossRef] - Marler, R.; Arora, J. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim.
**2004**, 26, 369–395. [Google Scholar] [CrossRef] - Wilppu, O.; Mäkelä, M.M.; Nikulin, Y. New Two-Slope Parameterized Achievement Scalarizing Functions for Nonlinear Multiobjective Optimization. In Operations Research, Engineering, and Cyber Security; Daras, N.J., Rassias, T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 113, pp. 403–422. [Google Scholar]
- Nikulin, Y.; Miettinen, K.; Mäkelä, M.M. A new achievement scalarizing function based on parameterization in multiobjective optimization. OR Spectr.
**2012**, 34, 69–87. [Google Scholar] [CrossRef] - Luque, M.; Miettinen, K.; Ruiz, A.B.; Ruiz, F. A two-slope achievement scalarizing dunction for interactive multiobjective optimization. Comput. Oper. Res.
**2012**, 39, 1673–1681. [Google Scholar] [CrossRef] - Buchanan, J.; Gardiner, L. A comparison of two reference point methods in multiple objective mathematical programming. Eur. J. Oper. Res.
**2003**, 149, 17–34. [Google Scholar] [CrossRef] - Miettinen, K.; Mäkelä, M.M. On scalarizing functions in multiobjective optimization. OR Spectr.
**2002**, 24, 193–213. [Google Scholar] [CrossRef] - Miettinen, K.; Mäkelä, M.M. Synchronous approach in interactive multiobjective optimization. Eur. J. Oper. Res.
**2006**, 170, 909–922. [Google Scholar] [CrossRef] - Ehrgott, M. Multicriteria Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Miettinen, K.; Hakanen, J.; Podkopaev, D. Interactive Nonlinear Multiobjective Optimization Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 927–976. [Google Scholar]
- Buchanan, J.T. A naive approach for solving MCDM problems: The GUESS method. J. Oper. Res. Soc.
**1997**, 48, 202–206. [Google Scholar] [CrossRef] - Jaszkiewicz, A.; Słowiński, R. The ‘Light Beam Search’ approach—An overview of methodology applications. Eur. J. Oper. Res.
**1999**, 113, 300–314. [Google Scholar] [CrossRef] - Nakayama, H.; Sawaragi, Y. Satisficing Trade-off Method for Multiobjective Programming. In Interactive Decision Analysis; Grauer, M., Wierzbicki, A.P., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 113–122. [Google Scholar]
- Vanderpooten, D. The interactive approach in MCDA: A technical framework and some basic conceptions. Math. Comput. Model.
**1989**, 12, 1213–1220. [Google Scholar] [CrossRef] - Wierzbicki, A.P. A mathematical basis for satisficing decision making. Math. Model.
**1982**, 3, 391–405. [Google Scholar] [CrossRef] - Désidéri, J.A. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. Compte Rendus De L’Académie Des Sci. Ser. I
**2012**, 350, 313–318. [Google Scholar] [CrossRef] - Mäkelä, M.M.; Karmitsa, N.; Wilppu, O. Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization. In Mathematical Modeling and Optimization of Complex Structures; Tuovinen, T., Repin, S., Neittaanmäki, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 40, pp. 191–204. [Google Scholar]
- Montonen, O.; Karmitsa, N.; Mäkelä, M.M. Multiple subgradient descent bundle method for convex nonsmooth multiobjective optimization. Optimization
**2018**, 67, 139–158. [Google Scholar] [CrossRef] - Montonen, O.; Joki, K. Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. J. Glob. Optim.
**2018**, 72, 403–429. [Google Scholar] [CrossRef] - Qu, S.; Liu, C.; Goh, M.; Li, Y.; Ji, Y. Nonsmooth multiobjective programming with quasi-Newton methods. Eur. J. Oper. Res.
**2014**, 235, 503–510. [Google Scholar] [CrossRef] - Kilinc, M.R.; Sahinidis, N.V. Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON. Optim. Methods Softw.
**2018**, 33, 540–562. [Google Scholar] [CrossRef] - Tawarmalani, M.; Sahinidis, N.V. A polyhedral branch-and-cut approach to global optimization. Math. Program.
**2005**, 103, 225–249. [Google Scholar] [CrossRef] - GAMS Development Corporation. General Algebraic Modeling System (GAMS) Release 26.1.0. Washington, DC, USA. Available online: http://www.gams.com/ (accessed on 16 April 2019).

**Figure 5.**The objective values corresponding the selected solutions $q=2$ and $q=8$ for the modified reference point 3 with objectives (1)–(8).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Montonen, O.; Ranta, T.; Mäkelä, M.M.
Planning the Schedule for the Disposal of the Spent Nuclear Fuel with Interactive Multiobjective Optimization. *Algorithms* **2019**, *12*, 252.
https://doi.org/10.3390/a12120252

**AMA Style**

Montonen O, Ranta T, Mäkelä MM.
Planning the Schedule for the Disposal of the Spent Nuclear Fuel with Interactive Multiobjective Optimization. *Algorithms*. 2019; 12(12):252.
https://doi.org/10.3390/a12120252

**Chicago/Turabian Style**

Montonen, Outi, Timo Ranta, and Marko M. Mäkelä.
2019. "Planning the Schedule for the Disposal of the Spent Nuclear Fuel with Interactive Multiobjective Optimization" *Algorithms* 12, no. 12: 252.
https://doi.org/10.3390/a12120252