Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators
Abstract
:1. Introduction
2. Basic Concepts
- 1.
- 2.
- 3.
- 4.
3. DGSVNNWBM Operator and DGSVNNWGBM Operator
- (1)
- (Monotonicity). Let and be two sets of SVNNs. If holds for all , then
- (2)
- (Boundedness). Let be a set of SVNNS. If
4. Numerical Example and Comparative Analysis
4.1. Applicable Example
4.2. Influence Analysis
4.3. Comparative Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smarandache, F. Neutrosophy: A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, NM, USA, 1999. [Google Scholar]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis, 4th ed.; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic set. Rev. Air Force Acad. 2010, 1, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, 5th ed.; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to Group Decision Making. Int. J. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Sahin, R.; Liu, P.D. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Computer. Appl. 2016, 27, 2017–2029. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multicriteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, X. The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making. Int. J. Mach. Learn. Cybern. 2016. [Google Scholar] [CrossRef]
- Deli, I.; Subas, Y. A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int. J. Mach. Learn. Cyber. 2017, 8, 1309–1322. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Chen, J.Q.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for multiple attribute decision-making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Chen, Y. Some single valued neutrosophic number heronian mean operators and their application in multiple attribute group Decision Making. Informatica 2016, 27, 85–110. [Google Scholar] [CrossRef]
- Beliakov, G.; James, S.; Mordelova, J.; Rückschlossová, T.; Yager, R.R. Generalized Bonferroni mean operators in multicriteria aggregation. Fuzzy Sets Syst. 2010, 161, 2227–2242. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Bollettino dell’Unione Matematica Italiana 1950, 5, 267–270. (In Italian) [Google Scholar]
- Wei, G.W. Picture uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Kybernetes 2017, 46, 1777–1800. [Google Scholar] [CrossRef]
- Wei, G.W. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making. Int. J. Fuzzy Syst. 2017, 19, 997–1010. [Google Scholar] [CrossRef]
- Jiang, X.P.; Wei, G.W. Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2153–2162. [Google Scholar]
- Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Xia, M.; Xu, Z.; Zhu, B. Generalized intuitionistic fuzzy Bonferroni means. Int. J. Intell. Syst. 2012, 27, 23–47. [Google Scholar] [CrossRef]
- Zhang, R.T.; Wang, J.; Zhu, X.M.; Xia, M.M.; Yu, M. Some generalized pythagorean fuzzy bonferroni mean aggregation operators with their application to multiattribute group decision-making. Complexity 2017, 16. [Google Scholar] [CrossRef]
- Sahin, R. Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment. arXiv, 2014; arXiv:1412.5202. [Google Scholar]
- Wei, G.W.; Lu, M. Pythagorean hesitant fuzzy Hamacher aggregation operators in multiple attribute decision making. J. Intell. Syst. 2017. [Google Scholar] [CrossRef]
- We, G.W.; Lu, M. Pythagorean fuzzy maclaurin symmetric mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2017. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
- Wei, G.W. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica 2017, 28, 547–564. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Dual hesitant Pythagorean fuzzy hamacher aggregation operators in multiple attribute decision making. Arch. Control Sci. 2017, 27, 365–395. [Google Scholar] [CrossRef]
- Wei, G.W. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput. 2016, 1–14. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2016. [Google Scholar] [CrossRef]
- Wei, G.W. Interval-valued dual hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1881–1893. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, G.W. Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Appl. Math. Model. 2013, 37, 4938–4947. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Aaadi, F.E.; Hayat, T.; Alsaedi, A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1129–1142. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant bipolar fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1119–1128. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant pythagorean fuzzy hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1105–1117. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1197–1207. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 713–724. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. J. Intell. Fuzzy Syst. 2017, 19, 607–614. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.M. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst. Appl. 2017, 81, 28–38. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wei, G.W.; Wei, C. VIKOR method for interval neutrosophic multiple attribute group decision-making. Information 2017, 8, 144. [Google Scholar] [CrossRef]
- Xu, D.S.; Wei, C.; Wei, G.W. TODIM method for single-valued neutrosophic multiple attribute decision making. Information 2017, 8, 125. [Google Scholar] [CrossRef]
- Wei, G.W. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 1093–1114. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. Manag. 2016, 17, 491–502. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Int. J. Fuzzy Syst. 2016, 13, 1–16. [Google Scholar]
- Ran, L.G.; Wei, G.W. Uncertain prioritized operators and their application to multiple attribute group decision making. Technol. Econ. Dev. Econ. 2015, 21, 118–139. [Google Scholar] [CrossRef]
- Wei, G.W. Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 2015, 17, 484–489. [Google Scholar] [CrossRef]
- Lin, R.; Zhao, X.F.; Wang, H.J.; Wei, G.W. Hesitant fuzzy linguistic aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 49–63. [Google Scholar]
- Lin, R.; Zhao, X.F.; Wei, G.W. Models for selecting an ERP system with hesitant fuzzy linguistic information. J. Intell. Fuzzy Syst. 2014, 26, 2155–2165. [Google Scholar]
- Zhao, X.F.; Li, Q.X.; Wei, G.W. Some prioritized aggregating operators with linguistic information and their application to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2014, 26, 1619–1630. [Google Scholar]
- Li, X.Y.; Wei, G.W. GRA method for multiple criteria group decision making with incomplete weight information under hesitant fuzzy setting. J. Intell. Fuzzy Syst. 2014, 27, 1095–1105. [Google Scholar]
- Wang, H.J.; Zhao, X.F.; Wei, G.W. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 26, 2281–2290. [Google Scholar]
- Wei, G.W.; Zhang, N. A multiple criteria hesitant fuzzy decision making with Shapley value-based VIKOR method. J. Intell. Fuzzy Syst. 2014, 26, 1065–1075. [Google Scholar]
- Wei, G.W.; Wang, J.M.; Chen, J. Potential optimality and robust optimality in multiattribute decision analysis with incomplete information: A comparative study. Dec. Support Syst. 2013, 55, 679–684. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Lin, R.; Zhao, X.F.; Wei, G.W. Uncertain linguistic prioritized aggregation operators and their application to multiple attribute group decision making. Int. J. Uncertain. Fuzziness Knowl. Syst. 2013, 21, 603–627. [Google Scholar] [CrossRef]
- Wei, G.W. Some linguistic power aggregating operators and their application to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2013, 25, 695–707. [Google Scholar]
- Zhao, X.F.; Wei, G.W. Some intuitionistic fuzzy einstein hybrid aggregation operators and their application to multiple attribute decision making. Knowl. Syst. 2013, 37, 472–479. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Lin, R. Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowl. Syst. 2013, 46, 43–53. [Google Scholar] [CrossRef]
- Wei, G.W. Hesitant fuzzy prioritized operators and their application to multiple attribute group decision making. Knowl. Syst. 2012, 31, 176–182. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F. Some dependent aggregation operators with 2-tuple linguistic information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 5881–5886. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F. Some induced correlated aggregating operators with intuitionistic fuzzy information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 2026–2034. [Google Scholar] [CrossRef]
- Wei, G.W. Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Comput. Ind. Eng. 2011, 61, 32–38. [Google Scholar] [CrossRef]
- Wei, G.W. Grey relational analysis model for dynamic hybrid multiple attribute decision making. Knowl. Syst. 2011, 24, 672–679. [Google Scholar] [CrossRef]
- Wei, G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38, 11671–11677. [Google Scholar] [CrossRef]
- Wei, G.W. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Expert Syst. Appl. 2011, 38, 4824–4828. [Google Scholar] [CrossRef]
- Wei, G.W. A method for multiple attribute group decision making based on the ET-WG and ET-OWG operators with 2-tuple linguistic information. Expert Syst. Appl. 2010, 37, 7895–7900. [Google Scholar] [CrossRef]
- Wei, G.W. Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl. Soft Comput. 2010, 10, 423–431. [Google Scholar] [CrossRef]
- Wei, G.W. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowl. Syst. 2008, 21, 833–836. [Google Scholar] [CrossRef]
DGSVNNWBM | DGSVNNWGBM | |
---|---|---|
O1 | (0.5720, 0.6135, 0.2929) | (0.5692, 0.6209, 0.2951) |
O2 | (0.8157, 0.5549, 0.3423) | (0.8150, 0.5552, 0.3454) |
O3 | (0.6253, 0.5980, 0.3033) | (0.6249, 0.6066, 0.3051) |
O4 | (0.6377, 0.4583, 0.3888) | (0.6345, 0.4610, 0.3903) |
O5 | (0.6431, 0.7999, 0.2927) | (0.6395, 0.8064, 0.2951) |
DGSVNNWBM | DGSVNNWGBM | |
---|---|---|
O1 | 0.5552 | 0.5511 |
O2 | 0.6395 | 0.6381 |
O3 | 0.5747 | 0.5711 |
O4 | 0.5969 | 0.5944 |
O5 | 0.5168 | 0.5127 |
Order | |
---|---|
DGSVNNWBM | O2 > O4 > O3 > O1 > O5 |
DGSVNNWGBM | O2 > O4 > O1 > O3 > O5 |
Order | ||||||
---|---|---|---|---|---|---|
(1,1,1,1) | 0.5552 | 0.6395 | 0.5747 | 0.5969 | 0.5168 | O2 > O4 > O3 > O1 > O5 |
(2,2,2,2) | 0.7701 | 0.8604 | 0.7861 | 0.8158 | 0.7326 | O2 > O4 > O3 > O1 > O5 |
(3,3,3,3) | 0.8281 | 0.9127 | 0.8395 | 0.8660 | 0.8096 | A2 > A4 > A3 > A1 > A5 |
(4,4,4,4) | 0.8508 | 0.9290 | 0.8583 | 0.8831 | 0.8455 | O2 > O4 > O3 > O1 > O5 |
(5,5,5,5) | 0.8621 | 0.9351 | 0.8669 | 0.8915 | 0.8656 | O2 > O4 > O3 > O5 > O1 |
(6,6,6,6) | 0.8689 | 0.9378 | 0.8715 | 0.8971 | 0.8785 | O2 > O4 > O5 > O3 > O1 |
(7,7,7,7) | 0.8734 | 0.9392 | 0.8743 | 0.9015 | 0.8873 | O2 > O4 > O5 > O3 > O1 |
(8,8,8,8,) | 0.8767 | 0.9400 | 0.8763 | 0.9055 | 0.8938 | O2 > O4 > O5 > O1 > O3 |
(9,9,9,9) | 0.8792 | 0.9406 | 0.8778 | 0.9091 | 0.8987 | O2 > O4 > O5 > O1 > O3 |
(10,10,10,10) | 0.8811 | 0.9411 | 0.8789 | 0.9124 | 0.9026 | O2 > O4 > O5 > O1 > O3 |
Order | ||||||
---|---|---|---|---|---|---|
(1,1,1,1) | 0.5511 | 0.6381 | 0.5711 | 0.5944 | 0.5127 | O2 > O4 > O3 > O1 > O5 |
(2,2,2,2) | 0.4108 | 0.4996 | 0.4227 | 0.4517 | 0.3726 | O2 > O4 > O3 > O1 > O5 |
(3,3,3,3) | 0.3619 | 0.4291 | 0.3670 | 0.3985 | 0.3208 | O2 > O4 > O3 > O1 > O5 |
(4,4,4,4) | 0.3385 | 0.3920 | 0.3405 | 0.3728 | 0.2962 | O2 > O4 > O3 > O1 > O5 |
(5,5,5,5) | 0.3245 | 0.3702 | 0.3252 | 0.3572 | 0.2817 | O2 > O4 > O3 > O1 > O5 |
(6,6,6,6) | 0.3149 | 0.3562 | 0.3153 | 0.3462 | 0.2716 | O2 > O4 > O3 > O1 > O5 |
(7,7,7,7) | 0.3076 | 0.3467 | 0.3084 | 0.3377 | 0.2641 | O2 > O4 > O3 > O1 > O5 |
(8,8,8,8,) | 0.3018 | 0.3398 | 0.3032 | 0.3308 | 0.2582 | O2 > O4 > O3 > O1 > O5 |
(9,9,9,9) | 0.2978 | 0.3347 | 0.3002 | 0.3251 | 0.2531 | O2 > O4 > O3 > O1 > O5 |
(10,10,10,10) | 0.4150 | 0.3307 | 0.4182 | 0.3203 | 0.2505 | O3 > O1 > O2 > O4 > O5 |
Order | |
---|---|
SVNWA | O2 > O4 > O3 > O1 > O5 |
SVNWG | O2 > O4 > O3 > O1 > O5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tang, X.; Wei, G. Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators. Algorithms 2018, 11, 2. https://doi.org/10.3390/a11010002
Wang J, Tang X, Wei G. Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators. Algorithms. 2018; 11(1):2. https://doi.org/10.3390/a11010002
Chicago/Turabian StyleWang, Jie, Xiyue Tang, and Guiwu Wei. 2018. "Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators" Algorithms 11, no. 1: 2. https://doi.org/10.3390/a11010002
APA StyleWang, J., Tang, X., & Wei, G. (2018). Models for Multiple Attribute Decision-Making with Dual Generalized Single-Valued Neutrosophic Bonferroni Mean Operators. Algorithms, 11(1), 2. https://doi.org/10.3390/a11010002