Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Controlled Precipitation of CoFe PBA within the Disordered Porosity of Silica (Xero)Gels
2.2. Controlled Precipitation of CoFe PBA within the Porosity of Nanostructured Silica Monoliths
2.3. Controlled Precipitation of CoFe PBA within the Porosity of Nanostructured Silica Thin Films
3. Experimental Section
3.1. Materials Characterization
3.2. Synthesis of RbCoFe PBA/Silica Disordered Nanocomposites
3.3. Synthesis of RbCoFe PBA/Silica Nanostructured Monoliths
3.4. Synthesis of RbCoFe PBA/Silica Nanostructured Films
4. Conclusions
Acknowledgments
References
- Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Photoinduced magnetization of a cobalt-iron cyanide. Science 1996, 272, 704–705. [Google Scholar] [CrossRef]
- Verdaguer, M. Molecular electronics emerges from molecular magnetism. Science 1996, 272, 698–699. [Google Scholar] [CrossRef]
- Sato, O.; Einaga, Y.; Fujishima, A.; Hashimoto, K. Photoinduced long-range magnetic ordering of a cobalto-iron cyanide. Inorg. Chem. 1999, 38, 4405–4412. [Google Scholar] [CrossRef]
- Shimamoto, N.; Ohkoshi, S.; Sato, O.; Hashimoto, K. Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. Inorg. Chem. 2002, 41, 678–684. [Google Scholar] [CrossRef]
- Bleuzen, A.; Lomenech, C.; Escax, V.; Villain, F.; Varret, F.; Cartier dit Moulin, C.; Verdaguer, M. Photoinduced ferrimagnetic systems in Prussian blue analogues CIxCo4[Fe(CN)6]y (CI = alkali cation). 1. Conditions to observe the phenomenon. J. Am. Chem. Soc. 2000, 122, 6648–6652. [Google Scholar]
- Goujon, A.; Roubeau, O.; Varret, F.; Dolbecq, A.; Bleuzen, A.; Verdaguer, M. Photo-excitation from dia- to ferri-magnetism in a Rb-Co-hexacyanoferrate Prussian blue analogue. Eur. J. Phys. B 2000, 14, 115–124. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Tokoro, H.; Hashimoto, K. Temperature- and photo-induced phase transition in rubidium manganese hexacyanoferrate. Coord. Chem. Rev. 2005, 249, 1830–1840. [Google Scholar]
- Cobo, S.; Fernandez, R.; Salmon, L.; Molnar, G.; Bousseksou, A. Correlation between the stoichiometry and the bistability of electronic states in valence-tautomeric RbxMn[Fe(CN)6]y·zH2O Complexes. Eur. J. Inorg. Chem. 2007, 1549–1555. [Google Scholar]
- Buschmann, W.E.; Ensling, J.; Gütlich, P.; Miller, J.S. Transfer, linkage isomerization, bulk magnetic order, and spin-glass behavior in the iron hexacyanomanganate Prussian blue analogue. Chem. Eur. J. 1999, 5, 3019–3028. [Google Scholar]
- Ohkoshi, S.; Einaga, Y.; Fujishima, A.; Hashimoto, K.J. Magnetic properties and optical control of electrochemically prepared iron–chromium polycyanides. Electroanal. Chem. 1999, 473, 245–249. [Google Scholar]
- Ohkoshi, S.; Hashimoto, K. Design of a novel magnet exhibiting photoinduced magnetic pole inversion based on molecular field theory. J. Am. Chem. Soc. 1999, 121, 10591–10597. [Google Scholar]
- Coronado, E.; Giménez-López, M.C.; Korzeniak, T.; Levchenko, G.; Romero, F.M.; Segura, A.; García-Baonza, V.; Cezar, J.C.; de Groot, F.M.F.; Milner, A.; et al. Pressure-induced magnetic switching and linkage isomerism in K0.4Fe4[Cr(CN)6]2.8·16H2O: X-ray absorption and magnetic circular dichroism studies. J. Am. Chem. Soc. 2008, 130, 15519–15532. [Google Scholar]
- Escax, V.; Bleuzen, A.; Itié, J.-P.; Munsch, P.; Varret, F.; Verdaguer, M. Nature of the long-range structural changes induced by the molecular photoexcitation and by the relaxation in the Prussian blue analogue Rb1.8Co4[Fe(CN)6]3.3·13H2O. A synchrotron X-ray diffraction study. J. Phys. Chem. B 2003, 107, 4763–4767. [Google Scholar]
- Margadonna, S.; Prassides, K.; Fitch, A.N. Large lattice responses in a mixed-valence Prussian blue analogue owing to electronic and spin transitions induced by X-ray irradiation. Angew. Chem. Int. Ed. 2004, 43, 6316–6319. [Google Scholar]
- Shimamoto, N.; Ohkoshi, S.; Sato, O.; Hashimoto, K. One-shot-laser-pulse-induced cooperative charge transfer accompanied by spin transition in a Co-Fe Prussian blue analog at room temperature. Chem. Lett. 2002, 31, 486–487. [Google Scholar]
- Ohkoshi, S.; Matsuda, T.; Tokoro, H.; Hashimoto, K. A surprisingly large thermal hysteresis loop in a reversible phase transition of RbxMn[Fe(CN)6](x+2)/3·zH2O. Chem. Mater. 2005, 17, 81–84. [Google Scholar]
- Escax, V.; Bleuzen, A.; Cartier dit Moulin, C.; Villain, F.; Goujon, A.; Varret, F.; Verdaguer, M. Photoinduced ferrimagnetic systems in Prussian blue analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 3. Control of the photo- and thermally induced electron transfer by the [Fe(CN)6] vacancies in cesium derivatives. J. Am. Chem. Soc. 2001, 123, 12536–12543. [Google Scholar]
- Moritomo, Y.; Hanawa, M.; Ohishi, Y.; Kato, K.; Takata, M.; Kuriki, A.; Nishibori, E.; Sakata, M.; Ohkoshi, S.; Tokoro, H.; et al. Pressure- and photoinduced transformation into a metastable phase in RbMn[Fe(CN)6]. Phys. Rev. B 2003, 68, 144106. [Google Scholar]
- Ksenofontov, V.; Levchenko, G.; Reiman, S.; Gütlich, P.; Bleuzen, A.; Escax, V.; Verdaguer, M. Pressure-induced electron transfer in ferrimagnetic Prussian blue analogs. Phys. Rev. B 2003, 68, 024415. [Google Scholar]
- Egan, L.; Kamenev, K.; Papanikolaou, D.; Takabayashi, Y.; Margadonna, S. Pressure-induced sequential magnetic pole inversion and antiferromagnetic-ferromagnetic crossover in a trimetallic Prussian blue analogue. J. Am. Chem. Soc. 2006, 128, 6034–6035. [Google Scholar]
- Bleuzen, A.; Cafun, J.-D.; Bachschmidt, A.; Verdaguer, M.; Münsch, P.; Baudelet, F.; Itié, J.-P. CoFe Prussian blue analogues under variable pressure. Evidence of departure from cubic symmetry: X-ray diffraction and absorption study. J. Phys. Chem. C 2008, 112, 17709–17715. [Google Scholar]
- Brinzei, D.; Catala, L.; Louvain, N.; Rogez, G.; Stéphan, O.; Gloter, A.; Mallah, T. Spontaneous stabilization and isolation of dispersible bimetallic coordination nanoparticles of CsxNi[Cr(CN)6]y. J. Mater. Chem. 2006, 16, 2593–2599. [Google Scholar] [CrossRef]
- Vaucher, S.; Fielden, J.; Li, M.; Dujardin, E.; Mann, S. Molecules-based magnetic nanoparticles: Synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett. 2002, 2, 225–229. [Google Scholar]
- Yamada, M.; Arai, M.; Kurihara, M.; Sakamoto, M.; Miyake, M. Synthesis and isolation of cobalt hexacyanoferrate/chromate metal coordination nanopolymers stabilized by alkylamino ligand with metal elemental control. J. Am. Chem. Soc. 2004, 126, 9482–9483. [Google Scholar]
- Catala, L.; Gacoin, T.; Boilot, J.-P.; Rivière, E.; Paulsen, C.; Lhotel, E.; Mallah, T. Cyanide-bridged CrIII-NiII superparamagnetic nanoparticles. Adv. Mater. 2003, 15, 826–829. [Google Scholar]
- Liang, G.; Xu, J.; Wang, X. Synthesis and characterization of organometallic coordinatin polymer nanoshells of Prussian blue using miniemulsion periphery polymerization. J. Am. Chem. Soc. 2009, 131, 5378–5379. [Google Scholar]
- McHale, R.; Ghasdian, N.; Liu, Y.; Ward, M.B.; Hondow, N.S.; Wang, H.; Miao, Y.; Brydson, R.; Wang, X. Prussian blue coordination polymer nanobox synthesis using miniemulsion periphery polymerization (MEPP). Chem. Commun. 2010, 46, 4574–4576. [Google Scholar] [CrossRef]
- Uemura, T.; Ohba, M.; Kitagawa, S. Size and surface effect of Prussian blue protected by organic polymers. Inorg. Chem. 2004, 43, 7339–7345. [Google Scholar] [CrossRef]
- Catala, L.; Mathoniere, C.; Gloter, A.; Stephan, O.; Gacoin, T.; Boilot, J.-P.; Mallah, T. Photomagnetic nanorods of the Mo(CN)8Cu2 coordination network. Chem. Commun. 2005, 6, 746–748. [Google Scholar]
- Zhai, J.; Zhai, Y.; Wang, L.; Dong, S. Rapid synthesis of polyethylenimine-protected Prussian blue nanocubes through a thermal process. Inorg. Chem. 2008, 47, 7071–7073. [Google Scholar] [CrossRef] [PubMed]
- Frye, F.A.; Pajerowski, D.M.; Anderson, N.E.; Long, J.; Park, J.-H.; Meisel, M.W.; Talham, D.R. Photoinduced magnetism in rubidium cobalt hexacyanoferrate Prussian blue analogue nanoparticles. Polyhedron 2007, 26, 2273–2275. [Google Scholar]
- Gálvez, N.; Sánchez, P.; Domínguez-Vera, J.M. Preparation of Cu and CuFe Prussian blue derivative nanoparticles using apoferritin cavity as nanoreactor. Dalton Trans. 2005, 15, 2492–2494. [Google Scholar]
- Guari, Y.; Larionova, J.; Molvinger, K.; Folch, B.; Guérin, C. Magnetic water-soluble cyano-bridged metal coordination nano-polymers. Chem. Commun. 2006, 24, 2613–2615. [Google Scholar]
- Clavel, G.; Larionova, J.; Guari, Y.; Guérin, C. Synthesis of cyano-bridged magnetic nanoparticles using room-temperature ionic liquids. Chem. Eur. J. 2006, 12, 3798–3804. [Google Scholar] [CrossRef]
- Johansson, A.; Widenkvist, E.; Lu, J.; Boman, M.; Jansson, U. Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template. Nano Lett. 2005, 5, 1603–1606. [Google Scholar] [CrossRef]
- Zhou, P.; Xue, D.; Luo, H.; Chen, X. Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowires arrays. Nano Lett. 2002, 2, 845–847. [Google Scholar] [CrossRef]
- Moore, J.G.; Lochner, E.J.; Ramsey, C.; Dalal, N.S.; Stiegman, A.E. Transparent, superparamagnetic KIxCoIIy[FeIII(CN)6]-silica nanocomposites with tunable photomagnetism. Angew. Chem. Int. Ed. 2003, 42, 2741–2743. [Google Scholar] [CrossRef]
- Folch, B.; Guari, Y.; Larionova, J.; Luna, C.; Sangregorio, C.; Innocenti, C.; Caneschi, A.; Guérin, A. Synthesis and behaviour of size controlled cyano-bridged coordination polymer nanoparticles within hybrid mesoporous silica. New J. Chem. 2008, 32, 273–282. [Google Scholar]
- Mouawia, R.; Larionova, J.; Guari, Y.; Oh, S.; Cook, P.; Prouzet, E. Synthesis of Co3[Fe(CN)6]2 molecular-based nanomagnets in MSU mesoporous silica by integrative chemistry. New J. Chem. 2009, 33, 2449–2456. [Google Scholar]
- Vo, V.; van Minh, N.; Lee, H.I.; Kim, J.M.; Kim, Y.; Kim, S.J. Synthesis and characterization of Co-Fe Prussian blue nanoparticles within MCM-41. Mater. Res. Bull. 2009, 44, 78–81. [Google Scholar]
- Fornasieri, G.; Bleuzen, A. Controlled synthesis of photomagnetic nanoparticles of a Prussian blue analogue in a silica xerogel. Angew. Chem. Int. Ed. 2008, 47, 7750–7752. [Google Scholar]
- Ducommun, Y.; Newman, K.E.; Merbach, A.E. High-pressure 17O NMR evidence for a gradual mechanistic changeover from Ia to Id for water exchange on divalent octahedral metal ions going from manganese(II) to nickel(II). Inorg. Chem. 1980, 19, 3696–3703. [Google Scholar]
- Brinker, C.J.; Scherer, G.W. Structural evolution during consolidation. In Sol-Gel Science, 1st ed.; Academic Press: San Diego, CA, USA, 1990; pp. 515–615. [Google Scholar]
- Fornasieri, G.; Aouadi, M.; Durand, P.; Beaunier, P.; Rivière, E.; Bleuzen, A. Fully controlled precipitation of photomagnetic CoFe Prussian blue analogue nanoparticles within the ordered mesoporosity of silica monoliths. Chem. Commun. 2010, 46, 8061–8063. [Google Scholar]
- Durand, P.; Fornasieri, G.; Baumier, C.; Beaunier, P.; Durand, D.; Rivière, E.; Bleuzen, A. Control of stoichiometry, size and morphology of inorganic polymers by template assisted coordination chemistry. J. Mater. Chem. 2010, 20, 9348–9354. [Google Scholar]
- Delahaye, E.; Aouadi, M.; Durand, D.; Beaunier, P.; Fornasieri, G.; Bluezen, A. Co2+ ions-containing ordered silica monoliths: Influence of the copolymer P123/Si and Co2+ ions/Si ratios on the organization of the monoliths. MRS Proc. 2011, 1359. [Google Scholar] [CrossRef]
- El-Safty, S.A. Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. J. Porous. Mater. 2008, 15, 369–387. [Google Scholar]
- Aouadi, M.; Fornasieri, G.; Briois, V.; Durand, P.; Bleuzen, A. Chemistry of cobalt(II) confined in the pores of silica monoliths: From the elaboration of the monolith to the CoFe Prussian blue analogue. Chem. Eur. J. 2012, in press. [Google Scholar]
- Klotz, M.; Albouy, P.-A.; Ayral, A.; Ménager, C.; Grosso, D.; van der Lee, A.; Cabuil, V.; Babonneau, F.; Guizard, C. The true structure of hexagonal mesophase-templated silica films as revealed by X-ray scattering: Effects of thermal treatments and of nanoparticle seeding. Chem. Mater. 2000, 12, 1721–1728. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fornasieri, G.; Aouadi, M.; Delahaye, E.; Beaunier, P.; Durand, D.; Rivière, E.; Albouy, P.-A.; Brisset, F.; Bleuzen, A. Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices. Materials 2012, 5, 385-403. https://doi.org/10.3390/ma5030385
Fornasieri G, Aouadi M, Delahaye E, Beaunier P, Durand D, Rivière E, Albouy P-A, Brisset F, Bleuzen A. Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices. Materials. 2012; 5(3):385-403. https://doi.org/10.3390/ma5030385
Chicago/Turabian StyleFornasieri, Giulia, Merwen Aouadi, Emilie Delahaye, Patricia Beaunier, Dominique Durand, Eric Rivière, Pierre-Antoine Albouy, François Brisset, and Anne Bleuzen. 2012. "Elaboration of Prussian Blue Analogue/Silica Nanocomposites: Towards Tailor-Made Nano-Scale Electronic Devices" Materials 5, no. 3: 385-403. https://doi.org/10.3390/ma5030385