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Abstract: Several countries utilize nuclear power and face the problem of what to do with the spent
nuclear fuel. One possibility, which is under the scope in this paper, is to dispose of the fuel assemblies
in the disposal facility. Before the assemblies can be disposed of, they must cool down their decay
heat power in the interim storage. Next, they are loaded into canisters in the encapsulation facility,
and finally, the canisters are placed in the disposal facility. In this paper, we model this process as
a nonsmooth multiobjective mixed-integer nonlinear optimization problem with the minimization
of nine objectives: the maximum number of assemblies in the storage, maximum storage time,
average storage time, total number of canisters, end time of the encapsulation, operation time of
the encapsulation facility, the lengths of disposal and central tunnels, and total costs. As a result,
we obtain the disposal schedule i.e., amount of canisters disposed of periodically. We introduce
the interactive multiobjective optimization method using the two-slope parameterized achievement
scalarizing functions which enables us to obtain systematically several different Pareto optimal
solutions from the same preference information. Finally, a case study adapting the disposal in Finland
is given. The results obtained are analyzed in terms of the objective values and disposal schedules.

Keywords: achievement scalarizing functions; interactive method; multiobjective optimization;
nonsmooth optimization; spent nuclear fuel disposal

1. Introduction

The disposal of the spent nuclear fuel is a challenging task where the careful planning and
optimization of processes definitely pays dividends. The difficulty of the decision making is increased
also by the fact that the disposal continues for the distant future and many parameters are still
unknown. Indeed, the decisions made now have long term consequences. Thus, it is only reasonable to
investigate different scenarios by utilizing multiobjective optimization from the different perspectives.

The disposal is a topical issue since many of the countries utilizing nuclear power have not yet
disposed of any spent nuclear fuel. Nevertheless, all of them have to do something for it sooner or
later. Long-term storage in interim storage is not considered a safe or ethical solution [1]. At the same
time, the geological disposal is stated to be widely accepted as a safe method [1]. Finland is going to
be one of the first countries to dispose of the spent nuclear fuel by starting the disposal in 2020s [2].

The aim in the geological disposal is to isolate the spent nuclear fuel to the bedrock such that it has
no more impacts on the environment than the regular background radiation. First, the fuel assemblies
are removed from the reactor and stored in the water pool in the reactor hall in order to decrease the
radiation and the decay heat power to the suitable level such that the assemblies can be transferred
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to the water pool in the interim storage facility for decades. When the assemblies are cool enough,
they can be transferred to the encapsulation facility, where the assemblies are encapsulated into the
copper-iron canisters. After that, the canister moves on towards the disposal facility, in depth of more
than 400 m. The disposal facility consists of the central tunnel and several parallel disposal tunnels
that are connected to the central tunnel. The canister is placed vertically in the hole on the floor of the
disposal tunnel. Finally, the disposal tunnel is filled up and sealed. In this study, we divide the disposal
process into three parts: the interim storage, the encapsulation facility, and the disposal facility.

As the entire nuclear waste management is a large task, optimization related studies about
it are usually focused on some smaller entities. Some of these entities are concentrated more on
political or social aspects like to determine where to put a disposal repository [3] or how to route the
transfer of the nuclear waste, or hazardous waste in general [4,5]. More safety-related aspects are the
optimization of the nuclear safeguards [6,7] and the safety assessment of nuclear waste repositories [8].
In our study, we aim to produce a disposal schedule such that several goals related to all the interim
storage, the encapsulation facility, and the disposal facility are taken into account simultaneously with
multiobjective optimization. Other studies aiming at a disposal schedule are, for example, [9] where
a single-objective mixed-integer linear programming (MILP) model minimizing the costs is given
and [10] trying to achieve the minimal area of the disposal facility with a linear transportation model.
Another research related to the disposal facility is discussed in [11], where the multiobjective MILP
problem is given to optimize the nuclear waste placement in the disposal facility. In addition, there are
attempts to optimize the loading of canisters in Finland [9,12], Slovenia [13], and Switzerland [14].

This study continues the work of [9], where the aim was to minimize the total costs of the
disposal in Finland by selecting the schedule of the disposal. Here, this work has been continued
by remodeling the situation as the nonsmooth multiobjective mixed-integer nonlinear programming
(MINLP) problem. As a nonsmooth optimization problem [15-17], the objectives and the constraints
are not necessarily continuously differentiable functions. This allows us to model the situation more
accurately. Indeed, many practical applications have nonsmooth nature (see e.g., [18-20]) even if they
are modeled as differentiable problems in many cases in practice.

Many practical problems also involve several objectives [21-24]. As a problem of this scale, this
application has several conflicting objectives to offer naturally. Besides total costs, it is reasonable to
optimize, for instance, the area of the disposal facility. In our model, this is done by minimizing the
lengths of both disposal and central tunnels. In total, our model contains nine objectives. In addition to
the previous three objectives, we have three objectives related to the interim storage and three related
to the encapsulation facility. In the interim storage, we want to minimize the maximum number of
assemblies in the storage, the maximum storage time, and the average storage time. On the other hand,
the operation time of the encapsulation facility is aimed to be minimized and al number of canisters,
or in other words, the number of the empty assembly positions.

These objectives indeed are conflicting. For instance, we want the whole disposal process to
be over as early as possible, but this raises the heat production load of the canister. This in its turn,
increases the distances between the canisters in the disposal facility. However, the heat load of the
canister can be decreased by leaving empty assembly positions, but then more canisters are needed.
Another option is to increase the cooling time which again delays the end of the disposal, but if the
disposal delays, more storage space is needed. Obviously, all of these decisions have an impact on costs.
As exemplified, the minimization of only one objective may lead to an unsatisfactory solution with
respect to some other objective. This leads us to a situation where compromises are certainly needed.

As a result of the multiobjective optimization, we obtain several mathematically equally good
compromises, called Pareto optimal solutions. The final selection is left to the decision-maker who
has more insight into the problem. In this paper, we propose an interactive procedure utilizing the
achievement scalarizing function (ASF), in particular, the two-slope parameterized ASF [25] which
bases on parameterized ASF [26] and two-slope ASF [27] generalizing both of them by combining
their advantages. Via scalarization, the original multiobjective problem is transformed into one
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single-objective problem. The idea in brief with ASF is that the decision-maker gives a reference point
including the decision maker’s wishes towards the final solution. Then, the closest optimal solution
with respect to some metric is found. If we use only one metric, as is the case in general with ASE,
the selected metric defines which solution is found [28-30]. With the parameterization, we are able
to use several metrics, nine in this particular case, and thus, yield different solutions with reasonable
distribution. This ability to systematically generate different solutions from the same preference
information is utilized in the interactive framework.

This paper is organized as follows. In Section 2, we begin by depicting the situation under
the consideration and give a nonsmooth multiobjective MINLP model for it. In Section 3, we first
introduce some fundamental preliminaries about multiobjective optimization, and then describe the
multiobjective interactive method utilizing two-slope parameterized ASFs (MITSPA). In Section 4,
one special case study of the disposal in Finland is given and the solutions are analyzed. Finally,
in Section 5 some concluding remarks are discussed.

2. Mathematical Model

In this section, we give a comprehensive description of the model for scheduling the disposal of
the spent nuclear fuel. The aim is to provide general guidelines for the disposal schedule and we only
plan how many canisters are disposed of rather than which assemblies are placed in which canister
nor give any complex lay-out for the disposal facility. We model the situation adapting the disposal
in Finland as described in the introduction with some limitations like we omit the transportation
between the facilities. Furthermore, we suppose that nothing is disposed of yet and only one type of
fuel is considered. Some other simplifying assumptions are that we have access to all the assemblies,
assemblies are identical, and the bedrock is homogeneous such that we can build tunnels anywhere.

The model formulated is a nonsmooth multiobjective MINLP problem having nine objectives.
One obvious objective is total costs. Due to the long term time perspective of the disposal, the costs
will probably change during the years so we minimize also some cost factors as their own objectives.
Besides being a cost factor, these objectives have also other reasons to be selected as an objective.
The interim storage-related objectives minimize storage times and amounts. The faster the assemblies
get under the ground, the safer it is. Other safety issues are handled as constraints, like the cooling
time of the assembly must be sufficient, the maximum decay heat power of the canister is limited,
and the distances between disposal tunnels and canisters depend on the heat load of the canister.
While we allow empty positions in canisters, we still try to keep the total amount of the canisters as
low as possible. The other objectives related to the encapsulation facility aim to get disposal done as
soon as possible. Finally, the area of the disposal facility is minimized.

2.1. Parameters

The model involves several parameters mostly dealing with lower and upper bounds and costs.
First, we begin with two parameters determining the size of the model. Let

N  be a total number of disposal periods
Z  be a total number of removals from the reactor.

In addition, we define two sets of indices: the set of periods N = {1,...,N} and the set of
removals from the reactor Z = {1,...,Z}. Note that part of the removals are done before the first
disposal period begins. In order to link the removals from the reactor and periods, we introduce
two parameters:

a the last removal before the first disposal period
b the disposal period when the last removal is done.

In the following, we specify notation and measurement units for some physical magnitudes:
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M; number of assemblies belonging to the removal i € Z
Q length of one disposal tunnel [m]
ij storage time of an assembly belonging to the removali € Z
in the period j € N [period]
P;;  decay heat power of an assembly belonging to the removal i € Z
in the period j € N [W].

The next seven parameters describe the cost information needed as an input data for the model:

Cpg  storage cost per one assembly per period [€]
Cis  costs related to the interim storage per period [€]
Cgp  cost of a storage place per one assembly [€]
Cca  cost of one canister [€]
Cgr  costs related to operating the encapsulation facility per period [€]
Cpr cost of a disposal tunnel per meter [€]
Cecr  cost of a central tunnel per meter [€].

Finally, we give some parameters related to the upper and lower bounds:

R minimum storage time of an assembly [period]
K maximum capacity of a canister
T minimum number of canisters disposed in one period
U maximum number of canisters disposed in one period
plow., puhy  lower and upper bound for the maximum average power of
a canister [W]
dlcaff{, dé’;‘ lower and upper bound for the distance between canisters [m]
dl,:‘,”fj, d%pT lower and upper bound for the distance between disposal
tunnels [m].

2.2. Continuous Variables

The model involves N(2Z + 1) + 3 continuous variables such that they all are assumed to be
non-negative. The continuous variables used are:

x;; number of assemblies belonging to the removal i € Z disposed during
the period j € N
y; number of canisters disposed during the period j € N
zj; number of assemblies belonging to the removal i € Z being in storage
at the end of the period j € N
Pmax ~Maximum average power of a canister
dpr distance between two adjacent disposal tunnels
dcs  distance between two adjacent canisters in a disposal tunnel.

Note that the first three variables have integer nature, but in order to ease the computation, they
are relaxed as continuous variables.

2.3. Binary Variables

Besides continuous variables, the model consists also N(2Z + 3) binary variables listed below:

eb encapsulation starts in the beginning of the period j € N/

e]OFF encapsulation ends in the beginning of the period j € N/
ej encapsulation facility is in operation during the period j € N/
sij assemblies belonging to the removal i € Z take off from disposal
at the beginning of the period j € N
rij  indicates that assemblies belonging to the removali € Z
can be disposed during the period j € NV.
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2.4. Objectives

The model involves nine objectives such that six of them are nonlinear and three are linear. These
objectives are:

a a+j
min max { Y M, Y zij, Y zig|je{l,....b—1},1 € {b,...,N}} 1)
i=1 i=1 i€z
min  max{A;;s;; —1|i€ Z,je N} )
min Yicz Yien AijXij 3)
Yicz M;
min ) y; 4)
jEN
min max{e]bFF j=1ljeN} ®)
min Z ¢ 6)
jEN
min dCA Z y] (7)
jEN
. 1
min *dCAdDT Z ]/] (8)
Q JEN

min  CasYicz Yjen Aijxij+ Cis max{eppp-j—1]j € N}
+  Cgpmax { Y7 MZ-,Z?;”{ zij, Yiczzig | € {L,...,b—1},1 € {b,.. .,N}} )

+  CcaXjen;+ Cer Sjen ¢+ Cordca Lien yj + Cergdprdea Lien vj-

Note that from nonlinear objectives, the objectives (1), (2), (5) and (9) are also nonsmooth. The
objectives (1)—(3) are related to the interim storage such that (1) minimizes the maximum number of
assemblies in the storage, (2) minimizes the maximum storage time, and (3) minimizes the average
storage time. In the objective (1), with the first component we take into account the first 2 removals
from the reactor where all the assemblies must be stored simultaneously. The second component
handles the cases when removals are accomplished during the disposal periods. Finally, with the third
component the cases when all removals are done are considered.

The next three objectives (4)-(6) are related to the encapsulation facility. The objective (4)
minimizes the total number of canisters, (5) aims to stop the disposal as early as possible, and (6)
minimizes the time which the encapsulation facility is in operation.

The objectives (7) and (8) aim to minimize the size of the disposal facility such that (7) minimizes
the total length of disposal tunnels and (8) minimizes the length of the central tunnel.

Finally, the ninth objective (9) minimizes the total costs of the disposal process. The costs taken
into account are related to the storage, cost of individual canisters, the encapsulation facility operating
costs, and the building costs of the disposal and central tunnels.
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2.5. Constraints—Interim Storage

The first set of constraints are related to the interim storage. All of these Z(5N +2) + N + 2
constraints are linear.

zi1—Mi+x1=0, iecZ (10)
zij—zij-1+x;=0, i€Z, je N\{1} (11)
zin=0, i€Z (12)
Y sij=1 i€Z (13)
JEN

ri1 = e})N —s5;1, 1€2Z (14)
rij=Tijo1+ ejON —sij, i€Z,j€ N\ {1} (15)
rij<e, i€Z jeN (16)
xjj <UKrij, i€Z,jeN (17)
xj(Ajj—R)>0, icZ,jeN (18)

The constraints (10)—(12) define the variables z;,j depicting the amount of assemblies in storage.
The constraint (13) enforces all the assemblies to be disposed once. With the constraints (14)—(16) the
variables r; ; are defined. The constraint (17) ensures that the production capacity is not exceeded and
the constraint (18) ensures that the assembly disposed has been cooling long enough.

2.6. Constraints—Encapsulation Facility

In order to guarantee the acceptable encapsulation, the following 4N + 1 linear constraints
are needed.

Y ey=1 (19)
jeN
2 e]OFF =1 (20)
jEN
e1 = eon — EOFF (21)
ej=ej1+eony —eopr 1 EN\{1} (22)
1 .
vz g Lxij JEN (23)
icZ
Yj < UE]‘, ] eN (24)
v > T(ej—eppp), €N\ {N}. (25)

The constraints (19) and (20) ensures that the encapsulation facility is switched on and off exactly
once meaning that all the canisters must be encapsulated at once. The constraints (21) and (22) define
the variable ¢;. The constraints (23)—(25) guide the encapsulation process: (23) guarantees that there
exist enough canisters such that all the assemblies can be disposed, (24) keeps the number of canisters
under the production capacity, and (25) forces the minimum production to be fulfilled.
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2.7. Constraints—Disposal Facility

The number of constraints related to the disposal facility is N + 4 such that N + 1 of them are
nonlinear, and three of the constraints are box constraints.

Z Pi,jxi,j - Pmaxy]‘ S O, ] S N (26)
i€cZ

Pmax € [plrgfzuxr P%zx} (28)
dea € |ds, dlt | 9)
dor € [dF, dify| (30)

The constraints (26) and (27) are the nonlinear constraints of this model. The constraint (26)
ensures that the heat power of the canisters disposed is allowable while the constraint (27) defines
the dependence between the variables dca, pmax, and dpr. In our case, this nonlinear function
¢ : R? — R is approximated with a piece-wise linear function (see Appendix A). Finally, the box
constraints (28)—(30) give lower and upper bounds for variables pyax, dca, and dpr, respectively.

Finally, we give some boundaries for the variables:

xij>0, z,;>0 forall i€ Z, jeN,

y; >0 forall jeN,

e]ON € {0,1}, e]OFF € {0,1}, ej € {0,1} forall jeN
sij €{0,1}, r;;€{0,1} forall ic Z,jeN.

To conclude, the model has nine objectives such that 6 are nonlinear and 3 are linear. The rest
of the dimensions of the model are depending on two parameters: the number of periods N and the
number of the removals from the reactor Z. Number of constraints is 5(N(Z + 1) + 1) 4+ 2Z, where
are Z(5N + 2) + 4N + 1 linear, N + 1 nonlinear and 3 box constraints. The total number of variables
is4N(Z +1) +3 and N(2Z + 1) + 3 of them are non-negative continuous variables and N(2Z + 3)
are binary variables. Evidently, with any realistic values of N and Z, for example N = 19and Z =11
when one period is five years, the size of the problem will come quite large.

3. Multiobjective Optimization Approach

In this section, we define some fundamental aspects on multiobjective optimization, and then,
describe the family of two-slope parameterized achievement scalarizing functions (ASFs) [25] with its
properties. Finally, the interactive method utilizing two-slope parameterized ASFs is introduced.

3.1. Mathematical Background

We consider the following multiobjective MINLP problem of the form

min  f(x) = {fi(x),.... fi(x)}, (31)
wherex € X = {x = (y,z) |y € R",z € Z"} N Cis adecision variable, C is the set of constraints, and X
is a nonempty and compact set of feasible solutions. The objectives f; : X — Rforalli € I = {1,...,k}
are assumed to be lower semicontinuous with respect to y and at least partially conflicting. Therefore,
we cannot find a minimal solution for every objective simultaneously and the minimization of only one
objective may lead to an arbitrary bad solution with respect to other objectives. In order to compare
the objectives, for x,y € RF we denote by x < yif x; < y; foralli € Iand x < yif x; < y; foralli € I.
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In multiobjective optimization, we say that a solution is Pareto optimal if we cannot improve any
objective without causing a deterioration for some other objective at the same time. Mathematically
speaking, a solution x* € X is Pareto optimal if there does not exist any solution x € X such that
f(x) < f(x*) and f;(x) < f;(x*) for at least one index j € I. It is noteworthy that usually we do not
have a unique Pareto optimum but a set of Pareto optimal solutions, called the Pareto set. All these
Pareto optimal solutions belong also to a larger class of weakly Pareto optimal solutions. The solution
x’ € X is an element of this class if there does not exist another solution x € X such that f(x) < f(x/).

In order to obtain some information about the Pareto set, we can define an ideal and a nadir
vector, f € RFand " € R¥, to give the lower and the upper bound for a Pareto optimal solution,
respectively. The ideal vector consists of individual minima of the objectives. This means that the
component fi is calculated as a solution of the problem mincx f;(x). Due to the conflicting objectives,
the ideal vector is not feasible. The nadir vector, in its turn, represents the worst objective values
in the Pareto set. Unfortunately, the exact calculation of the nadir vector needs the maximization of
objectives over the set of Pareto optimal solutions being a hard task. Thus, the nadir vector needs to be
approximated, for example, with a pay-off table (see e.g., [31,32]).

3.2. Two-Slope Parameterized ASFs

We approach the multiobjective mixed-integer problem with a special type of achievement
scalarizing functions. In general, the utilization of the achievement scalarizing function (ASF)
aims to find a Pareto optimal solution being as close as possible to a so-called reference point fX.
The components fR, i € I include the decision maker’s wishes for each objective. This search is done
by transforming the multiobjective optimization problem to a certain type of a scalarized problem and
then applying some suitable single-objective optimization method.

We use here the two-slope parameterized ASF, proposed in [25], which is a generalization of the
parameterized ASF [26] and the two-slope ASF [27]. Usually, to find the closest point to the reference
point £, the distance from fX is measured with only one metric. With the parameterization used
in the parameterized ASF and the two-slope parameterized ASF, we can combine different metrics
such that Lo, and L metrics are the extreme cases. Thus, by systematically producing different Pareto
optimal solutions from the same preference information, we can give the decision maker a wider
perspective to the range of Pareto optimal solutions. Another benefit of the two-slope parameterized
ASF, as well as the two-slope ASF, is that we do not need to test the achievability of the reference
point. This is due to the fact that the different weights are used depending on if the reference point is
achievable (i.e., the reference point belongs to the image of the feasible solutions in the objective space)
or unachievable. The use of different weights is reasonable since the decision-maker usually prefers
different solutions if the reference point is achievable or not, as was suggested in [28].

In order to solve the model described in Section 2, we apply the two-slope parameterized ASF.
Once the multiobjective problem is converted to the single-objective one, we obtain a scalarized version
of the problem (31) in the form [25]

min max { Y [ max{A!(fi(x) = £R),0) + min{A2 (fi(x) — ), 0 } (32)
=

where the weighting vectors )\ZU, )\lA > 0 for all i € I are for the unachievable and the achievable
reference point, respectively. The parameter g4 € I specifies which metric is used and I7 is a
set containing g integers from the interval [i, k], where k is the total number of objectives. Then,
the maximization is taken over all the sets including g integers from the interval [1,k]. In order to gain
the benefits of the parameterization, or in other words, to use more metrics than only L; (i.e., g = k)
and Lo (i.e., g = 1), the problem must contain at least three objectives while the maximum number of
different metrics equals the number of the objectives.
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Next, we are interested to know what can be deduced from the optimal solution of the scalarized
problem. As the justification for the use of the two-slope parameterized ASF, we can proof the following
results by adapting the proofs from [25].

Theorem 1 ([25]). For the scalarized problem (32) it holds that:

(i) Any optimal solution of the scalarized problem is weakly Pareto optimal for the problem (31).
(if) Among optimal solutions of the scalarized problem, there exists at least one Pareto optimal solution for the
problem (31).
(iii) If x* is a weakly Pareto optimal solution for the problem (31), then it is a solution of the scalarized problem
(32) with R = f(x*), and the optimal value is zero.

Proof. (i) Assume that x* is an optimal solution of the problem (32) but not a weakly Pareto optimal
solution of the problem (31). Then there exists a feasible solution ¥ € X such that f(x') < f(x*).
Forany x € X, denote I, = {i € I | fR < fi(x)}, Jx = {i € | fR > fi(x)} and s?{(f(x),/\u,/\A) as
the objective of the scalarized problem (32). Now

sp(f(x),A%,A%) = max { YA AE) = )+ AR fiR)}

i€ly €]

< max { 2 )\u(fl( fl + Z /\A (filx fiR)}

iel i€y

< max{ Z )tu (fi(x fiR)+ Z )\fq(fi(x*) _fiR)}

IGL(* iG]x*

yielding to a contradiction.

(if) Assume that x* is an optimal solution of the problem (32) but not a Pareto optimal solution of the
problem (31). Therefore, there exists ¥’ € X such that f(x’) < f(x*) and at least one index j € I such
that f;(x') < fj(x*). Similarly to (i), we can deduce that s’ (f(x'), AU AN < ST (F(ax), AT, A). Tf the
equality holds, x’ is an optimal solution for the problem (32) and Pareto optimal for the problem (31).
In the case of strict inequality, this yields to a contradiction with an assumption that x* is an optimal
solution for the problem (32).

(iii) First, we observe that s} is strictly increasing (i.e., s']{(f(xl),)\u, A < s?{(f(xz),]\u, A4 for
any f(x1), f(x2) having f(x1) < f(x2) and x1,x, € X). Indeed, by taking x1,x, € X such that
f(x1) < f(x2), we see that

sp(f(x1),A%,A%) = maX{ Y A (file) = )+ 1 AR (filn) _fiR)}

i€ly, i€]x

<max{2/\ (fi(x2) — Z)\ (fi(x2) fiR)}

zel,c2 ze]Y2

The claim is obtained, since for any strictly increasing ASF it holds that a weakly Pareto optimal
solution x* for the problem (31) is a solution of the scalarized problem with fX = f(x*) and the
optimal value of s?{ is zero (see [32]). O
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Thus, we know that every Pareto optimal solution can be obtained and the solution of the
scalarized problem (32) is weakly Pareto optimal for the original multiobjective problem. In order to
guarantee the Pareto optimality of solutions, a so-called augmentation term [32]

pLAilfix) = f), p>0 (33)
i€l
may be added to the objective of the scalarized problem (32) [25]. Note that similarly to Theorem 8
in [25] it can be proven that if the set X and the objectives f;, i € I are convex, then s% (f(x), AY,A%)
preserves the convexity.

3.3. Multiobjective Interactive Method Utilizing the Two-Slope Parameterized ASFs

In the following, we state an outline of the multiobjective interactive solution approach
utilizing the two-slope parameterized ASFs (MITSPA) applying reference point based preference
information. The general framework of interactive methods is usually similar: firstly, some range for
Pareto optimal solutions is given the decision-maker, secondly, the decision-maker provides some
preference information, thirdly, some solutions are presented for the decision-maker, and fourthly, the
decision-maker express his/her opinion on the solutions and modify the preference information as
a base for the new solutions. The process is stopped when the decision-maker is satisfied with the
solution. The main differences in various interactive methods can be found in the ways the preference
information is given and which solvers are applied (see e.g., [32,33]).

Similar approaches to ours in terms of the utilization of scalarization functions and the reference
point as preference information are proposed, for instance, in [32-38]. Compared with these, in our
case with the two-slope parameterized ASFs, we can systematically produce different Pareto optimal
solutions to obtain a reasonably distributed selection of Pareto set.

Multiobjective interactive method utilizing the two-slope parameterized ASFs (MITSPA)

Step 0. Give the ideal vector fid, the nadir vector f "“d, and/or some Pareto optimal solution f, to the
decision maker in order to illustrate the Pareto set.

Step 1. Set the iteration counter i = 1 and select the maximum number of iterations /imax. Ask the
decision maker to provide the reference point fﬁ and the number of solutions s € {1,...,k}
presented for each reference point. Initialize the positive coefficients AY and A%,

Step 2. Update the coefficients AY and A if needed. Solve the problem (32) with the augmentation term
(33) with the current reference point f,If

Step 3. Present s solutions to the decision maker and ask the decision maker to select the most preferable
solution among them as the current solution f, and go to Step 5 or if more solutions for the
current reference point fﬁ are needed go to Step 4.

Step 4. Present supplementary solutions to the decision maker. Ask the decision maker to select the
most preferable solution among the previous s solutions and the supplementary solutions as the
current solution f;, and go to Step 5.

Step 5. If h = hmax or the decision maker is satisfied with the current solution f, stop with the current
solution as the final solution f*. Otherwise, ask the decision maker to specify the new reference
point f}f 11 as the current reference point, set h = h + 1, and go to Step 2.

Some remarks about the above algorithm are in order. Step 0 consists of the illustration of the
Pareto set. Some Pareto optimal solutions for the decision-maker to start with can be calculated,
for example, by using the two-slope parameterized ASF (32) with an ideal vector as a reference point
or by applying some suitable no-preference method like descent methods [39-43]. In Step 3, s € [1, k]|
solutions are presented to the decision-maker, where the k is the number of objectives. As mentioned,
with the two-slope parameterized ASF we are able to solve as many different solutions as there are
objectives. If the number of objectives is high, it facilitates the task of the decision-maker if only some
of these solutions are presented. However, if the decision-maker is willing to see more solutions
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from the same reference point, this is enabled in step 4. If more than k solutions are needed in total
for one reference point, they can be obtained by varying the coefficients AY and A“. During the
solution process, the decision maker is able to learn about the model and after seeing some solutions,
the decision maker has more insight into the problem and might want to change the opinion on the
good reference point. Thus, in Step 5, a new reference point is allowed and new solutions are solved
in Step 2.

4. Case Study: The Disposal in Finland

In practice, the scalarized problem (32) with an augmentation term (33) in Step 2 of MITSPA is
solved with a branch-and-cut type method for single-objective MINLP problems called BARON [44,45]
in GAMS [46]. The CPU time of solving each problem (32) presented here varies from 9 s to 28000 s
while the average CPU time is 3475 s and the median CPU time is 142 s. The weighting vectors used
are of the form

AU 1 A 1

IR

such that " — fR > 0and fR — > 0 as suggested in [27]. The approximation of the nadir vector
used is obtained with a pay-off table [31,32].

We investigate the disposal of the spent nuclear fuel from the European pressurized water reactor
(EPR) produced by Olkiluoto 3 in Finland starting to operate in the near future. The length of one
disposal period is selected to be 5 years, and the parameters N and Z are 19 and 11, respectively.
The other parameters used are given in Appendix A, except the cost parameters that are omitted due
to their commerce-related nature. This parameter selection yields a multiobjective MINLP problem
with 9 objectives, 440 continuous and 475 binary variables, 1144 linear constraints, 20 nonlinear
constraints, and three box constraints. Apart from these, we need some auxiliary variables and
constraints to overcome the non-smoothness of the problem. Indeed, the two-slope parameterized
ASFs are nonsmooth, but due to their min-max structure, the problem (32) can be written in the MINLP
form as in [25]. Similarly, this trick can be applied also for the nonsmooth objectives. After that,
we have to solve a single-objective problem with 441 continuous and 484 binary variables, 1153 linear
constraints, 21-146 nonlinear constraints and 3 box constraints.

Before we proceed to the solution process, we discuss the trade-offs of the problem. There are
three parts in the final disposal of spent nuclear fuel: the interim storage, the encapsulation facility,
and the disposal facility. These three parts interact with each other as is exemplified in the following.

e Interim storage versus disposal facility: The interim storage-related goals all imply transferring
the spent nuclear fuel from the interim storage as rapidly as possible. However, in order to
minimize the disposal facility-related goals, the cooling times should be maximized.

e  Encapsulation facility versus interim storage: By delaying the start of disposal, it is possible to
shorten the operation time of the encapsulation facility, and thus, decrease the operating costs.
Again, the delay at the start of the encapsulation can cause an increase of the inventories in the
interim storage.

e  Encapsulation facility versus disposal facility: The disposal should be started and ended as soon
as possible. Both of these aims have a tendency to increase the canister heat load, and hence, affect
the disposal facility goals. To minimize the operation time of the encapsulation facility, empty
assembly positions can be used. However, the price to pay is the increased number of canisters.
In addition, a larger number of canisters necessitates an increase in the disposal facility area.

In order to investigate these, and other trade-offs, the interactive method MITSPA is employed.
In each iteration of MITSPA, some new preference information is asked from the decision-maker
reflecting his/her preferences. For each iteration, we compute nine solutions by using the current
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reference point with different metrics by varying the value of the parameter g from 1 to 9 in Step 2.
In order to exemplify this, the nine solutions computed using reference point 1 are shown in Figure 1.
These nine solutions represent different trade-offs between objective function values. The results
obtained are scaled to the interval from 0 to 1 such that 0 is the value of the ideal vector and 1 is the
value of the nadir vector for the objective under consideration. The different solutions are labeled
based on the reference point used and the value of the parameter 4. For example, the solution r1ql is
the result obtained by using the reference point 1 and q = 1. Moreover, the reference point 1 is labeled
with rl.

— rlgl — rig6
. g2 — rig7
0s g3 — rig8
rMgd — rigd

0.2 Mg = rl

Objective

Figure 1. The objective values of 9 solutions obtained using the reference point 1.

In Step 3, two solutions are selected to be presented for the decision-maker for the closer inspection.
The number of presented solutions s is restricted to two in order to aid the decision maker’s task to
select best out of only two options and in order to keep the presentation clear. At each iteration, one
solution with a smaller value of g and one with a larger value of g are presented and different values
of q are demonstrated in order to exemplify the variety of solutions. Next, we present four iterations
of MITSPA.

Iteration 1. At the first iteration, the decision maker begins by investigating the trade-off between
operation time of the encapsulation facility and the cooling times of assemblies by deciding to start
with the unachievable reference point such that the operation time is short and the cooling time is
long. The two solutions chosen for reference point 1 are shown in Figure 2a together with reference
point 1. The solution obtained by using value g = 1 (r1ql) shown in the green line corresponds to the
early starting time of disposal. The solution obtained by using value 4 = 9 (r1q9) shown in the orange
line corresponds to the late starting time of the disposal. In Figures 2b,c, the corresponding disposal
schedules are given. The solution r1q9, has the shortest possible encapsulation time but the maximum
cooling time is long. The solution r1q9, like r1ql, has a high maximum number of assemblies in the
storage (see the objective (1)), but the maximum and average storage times (the objectives (2) and (3))
are slightly shorter. The solution r1q9 does not allow any empty positions in canisters while the
solution r1ql does (see (4)), but the encapsulation ends much later (see (5)) in the solution r1q9 than in
rlql. However, the operation time of the encapsulation facility (see (6)) is shorter in the solution r1q9
than in r1ql. When the disposal facility-related objectives (see (7) and (8)) are compared, the solution
r1q9 needs a smaller area than the solution r1ql. Moreover, the solution r1q9 is cheaper than the
reference, while the solution r1ql is more expensive than the reference (see (9)). Mainly due to the
significant difference in the costs, the decision maker selects the solution r1q9 as the current solution f;.
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- g1
—s— r1g9

- 1l

Objective

(a) The objective values for the selected solutions g = 1 and g = 9 and the reference point 1.
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Canisters
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]
T4 7272747676 7 8 810111212 14 1516 17 18 19"
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(b) The disposal schedule for g = 1. (0) The disposal schedule for g = 9.
Figure 2. Results for the iteration 1.

Iteration 2. In order to learn more about the trade-off between the operation time of the
encapsulation facility and the cooling time, another reference point (reference point 2) is selected.
In this case, the reference point is achievable. Now we try to find solutions such that the operation
time is longer and cooling time shorter. The two solutions chosen for reference point 2 are shown in
Figure 3a and the corresponding disposal schedules in Figure 3b,c. Again, the solution obtained with
the small value g = 1 (r2q1) represents the early starting time of the disposal. This is depicted with the
green line in Figure 3a while the orange line depicts the solution obtained using value g = 9 (r2q9)
corresponding to the late starting time of the disposal.

If we compare the disposal schedules in Figure 3b,c to the schedules for reference point 1 given
in Figure 2b,c, we notice some similarity. Even though the starting and ending times differ as well
as the total number of canisters, the solutions with the parameter g value 1 and value 9 have the
same shape. The smaller g suggests the schedule such that first, we encapsulate a small number of
canisters per period and the number of canisters is growing while the time goes by, whereas the larger
g recommends the schedule where all the canisters are encapsulated within two periods. The solution
r2ql captures the reference point well since they coincide with respect to other objectives than the
objectives (1) and (5) which are better than the reference values. Thus, the decision maker is willing to
continue with the solution r2q1 as the current solution f,.

Iteration 3. The long operation time of the encapsulation facility (the objective (6)) is still under
the microscope at the third iteration but the decision-maker is tempted by the short central tunnel
appeared in the previous iteration and combines the long operation time with small disposal facility
area. Like the first reference point, also this is unachievable. The solution obtained by using g = 2
(r3g2) is shown in green and the solution obtained with g = 8 (r3q8) is shown in orange in Figure 4a.
Figure 4b illustrates that the solution r3q2 yields a schedule with an early starting date and the disposal
takes the longest time while the solution r3g8 starts the disposal later but it is performed faster as seen
in Figure 4c. The solution r3q8 yields almost ideal value for the costs, and we can deduce that in order
to achieve lower costs we have to give up in the objectives related to the storage capacity and times.
Moreover, the disposal ends rather late. For the current solution f, the decision-maker selects the
solution 13q8 due to the low costs and small disposal facility area.
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(a) The objective values for the selected solutions g = 1 and g = 9 and reference point 2.

(b) The disposal schedule for g = 1.
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(c) The disposal schedule for g = 9.
Figure 3. Results for the iteration 2.
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(a) The objective values for the selected solutions g = 2 and g = 8 and reference point 3.

(b) The disposal schedule for g = 2.
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(c) The disposal schedule for g = 8.
Figure 4. Results for the iteration 3.
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17272 a6 '@ 7 '8 910111211314 15 1617 128197

Since one motivation for this research was to take into account more goals than just the costs, we
are eager to see what happens if we omit the costs and solve the problem with only the first eight
objectives (1)—(8). The reference point 3’ is similar to the reference point 3 without the value for the
costs. The results with g = 2 (r3'q2) and g = 8 (r3'q8) are given in Figure 5. Note that since there
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are now only eight objectives, the scalarized function is different than in the case of nine objectives.
The solutions in Figure 5 are quite similar and there is less variation than in the solutions in Figure 4a.

10

00

Objective

Figure 5. The objective values corresponding the selected solutions g = 2 and q = 8 for the modified
reference point 3 with objectives (1)—(8).

Iteration 4. The current solution f; has high interim storage capacity and a small amount of
canisters. At the fourth iteration, the decision maker is interested in to see if the opposite is possible,
namely a solution with small interim storage capacity with allowing the higher number of canisters.
Again, the reference point is unachievable. In Figure 6a, the reference point 4 and the solutions with
q =4 (r4q4) and g = 9 (r4q9) are illustrated. The solutions are shown in green and orange, respectively.
Again, the corresponding disposal schedules are given in Figures 6b,c. As we see, the solution r4q4
satisfies the wishes towards the interim storage capacity as well as the utilization of the empty canister
positions quite well. Additionally, the better values than the reference are obtained in the repository
area related goals and the costs. The solution r4q9 express this as well, but the original wishes towards
the interim storage capacity are not satisfied. Since the solution r4q4 captures better the ideas of the
decision-maker, it is selected for the current solution f 4

10
0.8l
sl —— rdgd
0.4 - r4g9
- 4

0.zl
0.0l

1 1 1 1 1 1 1 1 1

1 2 3 4 5 [ 7 5 E]

Objective

(a) The objective values for the selected solutions g = 4 and g = 9 and reference point 4.
s zaof
so0f soof
200f

200

Canisters
Canisters

100 100 |

L e e PR e e P T T T T T T

12 24 5 6 7 8 81011121214 1518 17 1819 12 2 4 5 8 7 8 91011121214 1518 17 18 19
Pericd Pericd
(b) The disposal schedules for g = 4. (c) The disposal schedules for g = 9.

Figure 6. Results for the iteration 4.
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Eventually, the decision maker is ready to make the final choice. During the solution process, we
have learned that the solutions obtained from 4 different reference points can be split broadly into two
main groups. The first group includes solutions where the disposal starts early while the other group
includes the solutions with late starting. The most striking fact is that the solutions of the first group
are obtained with smaller values of 4 and the solutions of the second group with the larger values
of q. This phenomenon is repeated with all of four reference points. Interestingly, with the modified
reference point 3 where only eight objectives were considered, mainly solutions with earlier starting
time were obtained. In general, the earlier starting time of the disposal improves the objectives (1)-(3)
and impairs others compared with the case where the disposal starts later. In general, we notice that
the solutions obtained adapt the reference points quite well.

In Figure 7, the solutions related to the first group with an early starting time are illustrated. It can
be seen that even if all these solutions suggest the early start of the disposal, they still have some
differences. One can improve goals (7) and (8) by disposing of spent fuel with a small volume at the
beginning. However, this declines goals (1)-(3), (5), (6) and (9) which can be seen from the solution
r3q2. It is possible to improve the goals (1)-(3), (5) and (6) by allowing some canister positions to be
empty. However, this in its turn declines goals (4) and (7)-(9) which can be seen from the solution r4q4.
As the final solution, the decision maker likes to return to the reference point 2 and the solution r2q1
looks like a good compromise when disposal begins early.

1.0
08
- gl
08+ q
- 12q1
04 -+ 13g2
0.2b —— rdgd
0.0 1 L L 1 1 1 1 1 1
1 2 3 4 5 g T g 9
Objective

Figure 7. The four solutions where disposal starts early.

A similar examination is done for the solutions of the second group with the late starting time.
The solutions in terms of the objective function values and the disposal schedules are given in Figure 8.
Again, we can observe some differences. The differences depend on the number of years the start of
disposal operations is prolonged. It can be seen from Figure 8, that the disposal volume is large in
every solution where disposal starts late. On the one hand, one can improve goals (7)—-(9) by delaying
the start of disposal but on the other hand, this declines goals (2), (3) and (5), as illustrated in the
solution r3g8. When the disposal starts late, empty canister positions have only a minor impact on the
solution. One can improve goals (2), (3), and (5) by allowing empty canister positions. This yields to
the impairing of the goals (4), and (7)-(9) which can be seen from the solution r4q9. Again, the decision
maker is willing to return to the reference point 2 and consider the solution r2q9 as a satisfactory
solution when the disposal starts late. Additionally, the decision maker selects this solution also for
the final solution f*, since it yields a rather good solution for other objectives than the maximum
storage. However, we learned that this is the price of the lower costs and smaller disposal facility area.
Moreover, compared with the solution r2q1 also presented from the reference point 2, the later starting
does not delay the ending of the disposal.
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Figure 8. The four solutions where disposal starts late.

5. Conclusions

In this paper, we have proposed the nonsmooth multiobjective MINLP model to optimize the
spent nuclear fuel disposal in order to obtain a disposal schedule. The modeled process is described
and the model is presented in detail. Then, the two-slope parameterized ASF is briefly stated and
validated the use of it. Additionally, we proposed an interactive solution method utilizing these ASFs.
Finally, some numerical results from the case study are given. The solutions obtained are exemplified
and analyzed in terms of objective function values and disposal schedules.

With slight modifications, the model presented is applicable to other countries than Finland as
well, if the spent nuclear fuel is decided to dispose of the disposal facility. It is possible to change the
objectives or leave some of them out. Indeed, this model has quite many objectives, and in some cases
it may be advantageous to have fewer goals either to ease the decision maker’s task or reduce the
computations needed.

The schedules obtained are realistic and viable. One conspicuous feature for the solutions is that
they are segmented in two groups based on the value of the parameter g enabling the parameterization
when the two-slope parameterized ASF is used. With the lower values of g (i.e., closer to L, metric),
the disposal starts early and with the larger values of g (i.e., closer to L; metric) the later start of the
disposal is suggested. If only one metric, for instance L., metric, was used, no solutions with late
starting would have been obtained in these iterations. For further studies, it would be interesting
to investigate, is this kind of phenomenon observable in other applications as well, if the two-slope
parameterized ASF is used. The role of g is also fascinating in terms of which value of g yields the most
desirable solution for the decision maker.

As future research, it would also be interesting to include all of the three different fuel types used
in Finland. Another interesting topic would be including the possible hiatus for the operation of the
encapsulation facility in the model.
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Appendix A. Parameters of the Case Study

The parameters used in the case study given in Section 4 are

M; =360,i€{1,3,57,9,11} R=4 plow. = 1300

M; =240,i € {2,4,6,8,10} U =500 dfr =50

a=5 T = 50 dié’;f:ZS

ZIJ<:64 Qup: 350 d%:w
= Prx = 1830 d%% =6

and the values for A;; and P;; are given in Tables Al and A2, respectively. Furthermore, the following
approximation is used in the constraint (27):

g(pmax/dDT) = max{ — 226911dDT + 000675]9;11113( + 54.5228,
— 0.05833dpT + 0.00596 p ey — 0.727083,
— 0.14dp7 + 0.17701 pyuay — 350.651}.

Table A1. Values for the parameters A; ;.

j=1j=2j=3j=4j=5j=6j=7j=8;=9j=10;=11;j=12;=13 j=14 j=15j=16 j=17 j=18 j =19

i=1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
i= 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
i= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i=5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
i=6 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i=7 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i=8 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i=9 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i=10 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
i=1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Table A2. Values for the parameters P, ;.

j=1j=2j=3j=4j=5j=6j=7j=8;=9;=10;=11j=12 =13 j=14 j=15j=16 j=17 j=18 j =19

i=1 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238 227 216 207
i=2 inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238 227 216
i=3 inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238 227
i=4 inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238
i=5 inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251
i=6 inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264
i=7 inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280
i=8 inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297
i=9 inf inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316
i=10 inf inf inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338
i=11 inf inf inf inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361
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