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Abstract: In this article, we expand the dual generalized weighted BM (DGWBM) and dual
generalized weighted geometric Bonferroni mean (DGWGBM) operator with single valued
neutrosophic numbers (SVNNSs) to propose the dual generalized single-valued neutrosophic number
WBM (DGSVNNWBM) operator and dual generalized single-valued neutrosophic numbers WGBM
(DGSVNNWGBM) operator. Then, the multiple attribute decision making (MADM) methods are
proposed with these operators. In the end, we utilize an applicable example for strategic suppliers
selection to prove the proposed methods.
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1. Introduction

Smarandache [1,2] introduced a neutrosophic set (NS) from a philosophical point of view
to express indeterminate and inconsistent information. In an NS A, its truth-membership
function T,4(x), indeterminacy—membership I4(x) and falsity-membership function F(x) are
represented independently, which lie in real standard or nonstandard subsets of | 70,17, that is,
Ta(x): X —=]70,17Ia(x): X = ]70,17[ and Fa(x): X —]70,1"7[. The main advantage of NSs
is to depict inconsistent and indeterminate information. An NS has more potential power than
other fuzzy mathematical modeling tools, such as fuzzy set [3], intuitionistic fuzzy set (IFS) [4] and
interval valued neutrosophic fuzzy set (IVIFS) [5]. However, it is not easy to use NSs in solving
practical problems. Therefore, Smarandache [2] and Wang et al. [6,7] defined the single-valued
neutrosophic set (SVNS) and an interval neutrosophic set (INS). Hence, SVNSs and INSs can express
much more information than fuzzy sets, IFSs and IVIFSs. Ye [8] presented the correlation and
correlation coefficient of single-valued neutrosophic sets (SVNSs) based on the extension of the
correlation of intuitionistic fuzzy sets and demonstrates that the cosine similarity measure is a
special case of the correlation coefficient in SVNS. Broumi and Smarandache [9] investigated the
correlation coefficient with interval neutrosophic numbers(INNs). Biswas et al. [10] proposed a new
approach for multi-attribute group decision-making problems by extending the technique for order
preference by similarity to ideal solution to single-valued neutrosophic environment. Liu et al. [11]
proposed the generalized neutrosophic number Hamacher weighted averaging (GNNHWA) operator,
generalized neutrosophic number Hamacher ordered weighted averaging (GNNHOWA) operator,
and generalized neutrosophic number Hamacher hybrid averaging (GNNHHA) operator, and explored
some properties of these operators and analyzed some special cases of them. Sahin and Liu [12]
proposed the maximizing deviation models for solving the multiple attribute decision-making
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problems with the single-valued neutrosophic information or interval neutrosophic information.
Ye [13] developed the Hamming and Euclidean distances between interval neutrosophic sets (INSs) and
proposed the similarity measures between INSs based on the relationship between similarity measures
and distances. Zhang et al. [14] developed the interval neutrosophic number weighted averaging
(INNWA) operator and interval neutrosophic number weighted geometric INNWG) operator. Ye [15]
proposed a simplified neutrosophic set (SNS) as a more general concept including SVNS and INS.
Many researchers have given them attention to SNSs. For example, Peng et al. [16] defined some
basic operational laws for SNNs and developed simplified neutrosophic information aggregation
operators. Additionally, Peng et al. [17] developed a new outranking approach for multi-criteria
decision-making (MCDM) problems in the context of a simplified neutrosophic environment, where
the truth-membership degree, indeterminacy-membership degree and falsity-membership degree
for each element are singleton subsets in [0, 1], and then Zhang et al. [18] gave an extended
version of Peng’s approach to interval neutrosophic environment. Liu and Liu [19] developed
generalized weighted power operators with SVNNSs. Deli and Subas [20] discussed a method to
rank SVNNSs. Peng et al. [21] introduced the multi-valued neutrosophic sets (MVNSs), which allowed
the truth-membership, indeterminacy—membership and falsity-membership degree have a set of
crisp values between zero and one, respectively, and then defined the operations of multi-valued
neutrosophic numbers (MVNNSs) based on Einstein operations, the multi-valued neutrosophic power
weighted average (MVNPWA) operator and the multi-valued neutrosophic power weighted geometric
(MVNPWG) operator. Zhang et al. [22] presented a new correlation coefficient measure that satisfies
the requirement of this measure equaling one if and only if two interval neutrosophic sets (INSs)
are the same and presented an objective weight of INSs. Chen and Ye [23] proposed the Dombi
operations of single-valued neutrosophic numbers (SVNNs) based on the operations of the Dombi
T-norm and T-conorm and then proposed the single-valued neutrosophic Dombi weighted arithmetic
average (SVNDWAA) operator and the single-valued neutrosophic Dombi weighted geometric average
(SVNDWGA) operator to deal with the aggregation of SVNNs and investigates their properties.
Liu and Wang [24] proposed a single-valued neutrosophic normalized weighted Bonferroni mean
(SVNNWBM) operator on the basis of Bonferroni mean, the weighted Bonferroni mean (WBM), and the
normalized WBM and developed the models solve the multiple attribute decision-making problems
with SVNNs based on the SVNNWBM operator. Wu et al. [25] defined the prioritized weighted
average operator and prioritized weighted geometric operator for simplified neutrosophic numbers
(SNNs) and then proposed two novel effective cross-entropy measures for SNSs and proposed the
ranking methods for SNSs to solve MADM problems based on the proposed prioritized aggregation
operators and cross-entropy measures. Li et al. [26] proposed the improved generalized weighted
Heronian mean (IGWHM) operator and improved generalized weighted geometric Heronian mean
(IGWGHM) operator based on crisp numbers, and prove that they can satisfy some desirable properties,
such as reducibility, idempotency, monotonicity and boundedness and proposed the single valued
neutrosophic number improved generalized weighted Heronian mean (NNIGWHM) operator and
single valued the neutrosophic number improved generalized weighted geometric Heronian mean
(NNIGWGHM) operator for multiple attribute group decision-making (MAGDM) problems in which
attribute values take the form of SVNNSs.

Obviously, these established SVNN aggregation operators cannot be used to fuse the arguments
that are correlated. Meanwhile, the Bonferroni mean (BM) [27-34] is a very practical tool to tackle
the arguments that are correlated. How to effectively extend the mature BM mean to the SVNN
environment is a significant research task.

The structure of this manuscript is given. Section 2 reviews SVNSs and basic definitions. Section 3
introduces the extended DGWBM and DGWGBM, which can be used to fuse the SVNNSs, and describes
some properties of these operators. Section 4 illustrates the functions of the proposed operators with
an example for strategic supplier selection in supply chain management area. Section 5 presents
the conclusions.
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2. Basic Concepts

Smarandache [1,2] proposed Neutrosophic sets (NSs). Wang et al. [6,7] further proposed
the SVNSs.

Definition 1 [6,7]. Let X be a space of points (objects) with a generic element in fix set X, named by x.
An SVNS A in X is depicted as the following:

A= {(x, Ta(x), La(x), Ea(x))|x € X }&, M

where  Ty(x)(0 < Ta(x) <1) is  truth-membership  function,  Io(x)(0<In(x) <1) is
indeterminacy—membership and  Fa(x)(0 < Fa(x) <1) is falsity—membership  function, and
0<L TA(X) + IA(X) + FA(X) <3.

Zhang et al. [14] gave the order between two SVNNs.

Definition 2 [14]. Let Ay = (Ta,, la,, Fa,) and Ay = (Ta,,Ia, Fa,) be two SVNNs,
s(Ay) = w and s(Ap) = M be the scores of Ay and Ay, respectively, and
let H(Ay) = Tp, — Fa, and H(Az) = Ta, — Fa, be the accuracy degrees of Ay and Aj, respectively,
then lf S(Al) < S(Az), Al < Az,’ lf S(A]) = S(Az), then (1) Zf H(A1) = H(Az), Al = Az,‘ (2) lf
H(Al) < H(Az), Al < Ajp.

Definition 3 [6]. Let A = (Tx,,Ia,,Fa,) and Ay = (Ta,, I,, Fa,) be two SVNNs and A be a positive real
number, some operations of SVNNs are defined:

A1 @ Ay = (Ta, +Ta, — Ta, Ty, La,1a,, Fa Fay);

A1 ® Ay = (Ta, Ta,, Ia, + 14, — Ia,1a,, Fa, + Fa, — Fa,Fa,);
AAr = (1= (1=Ta)" (In)", (Fa)"),A > 0;

(A = (Ta)M 1= (1= 1a)" 1= (1= Fa))"), A > 0.

B o=

Zhang et al. [34] develop the dual generalized WBM (DGWBM) operator and dual generalized
WGBM (DGWGBM) operator.

Definition 4 [34]. Let b;(i = 1,2,...,n) be a set of nonnegative crisp numbers with the weight
w= (w1,w2,...,wn)T, w; €01 (i=12,...,n)and Y} yw; =1, if

n n . Ve

DGWBMZ (by, by, ..., by) = ( Py (]‘[ w,»}b,f)) , &)
i1,ip,...,in=1 \j=1

where R = (rq,79, .. .,rn)T is the parameter vector with r; > 0(i = 1,2,...,n).

Several special cases can be obtained given the change of the parameter vector.
IfR = (A,0,0,...,0), then we obtain

" 1/A
DGWBMM0-0) by by, b)) = (Y wibd) ®)
i=1

which is the generalized weighted averaging operator.
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If R = (s,£0,0,...,0), then we obtain

n 1/ (s+t)
DGWBM 00--0) (by, by, ..., by) = (Y wiw;bibt) , @
ij=1
which is the weighted BM.
If R = (s,t,7,0,0,...,0), then we obtain
n 1/ (s+t+k)
DGWBM 00 0) by, by, .. by) = () wywjwybibiby) . (5)
ijk=1

Definition 5 [34]. Let b;(i = 1,2,...,n) be a set of nonnegative crisp numbers with weight being
w= (wl,wz,...,wn)T, w; €01 (i=12,...,n)and Y} w; =1, if

H-:lwi,
1 n ] ]
DGWBGMR(bl,bz,...,bn):n'( 1 (Z(q%))) , ©6)
Lingerin=1

j=17j j=1
where R = (rq, 79, .. .,rn)T is the parameter vector with r; > 0(i =1,2,...,n).

Similar to the DGWBM, we can consider some special cases given the change of the parameter vector.
(1) IfR=(A,0,0,...,0), then we obtain
DGWBGMWM0-0)(py by, ..., by,) =

<ﬁ()\bi)wi> : 7)

(2) IfR=(s10,0,...,0), then we obtain

1 n
,t,0,0,...,0 _ . L\ Wiw;
DGWBGM® )(b1,by, ..., by) = S—Hil;[l (sb; + th;)“i®i. 8)
B) IfR=(st,r70,0,...,0), then we obtain
1 n .
DGWBGMH700-0) (b by, .., by) = by + th; + rby) I,
G G ( 1,92, 7 l’l) S+f+7’i']-.l;£1(s l+ ]+1’ k) (9)

3. DGSVNNWBM Operator and DGSVNNWGBM Operator

This section extends DGWBM and DGWGBM to fuse the SVNNSs, and proposes the dual
generalized SVNN weighted BM (DGSVNNWBM) operator and dual generalized SVNN weighted
GBM (DGSVNNWGBM) operator.

Definition 6. Let a; = (T}, I;, F;) (i = 1,2,...,n) be a set of SVNNs with weight w; = (wy, wy, . .. ,wn)T,
w; € (0,1 and Y w; = 1.
Thereafter, the dual generalized SVNN weighted BM (DGSVNNWBM) operator is defined as

1/2?:1 1’]'
DGSVNNWBMR (a1, a3, - - - , ) = < & (é wi.aff)) , (10)

iigsin=1\j=1 1

where R = (11,7, . .. ,rn)T is the parameter vector withr; > 0 (i =1,2,...,n). We can get Theorem 1.
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Theorem 1. Let a; = (T;,I;,F) (i =
DGSVNNWBM is a SVNN and

DGSVNNWBMR (a1, a5, -+, a,)

n n ri wij /L Tj
(o ()
Wi, /X
—| 1= (1 - il,iz,ﬁin=1 <1 —jlzll (1 -(1-(1- Ii].)ﬁ)w;))) ,
n n N /X
1- (1 - <1 -1 (1 ~(1-(1-8)") >>>
Proof. ; . . ;
al = (171-(1-1;) 1= (1-F)"):
Thus,
u%uZ:: (1—-(1__T$)wg,(1__(1__%)0)“@’(1__(1_1%)U>wv>'
Thereafter,
m-(-7)").
é)lwl]alr/: 1—}1311(1—(1—(1—11)”)%),
n rj\ Wi
1 ]-[11(1 -(1-(1-8)") ’)
Furthermore,
4 ( )
& wia
i1,ip,.. zn 1\j=1
n i
i1,i,.. rln—1< /I;Il 1 —h ]) ] )’
N\ Wi,
- i1,in,.. 1n 1 ]If[l(l LJ)r]) ]>>'
N
ol ,1,,—1 ]If[l (1 EJ)U) J))
Therefore,

1/21 1}’]‘
n
i1,ip,...,in=1\ j= l
( n

n
1— II
i1i2,emin=1

Hence, Label (11) is maintained.

50f15

1,2,...,n) be a set of SVNNs. Hence, the aggregated result of

(11)

(12)

(13)

(14)

(15)

(16)
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Thereafter,
n n £\ W, 1/2;1 1 ]
( illiz,-..in=1< ]'=1( ( ij ) )
n n 7'] 1/21 17
o<1-(1- 1 1H(1(1( o
i1, sin=1 j=1
n n 7'] 1/2] 1 ]
0<1—(1- TII 1_H<1—<1—( Fl
1,0, in=1 j=1 i

In addition,

n n o\ W, 1/Z?=1”j
j
h <1 ! il'i2'1'j[i"1<l _El(l - (1 - Tij) ])>>

1/2?:1 7‘]'

o (1 - i1,iz,ﬁin—l <1 a ]‘li (1 B (1 o (1 - Iij)rj)Wij)>> (18)
: 1 i\ Wi L/ i 1)
o <1 T i (1 - (1 -(1-(1-5)") ]>>> <3,

thereby completing the proof. [

Moreover, DGSVNNWBM has the following properties.

Property 1. (Monotonicity). Let a; = (Ty,, Ip;, Fs,)(i = 1,2,...,n) and b; = (T, I, F,.) (i = 1,2,...,n)
be two sets of SVNNs. If Ty, < Ty, and ln; > Iy, and Fy, > Fy, holds for all i, then
) < DGSVNNWBMR (b1, by, - - - , by). (19)

DGSVNNWBMR (a1,a5, - - ,ay,

) = (Ty, Io, F;), DGSVNNWBMR (b1, by, - - -, b,) = (Tp, I, ).

Proof. Let DGSVNNWBMR (ay, a5, - - - ,a,) =
Given that T;, < Tj,, we can obtain

A-T)" = -1 (20)
Therefore, _ _—
1—(1—T,11.]_) ]Sl_(l_Thi,) I (21)
j
Thus,
* n ri\ Wi; n i\ Vi
1— (1—(1—Tai) f)z1— 1—(1-1 : (22)
il ’j - - bij
j=1 j=1
Thereafter,
n n .\ W, n n v\ Wi
e () R B 1 (R U A
11,09, in=1 j=1 11,09, in=1 j=1
Then,
n n S\ Wi Ve
1— ] 17H(17(17T2,) ’f')
i1, in=1 =1 ] (24)

eip=1

w;. 1/¥0 7
n n ¥ ’]
<(1- 11 1—H<1—(1—Tbi> )
i1,ip,...0 j=1 '
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which means T, < Tj,. Similarly, we can obtain I, > I and F;, > F;.
IftT, < Tyand I, > Iyand F, > F,, then
DGSVNNWBMR (a1, 45, -+ ,a,) < DGSVNNWBME (by, by, - - -, by);
It T, =Tyand I, > Iyand F, > F,, then
DGSVNNWBMR (a1, a5, - - - ,a,) < DGSVNNWBME (by,by,-- -, by);
T, =Tyand I, = Iyand F; = F,, then
DGSVNNWBMR (a1, a5, - - - ,a,) = DGSVNNWBMR (b1, b5, - -, by).
Therefore, the proof of property 1 is completed. [

Property 2 (Boundedness). Let a; = (Ty,In, F)(i = 1,2,...,n) be a set of SVNNS.
If a®™ = (max;(T;), min;(I;), min;(F;)) and a— = (min;(T;), max;([;), max;(F;)), then

DGSVNNWBMfU(al‘, ay, - ,ay)
< DGSVNNWBMR (a1,a, -+ ,a,) . (25)
< DGSVNNWBME (a]",af,- - ,a)})

Proof. From Theorem 1, we can obtain

DGSVNNWBMR (a=,a=,...,a7)

1/
(1= 0 (1= fr( (mnr) ™))

i1, in=1

n
= 1-(1- 711 |[1-
it iz ein=1 i

/X (26)

1(1(1<1minlij)rj)wij>>> )

=

=

n
1-(1—- 11 [(1-
i1z eryin=1 i

(1 omr) ) )))

DGSVNNWBMR (4,4, ... ,a)

n n i\ @i Ve
1— I 1fn 1—(1=T7) 7 ,
(- (- A < "))
/Y0
n n i\ Wi, (27)
(e o )
1,40, in=1 ]:1
1/2?:1 T]'
n ri\ Wi.
1—[1- 1— H —(1-F)’ f) .
< 11 12 ..... i,/, ( ]:] ( l/) )
DGSVNNWBMR (at,at,...,a")
n n o\ Wi VEr
(1— 11 <1—H(1—(1—maxTij]) ,))) ,
i1,ipyerin=1 =1
L/ i 7
n n i\ Wi 28
-l 1-(1- 11 1—H<1—(1—<1—maxli.)r]> f) , (28)
i1 inyin=1 j=1 /
1/2?:1 7‘j
n n i\ Wi
1-(1- T1I 1—H<1—(1—<1—maxpi,)”) f) :
i1, erin=1 =1 /
From Property 1, we can obtain
DGSVNNWBMR (a=,a~,...,a7)
< DGSVNNWBMR (a1, a5, . . ., ay) (29)

< DGSVNNWBMR (a*,a*,...,a").
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Evidently, the DGSVNNWBM operator lacks the property of idempotency.
Furthermore, we extend DGWBGM to SVNNS and propose the dual generalized SVNN weighted

GBM (DGSVNNWGBM) operator. U
) be a set of SVNNs with their weight vector being

Definition 7. Let a; = (T;,I;,F) (i = 1,2,
i [0,1] and Y} ;w; = 1.If

T thereby satisfying w; €
IT7qwi,
1 n n j=17j
b (8em) ) e

DGSVNNWGBMR (ay,a, - - - a,) = =
Z]':1 T\ ivjig,ein=1

w; = (ZUl,ZUZ,. . '/wn)

)T is the parameter vector withr; > 0(i = 1,2,...,n). Then, DGSVNNWGBM%}, is

where R = (r1,72,...,n
called DGSVNNWGBM.

We can derive Theorem 2.
) be a set of SVNNs. The aggregated value by DGSVNNWGBM

Theorem 2. Leta; = (T;, I;, F)(i = 1,2,.

is also a SVNN and
DGSVNNWGBMR (a1, a5, - - - ay)
1
n 7 H] 1% Li17j
1—[1- 11 ( - T; )
i,1p,.. 1,,—1 j=1
o n n 7 1% (31)
- 1- H H ’
il,iz,...in:1 ]:
1
n n ] 1w1 17j
1= I (1-TTF
i1,ip,enin=1 j=1
Proof. .
i
ria;, = (1 _ (1 - Ti]) ,Ii]_’,Fl.j]), (32)
n
& (rjay) = (1—H(1 ) HI ]‘[Ff) (33)
j=1
Thereafter,
n . [T ]
1- H (1 - Tl]) / s
j=1

" H}Llwij 0. ]”:1 wi,
.- — ]
E (r]az,.) = 1—(1- ]1:11 I; , (34)
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Therefore,
n n r H]flwz]
II [(1-11 (1 — T ) ’
11,020y j=1 ]
” ” H]'_tzlwi], ) - [T} wi
& | & (ra) 1- 11 ((1-117 : ()
it ]:1 j 11,i2,../in ]:1 ]
n no_r Hj:lwl]
1- I | (1-IIF/
ll,iz ,i11 j:l !
Thus,
) . H?:lwij
%}h R D (leli.>
=11\ iyip,.in=1\ j=1 !
n %
n n 7 i AR
1— 11— TI —1I1 (1 ij ) '
it g i =1 =1 ]
(36)

" H] 1 wl 1r]-
= 1 _ I—[ ,
i,ip,...ip=1

1
n [T i, =17
1— TJ 1—HFf :

11,12,...in:1

Hence, Label (31) is maintained.
Thereafter,

1
n n ri M= Wiy Ely'l:l "j
0<1-[1- T1I l—H(l—Ti,) <1,
i1,in,ein=1 j=1 !
o< |1- TJ

1
" 1_[] 1wZ ’!:1 z
1— n If <1, (37)
i1,4p,...ip=1 j=1

n e\ \ T
o< {1- TII 1—an <1.

i1, ip=1

Therefore,

1
n n rj Hj:lwif ):7:1"7
0<1-{1- TI 1—H<1—Tij>

i1, ip=1 j=1
1
n L H]Ll wij ):}1:1 j 18
+1- II 1- 11 (38)
i1,ip,in=1 j=1 "
1
n no 4. H;l:l wi]' Z?:lrf
1= 11 1—1F <3,
i1,ig,...in=1 j=1 "7

thereby completing the proof. [

Similar to DGSVNNWBM, DGSVNNWGBM has the same properties. The proofs are omitted to
save space.
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Property 3. Let a; = (T;, I;,F;) (i =1,2,...,n) be a set of SVNNE.
(1) (Monotonicity). Let a; = (Ty;, lo;, Fa,) (i = 1,2,...,n) and b; = (Ty, I, Fp,) (i = 1,2,...,n) be
two sets of SVNNs. If T,, < T, and I, > I, and Fy, > E, holds for all i, then
DGSVNNWGBMR (a1, a5, - ,a,) < DGSVNNWGBMR (by, by, - - - , by,). (39)
(2)  (Boundedness). Let a; = (T;, I;, F;)(i = 1,2,...,n) be a set of SVNNS. If
at = (max;(T;), min;(I;), min;(F;)),
a~ = (min;(T;), max;(;), max;(F;)).
Then,
a~ < DGSVNNWGBMX (a1, a5, - - ,a,) < a*. (40)

4. Numerical Example and Comparative Analysis

4.1. Applicable Example

In this section, we shall present a numerical example to select strategic suppliers under supply
chain risk with SVNNSs in order to illustrate the method proposed in this paper. There is a panel
with five possible strategic suppliers O;(i = 1,2,3,4,5) to select. The experts select four attributes to
evaluate the five possible strategic suppliers: @) C; is the technology level; @) C; is the service level;
® Cj is the risk managing ability; and (® C4 is the enterprise environment risk. The five possible
strategic suppliers O;(i = 1,2,3,4,5) are to be evaluated using the SVNNs by the decision-maker
under the four above attributes (whose weighting vector w = (0.10,0.40, 0.35, 0.15)T), as listed in the
following matrix:

(0.6,0.9,0.2) (0.7,0.4,0.4) (0.4,0.7,02) (0.6,0.8,0.3)
(0.8,0.5,0.2) (0.8,0.6,0.3) (0.8,0.5,0.5) (0.9,0.6,0.2)
R=1 (07,08,03) (0.6,0.8,04) (0.6,0.4,02) (0.7,04,0.3)
(0.9,0.2,0.4) (0.7,0.4,05) (0.5,0.5,0.3) (0.6,0.7,0.3)
(0.7,0.6,0.5) (0.5,0.9,0.2) (0.8,0.7,0.3) (0.6,0.9,0.4)

Then, we utilize the proposed operators to select the best strategic suppliers under supply
chain risk.

Step 1. According to w and SVNNs O,']»(i =1,2,3,4,5,j =1,2,3,4), we can aggregate all SVNNs
Oj by using the DGSVNNWBM (DGSVNNWGBM) operator to derive the SVNNs O;(i = 1,2,3,4,5)
of the alternative O;. The aggregating results are in Table 1.

Table 1. The aggregating results of strategic suppliers by the DGSVNNWBM and DGSVNNWGBM
(R =(1,1,1,1).).

DGSVNNWBM DGSVNNWGBM
0, (0.5720, 0.6135, 0.2929) (0.5692, 0.6209, 0.2951)
0, (0.8157, 0.5549, 0.3423) (0.8150, 0.5552, 0.3454)
05 (0.6253, 0.5980, 0.3033) (0.6249, 0.6066, 0.3051)
O4 (0.6377, 0.4583, 0.3888) (0.6345, 0.4610, 0.3903)
Os (0.6431, 0.7999, 0.2927) (0.6395, 0.8064, 0.2951)

Step 2. According to Table 1, the scores of the strategic suppliers are shown in Table 2.
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Table 2. The scores of the strategic suppliers.

DGSVNNWBM DGSVNNWGBM
O 0.5552 0.5511
Oy 0.6395 0.6381
O3 0.5747 0.5711
Oy 0.5969 0.5944
Os 0.5168 0.5127

Step 3. According to the Table 2 and the scores, the order of the strategic suppliers is listed in
Table 3, and the best strategic suppliers is O,.

Table 3. Order of the strategic suppliers.

Order
DGSVNNWBM 0,>04>03>0;>05
DGSVNNWGBM 0,>04>01>03>05

4.2. Influence Analysis

To show the effects on the ranking results by altering the parameters of DGSVNNWBM
(DGSVNNWGBM) operators, the corresponding results are shown in Tables 4 and 5.

Table 4. Order for different parameters of DGSVNNWBM.

R S(Ol) 5(02) 5(03) 5(04) 5(05) Order

1,1,1,1) 0.5552 0.6395 0.5747 0.5969 05168 Oy >04>03>0; >05
2,2,2,2) 0.7701 0.8604 0.7861 0.8158 07326  0y>04>03>0; >05
(3,3,3,3) 0.8281 0.9127 0.8395 0.8660 08096  Ay>Ay>Az>Ap>As
(4,4,4,4) 0.8508 0.9290 0.8583 0.8831 08455  Oy>04>03>0; >O05
(5,5,5,5) 0.8621 0.9351 0.8669 0.8915 08656 Oy >04>053>05>0;
(6,6,6,6) 0.8689 0.9378 0.8715 0.8971 08785  0;>04>05>03>0;
7,7,7,7) 0.8734 0.9392 0.8743 0.9015 08873  0;>04>05>05;>0
(8,333, 0.8767 0.9400 0.8763 0.9055 08938 Oy >04>05>0; >0;5
(9,9,9,9) 0.8792 0.9406 0.8778 0.9091 08987 Oy >04>05>0; >0;5
(10,10,10,10)  0.8811 0.9411 0.8789 0.9124 09026  Oy>04>05>0; >0;5

Table 5. Order for different parameters of DGSVNNWGBM.

R S(04) 5(0,) S(03) S(0y) S(0s) Order

1,1,1,1) 0.5511 0.6381 0.5711 0.5944 05127  O;>04>03>0; >05
2,2,2,2) 0.4108 0.4996 0.4227 0.4517 03726 Oy >04>03>0; >05
(3,3,3,3) 0.3619 0.4291 0.3670 0.3985 03208 Oy >04>03>0; >05
(4,4,4,4) 0.3385 0.3920 0.3405 0.3728 02962  0y>04>03>0;>05
(5,5,5,5) 0.3245 0.3702 0.3252 0.3572 02817  Oy>04>03>0; >05
(6,6,6,6) 0.3149 0.3562 0.3153 0.3462 02716  Oy>04>03>0; >O05
7,7,7,7) 0.3076 0.3467 0.3084 0.3377 02641  Oy>04>03>0; >05
(8,8,8,38,) 0.3018 0.3398 0.3032 0.3308 02582  Oy>04>03>0; >05
(9,9,9,9) 0.2978 0.3347 0.3002 0.3251 02531  0;>04>03>0; >0s
(10,10,10,10)  0.4150 0.3307 0.4182 0.3203 02505 O3>0 >0, >04>05

4.3. Comparative Analysis

Then, we compare our proposed operators with single valued neutrosophic weighted averaging
(SVNWA) operator and single valued neutrosophic weighted geometric (SVNWG) operator [35].
The comparative results are depicted in Table 6.
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Table 6. Order of the strategic suppliers.

Order
SVNWA Oz > 04 > O3 > 01 > O5
SVNWG 0,>04>03>01>05

From above, we can we get the same results to show the effectiveness and practicality of the
proposed operators. However, the existing aggregation operators, such as SVNWA operator and
SVNWG operators, don’t take into account the relationship between aggregated arguments, and thus
cannot eliminate the influence of unfair arguments on decision results. Our proposed DGSVNNWBM
and DGSVNNWGBM operators consider the information about the relationship among multiple
arguments being aggregated.

5. Conclusions

In this paper, we focused on SVNN information aggregation operators, as well as their application
in MADM. To aggregate the SVNNs, the DGSVNNWBM and DGSVNNWGBM operators have
been developed. We have conducted further research into these two operator’s several desirable
properties. In addition, we demonstrated the effectiveness of the DGSVNNWBM and DGSVNNWGBM
operators in practical MADM problems. At the end of this study, we use an applicable example
for supplier selection in the supply chain management process to show applicability of these
two operators; meanwhile, the analysis of the comparison as the parameters take different values have
also been studied. In our future studies, we shall expand the proposed models to other uncertain
environments [36-57] and fuzzy MADM problems [58-80].
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