SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate
Abstract
:1. Introduction
2. Method
2.1. Material, Electrolyte and Setup
2.2. Set Ups for SEM and EDS
2.3. XPS Studies
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simka, W.; Sadowski, A.; Warczak, M.; Iwaniak, A.; Dercz, G.; Michalska, J.; Maciej, A. Modification of titanium oxide layer by calcium and phosphorus. Electrochim. Acta 2011, 56, 8962–8968. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokosz, K.; Valiček, J.; Rokicki, R. Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Mater. Lett. 2012, 83, 69–72. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokosz, K.; Zschommler Sandim, H.R. SEM/EDX and XPS studies of niobium after electropolishing. Appl. Surf. Sci. 2012, 263, 357–361. [Google Scholar] [CrossRef]
- Simka, W.; Sowa, M.; Socha, R.P.; Maciej, A.; Michalska, J. Anodic oxidation of zirconium in silicate solutions. Electrochim. Acta 2013, 104, 518–525. [Google Scholar] [CrossRef]
- Sowa, M.; Kazek-Kęsik, A.; Socha, R.P.; Dercz, G.; Michalska, J.; Simka, W. Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochim. Acta 2013, 114, 627–636. [Google Scholar] [CrossRef]
- Simka, W.; Nawrat, G.; Chlode, J.; Maciej, A.; Winiarski, A.; Szade, J.; Radwanski, K.; Gazdowicz, J. Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysl Chem. 2011, 90, 84–90. [Google Scholar]
- Hryniewicz, T.; Rokosz, K.; Rokicki, R.; Prima, F. Nanoindentation and XPS Studies of Titanium TNZ Alloy after electrochemical polishing in a magnetic field. Materials 2015, 8, 205–215. [Google Scholar] [CrossRef]
- Yu, S.; Yu, Z.; Wang, G.; Han, J.; Ma, X.; Dargusch, M.S. Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy. Trans. Nonferr. Met. Soc. China 2011, 21, 573–580. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokosz, K. Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surf. Coat. Technol. 2010, 204, 2583–2592. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokicki, R.; Rokosz, K. Magnetoelectropolishing for metal surface modification. Trans. Inst. Met. Finish. 2007, 85, 325–332. [Google Scholar] [CrossRef]
- Rokosz, K.; Hryniewicz, T.; Raaen, S. Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by gaussian-lorentzian shape lines. Teh. Vjesn. Tech. Gaz. 2014, 21, 533–538. [Google Scholar]
- Rokosz, K.; Simon, F.; Hryniewicz, T.; Rzadkiewicz, S. Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surf. Interface Anal. 2015, 47, 87–92. [Google Scholar] [CrossRef]
- Rokosz, K.; Hryniewicz, T.; Rokicki, R. XPS measurements of AISI 316LVM SS biomaterial tubes after magnetoelectropolishing. Teh. Vjesn. Tech. Gaz. 2014, 21, 799–805. [Google Scholar]
- Hryniewicz, T.; Rokosz, K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corros. Methods Mater. 2014, 61, 57–64. [Google Scholar] [CrossRef]
- Hryniewicz, T.; Rokosz, K. Highlights of magnetoelectropolishing. Front. Mater. 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Rokosz, K.; Hryniewicz, T.; Rzadkiewicz, S.; Raaen, S. High-current density electropolishing (HDEP) of AISI 316L (EN 1.4404) stainless steel. Teh. Vjesn. Tech. Gaz. 2015, 22, 415–424. [Google Scholar] [CrossRef]
- Jelinek, M.; Kocourek, T.; Remsa, J.; Weiserovác, M.; Jurek, K.; Mikšovský, J.; Strnad, J.; Galandáková, A.; Ulrichová, J. Antibacterial, cytotoxicity and physical properties of laser—Silver doped hydroxyapatite layers. Mater. Sci. Eng. C 2013, 33, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Dash, B.; Pandey, S.; Mohanty, P.P. Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel. J. Environ. Chem. Eng. 2013, 1, 1124–1130. [Google Scholar] [CrossRef]
- Rajendrana, A.; Pattanayak, D.K. Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications. RSC Adv. 2014, 106, 61444–61455. [Google Scholar] [CrossRef]
- Trujillo, N.A.; Oldinski, R.A.; Mad, H.; Bryers, J.D.; Williams, J.D.; Popat, K.C. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater. Sci. Eng. C 2012, 32, 2135–2144. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Ma, Y.; Lin, N.; Fan, A.; Tang, B. Bactericidal behavior of Cu-containing stainless steel surfaces. Appl. Surf. Sci. 2012, 258, 10058–10063. [Google Scholar] [CrossRef]
- Truong, V.K.; Lapovok, R.; Estrin, Y.S.; Rundell, S.; Wang, Y.Y.; Fluke, C.J.; Crawford, R.J.; Ivanova, E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 2010, 31, 3674–3683. [Google Scholar] [CrossRef] [PubMed]
- Hempel, F.; Finke, B.; Zietz, C.; Bader, R.; Weltmann, K.D.; Polak, M. Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol. 2014, 256, 52–58. [Google Scholar] [CrossRef]
- Park, T.-E.; Choe, H.-C.; Brantley, W.A. Bioactivity evaluation of porous TiO2 surface formed on titanium in mixed electrolyte by spark anodization. Surf. Coat. Technol. 2013, 235, 706–713. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Petković, M.; Kasalica, B.; Belča, I.; Žekić, A.; Zeković, L. Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Appl. Surf. Sci. 2013, 265, 226–233. [Google Scholar] [CrossRef]
- Krupa, D.; Baszkiewicz, J.; Zdunek, J.; Smolik, J.; Słomka, Z.; Sobczak, J.W. Characterization of the surface layers formed on titanium by plasma electrolytic oxidation. Surf. Coat. Technol. 2010, 205, 1743–1749. [Google Scholar] [CrossRef]
- Baszkiewicz, J.; Krupa, D.; Mizera, J.; Sobczak, J.W.; Biliński, A. Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum 2005, 78, 143–147. [Google Scholar] [CrossRef]
- Shin, K.R.; Kob, Y.G.; Shin, D.H. Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. J. Alloy. Compd. 2011, 509, S478–S481. [Google Scholar] [CrossRef]
- Laurindo, C.A.H.; Torres, R.D.; Mali, S.A.; Gilbert, J.L.; Soares, P. Incorporation of Ca and P on anodized titanium surface: Effect of high current density. Mater. Sci. Eng. C 2014, 37, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.R.; Ko, Y.G.; Shin, D.H. Influence of zirconia on biomimetic apatite formation in pure titanium coated via plasma electrolytic oxidation. Mater. Lett. 2010, 64, 2714–2717. [Google Scholar] [CrossRef]
- Aliasghari, S.; Skeldon, P.; Thompson, G.E. Plasma electrolytic oxidation of titanium in a phosphate/silicateelectrolyte and tribological performance of the coatings. Appl. Surf. Sci. 2014, 316, 463–476. [Google Scholar] [CrossRef]
- Stojadinović, S.; Vasilić, R.; Petković, M.; Zeković, L. Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surf. Coat. Technol. 2011, 206, 575–581. [Google Scholar] [CrossRef]
- Zhang, W.; Du, K.; Yan, C.; Wang, F. Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation. Appl. Surf. Sci. 2008, 254, 5216–5223. [Google Scholar] [CrossRef]
- Rudnev, V.S.; Lukiyanchuk, I.V.; Adigamova, M.V.; Morozova, V.P.; Tkachenko, I.A. The effect of nanocrystallites in the pores of PEO coatings on their magnetic properties. Surf. Coat. Technol. 2015, 269, 23–29. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, X.; Wu, H.; Tian, L.; Ma, Y.; Tang, B. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl. Surf. Sci. 2014, 292, 944–947. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Z.; Gu, B.; Sun, J.; Zhu, L. Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation. J. Mater. Sci. Technol. 2013, 29, 237–244. [Google Scholar] [CrossRef]
- Teker, D.; Muhaffel, F.; Menekse, M.; Karaguler, N.G.; Baydogan, M.; Cimenoglu, H. Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Mater. Sci. Eng. C 2015, 48, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Rokosz, K.; Hryniewicz, T. Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus, and copper on biomaterials. World Sci. News 2016, 35, 44–61. [Google Scholar]
- STATISTICA (Data Analysis Software System), Version 10; StatSoft, Inc., 2011. Available online: http://www.statsoft.com (accessed on 8 January 2016).
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R., Jr. NIST X-ray Photoelectron Spectroscopy Database. Available online: http://srdata.nist.gov/xps (accessed on 8 January 2016).
Descriptive Statistics of Copper | 10 g/L Cu(NO3)2 | 300 g/L Cu(NO3)2 | 600 g/L Cu(NO3)2 | |||
---|---|---|---|---|---|---|
wt % | at % | wt % | at % | wt % | at % | |
Mean | 1.7 | 1.2 | 2.4 | 1.6 | 12.2 | 7.6 |
Sta. Deviation | 0.4 | 0.3 | 0.2 | 0.1 | 0.7 | 0.5 |
Median | 1.6 | 1.2 | 2.4 | 1.6 | 12.1 | 7.5 |
Maximum | 2.2 | 1.6 | 2.7 | 1.8 | 13.1 | 8.2 |
Minimum | 1 | 0.7 | 2.2 | 1.4 | 10.6 | 6.6 |
Descriptive Statistics of Phosphorus | 10 g/L Cu(NO3)2 | 300 g/L Cu(NO3)2 | 600 g/L Cu(NO3)2 | |||
---|---|---|---|---|---|---|
wt % | at % | wt % | at % | wt % | at % | |
Mean | 8.9 | 13.2 | 67.3 | 40.3 | 42.9 | 54.9 |
Sta. Deviation | 0.6 | 0.9 | 1.4 | 1.5 | 1.4 | 1.1 |
Median | 9.1 | 13.5 | 67.8 | 39.9 | 42.8 | 55.1 |
Maximum | 10.1 | 14.8 | 69.1 | 43.8 | 46.7 | 57.1 |
Minimum | 7.8 | 11.6 | 64.2 | 38.6 | 41.2 | 53.3 |
Descriptive Statistics of Titanium | 10 g/L Cu(NO3)2 | 300 g/L Cu(NO3)2 | 600 g/L Cu(NO3)2 | |||
---|---|---|---|---|---|---|
wt % | at % | wt % | at % | wt % | at % | |
Mean | 89.4 | 85.6 | 67.3 | 58.1 | 45.2 | 37.5 |
Sta. Deviation | 0.9 | 1.1 | 1.4 | 1.6 | 1.5 | 1.4 |
Median | 89.4 | 85.7 | 67.8 | 58.6 | 45.1 | 37.4 |
Maximum | 91.0 | 87.4 | 69.1 | 60.0 | 47.6 | 39.7 |
Minimum | 87.9 | 83.7 | 64.2 | 54.6 | 43.3 | 35.4 |
Chemical Element | 10 g Cu(NO3)2 in 1 L H3PO4 | 300 g Cu(NO3)2 in 1 L H3PO4 | 600 g Cu(NO3)2 in 1 L H3PO4 |
---|---|---|---|
Titanium | 7.0 | 5.0 | 4.9 |
Phosphorus | 25.8 (16.8 at % in PO43−) | 24.9 (17.5 at % in PO43−) | 25.5 (17.3 at % in PO43−) |
Copper | 0.2 | 0.3 | 0.4 |
Oxygen | 67.0 | 69.8 | 69.2 |
300 g/L Cu(NO3)2 | BE, eV | 931.3 | 932.9 | 934.1 | 935.1 | 936.1 | 937.2 | 938.1 |
FWHM | 0.6 | 1.3 | 1.1 | 1.1 | 1.0 | 1.2 | 0.5 | |
at % | 3.6 | 26.6 | 25.0 | 18.7 | 15.3 | 8.9 | 1.9 | |
600 g/L Cu(NO3)2 | BE, eV | 931.3 | 932.4 | 933.6 | 934.8 | 936.1 | 937.2 | 938.1 |
FWHM | 1.0 | 1.1 | 1.4 | 1.3 | 1.3 | 0.6 | 1.0 | |
at % | 6.3 | 13.4 | 25.5 | 34.0 | 13.5 | 3.3 | 4.0 |
Ratio (by at %) | 10 g Cu(NO3)2 in 1 L H3PO4 | 300 g Cu(NO3)2 in 1 L H3PO4 | 600 g Cu(NO3)2 in 1 L H3PO4 |
---|---|---|---|
Cu/P | 0.8 | 1.2 | 1.6 |
Cu/Ti | 2.8 | 6.0 | 8.3 |
P/Ti | 3.6 | 5.0 | 5.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rokosz, K.; Hryniewicz, T.; Matýsek, D.; Raaen, S.; Valíček, J.; Dudek, Ł.; Harničárová, M. SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials 2016, 9, 318. https://doi.org/10.3390/ma9050318
Rokosz K, Hryniewicz T, Matýsek D, Raaen S, Valíček J, Dudek Ł, Harničárová M. SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials. 2016; 9(5):318. https://doi.org/10.3390/ma9050318
Chicago/Turabian StyleRokosz, Krzysztof, Tadeusz Hryniewicz, Dalibor Matýsek, Steinar Raaen, Jan Valíček, Łukasz Dudek, and Marta Harničárová. 2016. "SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate" Materials 9, no. 5: 318. https://doi.org/10.3390/ma9050318
APA StyleRokosz, K., Hryniewicz, T., Matýsek, D., Raaen, S., Valíček, J., Dudek, Ł., & Harničárová, M. (2016). SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials, 9(5), 318. https://doi.org/10.3390/ma9050318