Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of UHMWPE
2.1.1. FTIR Spectroscopy Characterization – Reference UHMWPE
2.1.2. SEM Characterization – Reference UHMWPE
2.2. Characterization of UHMWPE Submitted to Accelerated Aging by H2O2
2.2.1. Oxidizer Generation – Background
2.2.2. FTIR Spectroscopy – Oxidation
Band Region (cm-1) | Description | Reference |
---|---|---|
3,450 – 3,350 | Hydroperoxide and alcohol | [6,10,11,19] |
1,710 – 1,740 | Carbonyl species: ketones, carboxylic acid, aldehydes, | [9,10,11] |
1,100 – 1,400 | Ethers and other –C-O-C groups | [9,10,11] |
800 – 1,000 | Unsaturated bonds, trans-vinylene groups | [6,10,11] |
2.2.3. Kinetics and Mechanism of UHMWPE Oxidation by FTIR Spectroscopy
2.2.4. Morphology and Structure UHMWPE Oxidation by SEM
3. Experimental Section
3.1. Materials
UHMWPE | |
---|---|
Resin type | GUR 1020 |
Manufacturer | Ticona |
Manufacturing Method | Ram extrusion |
Fabricated Form | Annealed |
Average molecular wt (molar mass) [g/mol × 106] | 5.166 to 5.415 |
Crystallinity; DSC, (20 °C –160 °C) [%] | 66 – 71 |
Density [Kg/m3] | 934 |
Tensile stress at yield (tensile strength) [MPa] | > 23 |
Tensile stress at break [ultimate tensile strength [MPa] | > 52 |
Elongation at break [%] | > 460 |
Young’s modulus [MPa] | > 575 |
Melting Point DSC, 10K/min [ºC] | 137.5 |
Glass Transition Temperature Tg [ºC] | -110 |
Surface and bulk Oxidation Index; material shelf aged 1 year in air (ASTM F2101-01) | 0.00 |
3.2. Sample Preparation
3.3. Characterization
4. Conclusions
Acknowledgements
References and Notes
- Desjardins, J.D.; Burnikel, B.; Laberge, M. UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation. Wear 2008, 264, 245–256. [Google Scholar] [CrossRef]
- Renó, F.; Cannas, M. UHMWPE and vitamin E bioactivity: An emerging perspective. Biomaterials 2006, 27, 3039–3043. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Santerre, P.J.; Boynton, E. Analysis of released products from oxidized ultra-high molecular weight polyethylene incubated with hydrogen peroxide and salt solutions. Biomaterials 2000, 21, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Sawae, Y.; Yamamoto, A.; Murakami, T. Influence of protein and lipid concentration of the test lubricant on the wear of ultra high molecular weight polyethylene. Tribol. Int. 2008, 41, 648–656. [Google Scholar] [CrossRef]
- Medhekar, V.; Thompson, R.W.; Wang, A.; Grant McGimpsey, W. Modeling the oxidative degradation of ultra-high molecular-weight polyethylene. J. Appl. Polym. Sci. 2003, 87, 814–826. [Google Scholar] [CrossRef]
- Taddei, P.; Affatato, S.; Fagnano, C.; Toni, A. Oxidation in ultrahigh molecular weight polyethylene and cross-linked polyethylene acetabular cups tested against roughened femoral heads in a hip joint simulator. Biomacromolecules 2006, 7, 1912–1920. [Google Scholar] [CrossRef] [PubMed]
- Implants for surgery -- Ultra-high-molecular-weight polyethylene -- Part 4: Oxidation index measurement method. ISO 5834-4:2005, 2005.
- Medel, J.; García-Alvarez, F.; Gómez-Barrena, E.; Puertolas, J.A. Microstructure change of extruded ultra high molecular weight polyethylene after gamma irradiation and shelf-aging. Polym. Degrad. Stab. 2005, 88, 435–443. [Google Scholar] [CrossRef]
- Wille, B.M.; Bloebaum, R.D.; Ashrafi, S.; Dearden, C.; Steffensen, T.; Hofmann, A.A. Oxidative degradation in highly cross-linked and conventional polyethylene after 2 years of real-time shell aging. Biomaterials 2006, 27, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Medhekar, V.S. Modeling and simulation of oxidative degradation of ultra-high molecular weight polyethylene (UHMWPE). Dissertation Degree of Master of Science in Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA, 2001. [Google Scholar]
- Billingham, N.C.; Grigg, M.N. The kinetic order of decomposition of polymer hydroperoxides assessed by chemiluminescence. Polym. Degrad. Stab. 2004, 83, 441–451. [Google Scholar] [CrossRef]
- Toohey, K.S.; Blanchet, T.A.; Heckelman, D.D. Effect of accelerated aging conditions on resultant depth-dependent oxidation and wear resistance of UHMWPE joint replacement bearing materials. Wear 2003, 255, 1076–1084. [Google Scholar] [CrossRef]
- Buchanan, F. Accelerated ageing and characterisation of UHMWPE used in orthopaedic implants. AZo J. Mater. Online, September 21 2001. [Google Scholar]
- Kurtz, S.M.; Muratoglu, O.K.; Buchanan, F.; Currier, B.; Gsell, R.; Greer, K.; Gualtieri, G.; Johnson, R.; Schaffner, S.; Sevo, K.; Spiegelberg, S.; Shen, F.W.; Yau, S.S. Interlaboratory reproducibility of standard accelerated aging methods for oxidation of UHMWPE. Biomaterials 2001, 22, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M; Lee, M.; Gronsky, R.; Pruitt, L. Oxidation of ultrahigh molecular weight polyethylene characterized by Fourier Transform Infrared Spectrometry. J. Biomed. Mater. Res. 1998, 37, 43–50. [Google Scholar]
- Gugumus, F. Thermooxidative degradation of polyolefins in the solid state: Part 1. Experimental kinetics of functional group formation. Polym. Degrad. Stab. 1996, 52, 131–144. [Google Scholar] [CrossRef]
- Pruitt, L.A. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 2005, 26, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, M.S.; Pruitt, L.A; Jewett, C.W.; Crawford, R.P.; Crane, D.J.; Edidin, A.A. The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 1998, 19, 1998–2003. [Google Scholar] [CrossRef]
- Bracco, P.; Brunella, V.; Zanetti, M.; Costa, L.; Luda, M.P. Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym. Degrad. Stab. 2007, 92, 2155–2162. [Google Scholar] [CrossRef]
- Costa, L.; Luda, M.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. Oxidation in orthopedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials 1998, 19, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Rimnac, C.M.; Kurtz, S.M. Ionizing radiation and orthopaedic prostheses. Nucl. Instrum. Methods Phys. Res. Sect. B 2005, 236, 30–37. [Google Scholar] [CrossRef]
- Reggiani, M.; Tinti, A.; Visentin, M.; Stea, S.; Erani, P.; Fagnano, C. Vibrational spectroscopy study of the oxidation of Hylamer UHMWPE explanted acetabular cups sterilized differently. J. Mol. Struct. 2007, 834-836, 129–135. [Google Scholar] [CrossRef]
- Taddei, P.; Affatato, S.; Fagnano, C.; Bordini, B.; Tinti, A.; Toni, A. Vibrational spectroscopy of ultra-high molecular weight polyethylene hip prostheses: influence of the sterilization method on crystallinity and surface oxidation. J. Mol. Struct. 2002, 613, 121–129. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rocha, M.; Mansur, A.; Mansur, H. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide. Materials 2009, 2, 562-576. https://doi.org/10.3390/ma2020562
Rocha M, Mansur A, Mansur H. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide. Materials. 2009; 2(2):562-576. https://doi.org/10.3390/ma2020562
Chicago/Turabian StyleRocha, Magda, Alexandra Mansur, and Herman Mansur. 2009. "Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide" Materials 2, no. 2: 562-576. https://doi.org/10.3390/ma2020562
APA StyleRocha, M., Mansur, A., & Mansur, H. (2009). Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide. Materials, 2(2), 562-576. https://doi.org/10.3390/ma2020562