Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hoffman, J.; Pan, X.; Reiner, J.W.; Walker, F.; Han, J.P.; Ahn, C.H.; Ma, T.P. Ferroelectric field effect transistors for memory applications. Adv. Mater. 2010, 22, 2957–2961. [Google Scholar] [PubMed]
- Wang, M.; He, W.; Ma, T.P. Electron tunneling spectroscopy study of traps in high-k gate dielectrics: Determination of physical locations and energy levels of traps. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Zhu, W.J.; Han, J.-P.; Ma, T.P. Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics. IEEE Trans. Electron Devices 2004, 51, 98–105. [Google Scholar] [CrossRef]
- Zhu, W.J.; Ma, T.P.; Tamagawa, T.; Kim, J.; Di, Y. Current transport in metal/hafnium oxide/silicon structure. IEEE Electron Device Lett. 2002, 23, 97–99. [Google Scholar] [CrossRef]
- Zhao, Y. Design of higher-k and more stable rare earth oxides as gate dielectrics for advanced CMOS devices. Materials 2012, 5, 1413–1438. [Google Scholar] [CrossRef]
- Tao, J.; Zhao, C.Z.; Zhao, C.; Taechakumput, P.; Werner, M.; Taylor, S.; Chalker, P.R. Extrinsic and intrinsic frequency dispersion of high-k materials in capacitance-voltage measurements. Materials 2012, 5, 1005–1032. [Google Scholar] [CrossRef]
- Reynolds, G.J.; Kratzer, M.; Dubs, M.; Felzer, H.; Mamazza, R. Electrical properties of thin-film capacitors fabricated using high temperature sputtered modified barium titanate. Materials 2012, 5, 644–660. [Google Scholar] [CrossRef]
- Suzuki, M. Comprehensive study of lanthanum aluminate high-dielectric-constant gate oxides for advanced CMOS devices. Materials 2012, 5, 443–477. [Google Scholar] [CrossRef]
- Reynolds, G.J.; Kratzer, M.; Dubs, M.; Felzer, H.; Mamazza, R. Sputtered modified barium titanate for thin-film capacitor applications. Materials 2012, 5, 575–589. [Google Scholar] [CrossRef]
- Miyata, N. Study of direct-contact HfO2/Si interfaces. Materials 2012, 5, 512–527. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M. Thermal conductivity of diamond composites. Materials 2009, 2, 2467–2495. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.Z.; Werner, M.; Taylor, S.; Chalker, P.R. Dielectric relaxation of high-k oxides. Nanoscale Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.Z.; Werner, M.; Taylor, S.; Chalker, P.R.; King, P. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer. Nanoscale Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.Z.; Tao, J.; Werner, M.; Taylor, S.; Chalker, P.R. Dielectric relaxation of lanthanide-based ternary oxides: Physical and mathematical models. J. Nanomater. 2012, 2012. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.Z.; Werner, M.; Taylor, S.; Chalker, P.R. Advanced CMOS gate stack: Present research progress. ISRN Nanotechnol. 2012, 2012. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Werner, M.; Taylor, S.; Chalker, P.R.; Jones, A.C.; Zhao, C. Dielectric relaxation of la-doped zirconia caused by annealing ambient. Nanoscale Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Taechakumput, P.; Zhao, C.Z.; Taylor, S.; Werner, M.; Chalker, P.R.; Gaskell, J.M.; Aspinall, H.C.; Jones, A.C.; Chen, S.S. Thermal stability of neodymium aluminates high-k dielectric deposited by liquid injection MOCVD using single-source heterometallic alkoxide precursors. J. Nanomater. 2012, 2012. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Taylor, S.; Werner, M.; Chalker, P.R.; Murray, R.T.; Gaskell, J.M.; Jones, A.C. Dielectric relaxation of lanthanum doped zirconium oxide. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Taylor, S.; Werner, M.; Chalker, P.R.; Gaskell, J.M.; Jones, A.C. Frequency dispersion and dielectric relaxation of La2Hf2O7. J. Vac. Sci. Technol. B 2009, 27, 333–337. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Taylor, S.; Werner, M.; Chalker, P.R.; Potter, R.J.; Gaskell, J.M.; Jones, A.C. High-k materials and their response to gamma ray radiation. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2009, 27, 411–415. [Google Scholar] [CrossRef]
- Werner, M.; King, P.J.; Hindley, S.; Romani, S.; Mather, S.; Chalker, P.R.; Williams, P.A.; van den Berg, J.A. Atomic layer deposition of Ti-HfO2 dielectrics. J. Vac. Sci. Technol. A 2013, 31. [Google Scholar] [CrossRef]
- Mather, S.; Sedghi, N.; Althobaiti, M.; Mitrovic, I.Z.; Dhanak, V.; Chalker, P.R.; Hall, S. Low EOT GeO2/Al2O3/HfO2 on Ge substrate using ultrathin Al deposition. Microelectron. Eng. 2013, 109, 126–128. [Google Scholar] [CrossRef]
- King, P.J.; Werner, M.; Chalker, P.R.; Jones, A.C.; Aspinall, H.C.; Basca, J.; Wrench, J.S.; Black, K.; Davies, H.O.; Heys, P.N. Effect of deposition temperature on the properties of CeO2 films grown by atomic layer deposition. Thin Solid Films 2011, 519, 4192–4195. [Google Scholar] [CrossRef]
- Chalker, P.R.; Marshall, P.A.; King, P.J.; Dawson, K.; Romani, R.; Williams, P.A.; Ridealgh, J.; Rosseinsky, M.J. Atomic layer deposition of germanium-doped zinc oxide films with tuneable ultraviolet emission. J. Mater. Chem. 2012, 22, 12824–12829. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.L.; Grygiel, C.; McMitchell, S.R.C.; Suchomel, M.R.; Bacsa, J.; Clark, J.H.; Niu, H.J.; Romani, S.; Palgrave, R.G.; et al. SrHf(0.67)Ti(0.33)O(3) high-k films deposited on Si by pulsed laser deposition. Appl. Phys. A Mater. Sci. Process. 2011, 104, 447–451. [Google Scholar] [CrossRef]
- Moram, M.A.; Zhang, Y.; Joyce, T.B.; Holec, D.; Chalker, P.R.; Mayrhofer, P.H.; Kappers, M.J.; Humphreys, C.J. Structural properties of wurtzitelike ScGaN films grown by NH3-molecular beam epitaxy. J. Appl. Phys. 2009, 106, 113533:1–113533:6. [Google Scholar]
- Aspinall, H.C.; Bacsa, J.; Jones, A.C.; Wrench, J.S.; Black, K.; Chalker, P.R.; King, P.J.; Marshall, P.; Werner, M.; Davies, H.O.; Odedra, R. Ce(IV) complexes with donor-functionalized alkoxide ligands: Improved precursors for chemical vapor deposition of CeO2. Inorg. Chem. 2011, 50, 11644–11652. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.S.; Ulla, M.A.; Querini, C.A. Catalytic oxidation of diesel soot: New characterization and kinetic evidence related to the reaction mechanism on K/CeO2 catalyst. Appl. Catal. A 2009, 360, 81–88. [Google Scholar] [CrossRef]
- Pan, T.M.; Liao, C.S.; Hsu, H.H.; Chen, C.L.; Lee, J.D.; Wang, K.T.; Wang, J.C. Excellent frequency dispersion of thin gadolinium oxide high-k gate dielectrics. Appl. Phys. Lett. 2005, 87, 262908:1–262908:3. [Google Scholar] [CrossRef]
- Liu, C.H.; Pan, T.M.; Shu, W.H.; Huang, K.C. Physical and electrical properties of Ti-doped Er2O3 films for high-k gate dielectrics. Electrochem. Solid-State Lett. 2007, 10, 54–57. [Google Scholar] [CrossRef]
- Anthony, J.; Aspinall, H.C.; Chalker, P.R.; Potter, R.J.; Manning, T.D.; Loo, Y.F.; O’Kane, R.; Gaskell, J.M.; Smith, L.M. MOCVD and ALD of high-k dielectric oxides using Alkoxide precursors. Chem. Vapor Depos. 2006, 12, 83–98. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Thomas, S.; Bradley, D.D.; McLachlan, M.A.; Anthopoulos, T.D. Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air. Appl. Phys. Lett. 2011, 98, 123503:1–123503:3. [Google Scholar] [CrossRef]
- Lu, X.B.; Liu, Z.G.; Zhang, X.; Huang, R.; Zhou, H.W.; Wang, X.P.; Nguyen, B.Y. Investigation of high-quality ultra-thin LaAlO3 films as high-k gate dielectrics. J. Phys. D Appl. Phys. 2003, 36. [Google Scholar] [CrossRef]
- Gougousi, T.; Kelly, M.J.; Terry, D.B.; Parsons, G.N. Properties of La-silicate high-k dielectric films formed by oxidation of La on silicon. J. Appl. Phys. 2003, 93, 1691–1696. [Google Scholar] [CrossRef]
- Mahata, C.M.; Bera, K.; Das, T.; Mallik, S.; Hota, M.K.; Majhi, B.; Verma, S.; Bose, P.K.; Maiti, C.K. Charge trapping and reliability characteristics of sputtered Y2O3 high-k dielectrics on N- and S-passivated germanium. Semicond. Sci. Technol. 2009, 24. [Google Scholar] [CrossRef]
- Pan, T.M.; Lei, T.F.; Chao, T.S.; Chang, K.L.; Hsieh, K.C. High quality ultrathin CoTiO3 high-k gate dielectrics. Electrochem. Solid-State Lett. 2000, 3, 433–434. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, K.M.; Kwon, O.S.; Lee, S.W.; Jeon, C.B.; Park, W.Y.; Hwang, C.S.; Jeong, J. Structurally and electrically uniform deposition of high-k TiO2 thin films on a Ru electrode in three-dimensional contact holes using atomic layer deposition. Electrochem. Solid-State Lett. 2005, 8, F59–F62. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Thomas, S.; Wöbkenberg, P.H.; Bradley, D.D.; McLachlan, M.A.; Anthopoulos, T.D. High-mobility low-voltage ZnO and Li-doped ZnO transistors based on ZrO2 high-k dielectric grown by spray pyrolysis in ambient air. Adv. Mater. 2011, 23, 1894–1898. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, J.M.; Jones, A.C.; Chalker, P.R.; Werner, M.; Aspinall, H.C.; Taylor, S.; Taechakumput, P.; Heys, P.N. Deposition of lanthanum zirconium oxide high-k films by liquid injection ALD and MOCVD. Chem. Vapor Depos. 2007, 13, 684–690. [Google Scholar] [CrossRef]
- Gutowski, M.; Jaffe, J.E.; Liu, C.L.; Stoker, M.; Hegde, R.I.; Rai, R.S.; Tobin, P.J. Thermodynamic stability of high-k dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2. Appl. Phys. Lett. 2002, 80, 1897–1899. [Google Scholar] [CrossRef]
- Dimoulas, A.; Vellianitis, G.; Mavrou, G.; Apostolopoulos, G.; Travlos, A.; Wiemer, C.; Fanciulli, M.; Rittersma, Z.M. La2Hf2O7 high-k gate dielectric grown directly on Si (001) by molecular-beam epitaxy. Appl. Phys. Lett. 2004, 85, 3205–3207. [Google Scholar] [CrossRef]
- Gang, H.; Deng, B.; Sun, Z.Q.; Chen, X.S.; Liu, Y.M.; Zhang, L.D. CVD-derived Hf-based High-k Gate Dielectrics. Crit. Rev. Solid State Mater. Sci. 2013, 38, 235–261. [Google Scholar] [CrossRef]
- Watanabe, H.; Saitoh, M.; Ikarashi, N.; Tatsumi, T. High-quality HfSixOy gate dielectrics fabricated by solid phase interface reaction between physical-vapor-deposited metal-Hf and SiO2 underlayer. Appl. Phys. Lett. 2004, 85, 449–451. [Google Scholar] [CrossRef]
- Darbandy, G.; Ritzenthaler, R.; Lime, F.; Garduño, I.; Estrada, M.; Cerdeira, A.; Iñiguez, B. Analytical modeling of direct tunneling current through gate stacks for the determination of suitable high-k dielectrics for nanoscale double-gate MOSFETs. Semicond. Sci. Technol. 2011, 26. [Google Scholar] [CrossRef]
- Myllymäki, P.; Roeckerath, M.; Putkonen, M.; Lenk, S.; Schubert, J.; Niinistö, L.; Mantl, S. Characterization and electrical properties of high-k GdScO3 thin films grown by atomic layer deposition. Appl. Phys. A 2007, 88, 633–637. [Google Scholar] [CrossRef]
- Chan, K.C.; Lee, P.F.; Li, D.F.; Dai, J.Y. Memory characteristics and the tunneling mechanism of Au nanocrystals embedded in a DyScO3 high-k gate dielectric layer. Semicond. Sci. Technol. 2011, 26. [Google Scholar] [CrossRef]
- Milanov, A.P.; Xu, K.; Cwik, S.; Parala, H.; de los Arcos, T.; Becker, H.W.; Devi, A. Sc2O3, Er2O3, and Y2O3 thin films by MOCVD from volatile guanidinate class of rare-earth precursors. Dalton Trans. 2012, 41, 13936–13947. [Google Scholar] [CrossRef] [PubMed]
- Gaskell, J.M.; Jones, A.C.; Aspinall, H.C.; Przybylak, S.; Chalker, P.R.; Black, K.; Davies, H.O.; Taechakumput, P.; Taylor, S.; Critchlow, G.W. Liquid injection ALD and MOCVD of lanthanum aluminate using a bimetallic alkoxide precursor. J. Mater. Chem. 2006, 16, 3854–3860. [Google Scholar] [CrossRef]
- Gaskell, J.M.; Przybylak, S.; Jones, A.C.; Aspinall, H.C.; Chalker, P.R.; Black, K.; Potter, R.J.; Taechakumput, P.; Taylor, S. Deposition of Pr- and Nd-aluminate by liquid injection MOCVD and ALD using single-source heterometallic alkoxide precursors. Chem. Mater. 2007, 19, 4796–4803. [Google Scholar] [CrossRef]
- Ma, T.P.; Han, J.P. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 2002, 23, 386–388. [Google Scholar] [CrossRef]
- She, M.; King, T.J.; Hu, C.M.; Zhu, W.J.; Luo, Z.J.; Han, J.P.; Ma, T.P. JVD silicon nitride as tunnel dielectric in p-channel flash memory. IEEE Electron Device Lett. 2002, 23, 91–93. [Google Scholar] [CrossRef]
- Lee, C.H.; Hur, S.H.; Shin, Y.C.; Choi, J.H.; Park, D.G.; Kim, K. Charge-trapping device structure of dielectric for high-density flash memory. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, K.C.; Kim, K. Charge-trapping memory cell of SiO2/SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect. Appl. Phys. Lett. 2005, 87, 073510:1–073510:3. [Google Scholar]
- Zhang, G.; Wang, L.K.; Won, J.Y.; Li, M.F. Spatial distribution of charge traps in a SONOS-type Flash memory using a high-k trapping layer. IEEE Trans. Electron Devices 2007, 54, 3317–3324. [Google Scholar] [CrossRef]
- You, H.W.; Cho, W.J. Charge trapping properties of the HfO2 layer with various thicknesses for charge trap flash memory applications. Appl. Phys. Lett. 2009, 96, 093506:1–093506:3. [Google Scholar]
- Lu, C.Y.; Hsieh, K.Y.; Liu, R. Future challenges of flash memory technologies. Microelectron. Eng. 2009, 86, 283–286. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Zhang, J.F.; Groeseneken, G.; Degraeve, R. Hole-traps in silicon dioxides—Part II: Generation mechanism. IEEE Trans. Electron Devices 2004, 51, 1274–1280. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Zhang, J.F. Effects of hydrogen on positive charges in gate oxides. J. Appl. Phys. 2005, 97. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Zhang, J.F.; Zahid, M.B.; Groeseneken, G.; Degraeve, R.; de Gendt, S. Impact of gate materials on positive charge formation in HfO2/SiO2 stacks. Appl. Phys. Lett. 2006, 89. [Google Scholar] [CrossRef]
- Young, C.D.; Zeitzoff, P.; Brown, A.; Bersuker, G.; Lee, B.H.; Hauser, J.R. Intrinsic mobility evaluation of high-k gate dielectric transistors using pulsed Id-Vg. IEEE Electron Device Lett. 2005, 26, 586–589. [Google Scholar] [CrossRef]
- Bersuker, G.; Zeitzoff, P.; Sim, J.H.; Lee, B.H.; Choi, R.; Brown, G.; Young, C.D. Mobility evaluation in transistors with charge-trapping gate dielectrics. Appl. Phys. Lett. 2005, 87. [Google Scholar] [CrossRef]
- Puzzilli, G.; Govoreanu, B.; Irrera, F.; Rosmeulenb, M.; van Houdt, J. Characterization of charge trapping in SiO2/Al2O3 dielectric stacks by pulsed C-V technique. Microelectron. Reliab. 2007, 47, 508–512. [Google Scholar] [CrossRef]
- Zhang, W.D.; Govoreanu, B.; Zheng, X.F.; Aguado, D.R.; Rosmeulen, M.; Blomme, P.; Zhang, J.F.; van Houdt, J. Two-pulse C-V: A new method for characterizing electron traps in the bulk of SiO2/high-k dielectric stacks. IEEE Electron Device Lett. 2008, 29, 1043–1046. [Google Scholar] [CrossRef]
- Zheng, X.F.; Zhang, W.D.; Govoreanu, B.; Aguado, D.R.; Zhang, J.F.; van Houdt, J. Energy and spatial distributions of electron traps throughout SiO2/Al2O3 stacks as the IPD in flash memory application. IEEE Trans. Electron Devices 2010, 57, 288–296. [Google Scholar] [CrossRef]
- Zheng, X.F.; Zhang, W.D.; Govoreanu, B.; Zhang, J.F.; van Houdt, J. A new multi-pulse technique for probing electron trap energy distribution in high-kappa materials for Flash memory application. IEEE Trans. Electron Devices 2010, 57, 2484–2492. [Google Scholar] [CrossRef]
- ManjulaRani, K.N.; Ramgopal Rao, V.; Vasi, J. A new method to characterize border traps in submicron transistors using hysteresis in the drain current. IEEE Trans. Electron Devices 2003, 50, 973–979. [Google Scholar] [CrossRef]
- Degraeve, R.; Cho, M.; Govoreanu, B.; Kaczer, B.; Zahid, M.B.; van Houdt, J.; Jurczak, M.; Groeseneken, G. Trap spectroscopy by charge injection and sensing (TSCIS): A quantitative electrical technique for studying defects in dielectric stacks. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2008.
- Sun, X.; Xu, N.; Xue, F.; Alian, A.; Andrieu, F.; Nguyen, B.Y.; Poiroux, T.; Faynot, O.; Lee, J.; Cui, S.; Ma, T.P. AC transconductance: A novel method to characterize oxide traps in advanced FETs without a body contact. In Proceedings of the IEEE International Electron Devices Meeting IEDM, San Francisco, CA, USA, 10–13 December 2012.
- Zheng, X.F.; Robinson, C.; Zhang, W.D.; Zhang, J.F.; Govoreanu, B.; van Houdt, J. Electron trapping in HfAlO high-kappa stack for Flash memory applications: An origin of Vth window closure during cycling operations. IEEE Trans. Electron Devices 2011, 58, 1344–1351. [Google Scholar] [CrossRef]
- Benbakhti, B.; Zhang, J.F.; Ji, Z.; Zhang, W.; Mitard, J.; Kaczer, B.; Groeseneken, G.; Hall, S.; Chalker, P.; Robertson, J. Characterization of electron traps in Si-capped Ge MOSFETs with HfO2/SiO2 gate stack. IEEE Electron Device Lett. 2012, 33, 1681–1683. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, J.F.; Ji, Z.; Zhang, W.; Kaczer, B.; de Gendt, S.; Groeseneken, G. Defect loss: A new concept for reliability of MOSFETs. IEEE Electron Device Lett. 2012, 33, 480–482. [Google Scholar] [CrossRef]
- Tang, B.; Robinson, C.; Zhang, W.D.; Zhang, J.F.; Degraeve, R.; Blomme, P.; Toledano-Luque, M.; van den Bosch, G.; Govoreanu, B.; van Houdt, J. Read and pass disturbance in the programmed states of floating gate flash memory cells with high-k interpoly gate dielectric stacks. IEEE Trans. Electron Devices 2013, 60, 2261–2267. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Zahid, M.B.; Zhang, J.F.; Groeseneken, G.; Degraeve, R.; de Gendt, S. Threshold voltage instability of p-channel metal-oxide-semiconductor field effect transistors with hafnium based dielectrics. Appl. Phys. Lett. 2007, 90, 143502:1–143502:3. [Google Scholar]
- Zhang, J.F.; Zhao, C.Z.; Zahid, M.B.; Groeseneken, G.; Degraeve, R.; de Gendt, S. An assessment of the location of as-grown electron traps in HfO2/HfSiO stacks. IEEE Electron Device Lett. 2006, 27, 817–820. [Google Scholar] [CrossRef]
- Zhao, C.Z.; Zhang, J.F.; Chang, M.H.; Peaker, A.R.; Hall, S.; Groeseneken, G.; Pantisano, L.; de Gendt, S.; Heyns, M. Stress-induced positive charge in hf-based gate dielectrics: Impact on device performance and a framework for the defect. IEEE Trans. Electron Device 2008, 55, 1647–1655. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhao, C.Z.; Lu, Q.; Yan, X.; Taylor, S.; Chalker, P.R. Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement. Materials 2014, 7, 6965-6981. https://doi.org/10.3390/ma7106965
Zhao C, Zhao CZ, Lu Q, Yan X, Taylor S, Chalker PR. Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement. Materials. 2014; 7(10):6965-6981. https://doi.org/10.3390/ma7106965
Chicago/Turabian StyleZhao, Chun, Ce Zhou Zhao, Qifeng Lu, Xiaoyi Yan, Stephen Taylor, and Paul R. Chalker. 2014. "Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement" Materials 7, no. 10: 6965-6981. https://doi.org/10.3390/ma7106965
APA StyleZhao, C., Zhao, C. Z., Lu, Q., Yan, X., Taylor, S., & Chalker, P. R. (2014). Hysteresis in Lanthanide Aluminum Oxides Observed by Fast Pulse CV Measurement. Materials, 7(10), 6965-6981. https://doi.org/10.3390/ma7106965