Magnesium Slag-Activated One-Part Geopolymer Concretes: A Viable Supplementary Pathway Toward Low-Carbon Concrete Production
Abstract
1. Introduction
- -
- To what extent can MS replace GGBS in OPGC while maintaining acceptable mechanical performance and workability?
- -
- How does the incorporation of MS influence the setting time and the evolution of the microstructural network (C–A–S–H/N–A–S–H gels)?
- -
- Is there a critical threshold where the reduction in reactive silica and alumina from MS significantly disrupts the matrix cohesion?
2. Experimental Program
2.1. Materials and Mix Design
2.2. Preparation of Specimens and Curing Conditions
2.3. Testing Method
3. Results and Discussion
3.1. Workability
3.2. Setting Time
3.3. Wet Apparent Density
3.4. Ultrasonic Pulse Velocity (UPV)
3.5. Compressive Strength
3.6. Splitting Tensile Strength
3.7. Flexural Strength
3.8. Scanning Electron Microscopy (SEM)
4. Conclusions
- -
- Optimal substitution threshold: the study identifies a critical performance threshold at 30% MS replacement. Mixtures containing up to 30% MS achieved competitive mechanical properties, with compressive strengths exceeding 59 MPa at 28 days, comparable to high-performance conventional concrete. Beyond this limit, a significant degradation in the geopolymer matrix was observed due to reduced aluminosilicate reactivity.
- -
- Fresh state behavior and workability: increasing MS content positively influences the workability of OPGC, with slump values rising from 7 cm at MS1 (10% MS) to 14 cm at MS10 (100% MS). This trend is directly linked to the lower inherent cementitious activity and specific mineralogical structure of MS (Q0 and Q4 units), which reduces the immediate water demand compared to highly reactive GGBS-rich systems.
- -
- Setting time regulation: MS acts as an effective setting retarder in OPGC systems. The final setting time was extended by 320% when GGBS was fully replaced by MS. This finding is crucial for practical engineering applications, as it demonstrates that MS can be strategically used to control the rapid setting characteristic typically associated with alkali-activated GGBS concretes.
- -
- Mechanical performance and matrix integrity: a strong correlation was established between density, ultrasonic pulse velocity (UPV), and mechanical strength. Although a steady decline in density and UPV values was observed starting from 10% MS, the impact of this reduction became critical beyond the 30% threshold. The inclusion of MS beyond this limit led to a more pronounced loss of matrix cohesion and increased porosity, as evidenced by the sharper drop in UPV. Splitting tensile and flexural strengths followed a similar downward trend, confirming that excessive MS substitution compromises the tensile integrity of the binder, leading to a less dense and more brittle internal structure.
- -
- Microstructural validation: SEM analysis provided visual evidence of the 30% threshold revealing a dense and compact microstructure at MS3 (30% MS), whereas higher replacement levels exhibited microcracks and unreacted particles. While the MS30 specimen exhibited a dense, homogeneous C–(A)–S–H/N–(A)–S–H gel matrix, the MS50 sample showed pronounced micro crack-sand unreacted particles. This validates that sufficient calcium and reactive silica levels are maintained only at lower MS substitution ratios, ensuring a robust geopolymer network.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MS | Magnesium slag |
| OPGC | One-part geopolymer concrete |
| GGBS | Ground granulated blast furnace slag |
| UPV | Ultrasonic pulse velocity |
References
- El-Mir, A.; Hwalla, J.; El-Hassan, H.; Assaad, J.J.; El-Dieb, A.; Shehab, E. Valorization of waste perlite powder in geopolymer composites. Constr. Build. Mater. 2023, 368, 130491. [Google Scholar] [CrossRef]
- Guo, S.; Ma, C.; Long, G.; Xie, Y. Cleaner one-part geopolymer prepared by introducing fly ash sinking spherical beads: Properties and geopolymerization mechanism. J. Clean. Prod. 2019, 219, 686–697. [Google Scholar] [CrossRef]
- Sumesh, M.; Alengaram, U.J.; Jumaat, M.Z.; Mo, K.H.; Alnahhal, M.F. Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review. Constr. Build. Mater. 2017, 148, 62–84. [Google Scholar] [CrossRef]
- Meng, Y.; Ling, T.C.; Mo, K.H. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [Google Scholar] [CrossRef]
- Oderji, S.Y.; Chen, B.; Ahmad, M.R.; Shah, S.F.A. Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. J. Clean. Prod. 2019, 225, 1–10. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Introduction to handbook of alkali-activated cements, mortars and concretes. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Cambridge, UK, 2015; pp. 1–16. [Google Scholar]
- Zhang, Y.J.; Wang, Y.C.; Li, S. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Mater. Sci. Eng. 2010, 527, 6574–6580. [Google Scholar] [CrossRef]
- Aiken, T.A.; Kwasny, J.; Sha, W.; Soutsos, M.N. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem. Concr. Res. 2018, 111, 23–40. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry. Thermochim. Acta 2009, 493, 49–54. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.; Brown, T.; Taylor, A. Drying shrinkage and creep performance of geopolymer concrete. J. Sustain. Cem.-Based Mater. 2013, 2, 35–42. [Google Scholar] [CrossRef]
- Kong, D.L.; Sanjayan, J.G. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 2010, 40, 334–339. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. J. Clean. Prod. 2018, 187, 171–179. [Google Scholar] [CrossRef]
- Abdel-Gawwad, H.A.; Rashad, A.M.; Heikal, M. Sustainable utilization of pre-treated concrete waste in the production of one-part alkali-activated cement. J. Clean. Prod. 2019, 232, 318–328. [Google Scholar] [CrossRef]
- Koloušek, D.; Brus, J.; Urbanova, M.; Andertova, J.; Hulinsky, V.; Vorel, J. Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. J. Mater. Sci. 2007, 42, 9267–9275. [Google Scholar] [CrossRef]
- Peng, M.X.; Wang, Z.H.; Shen, S.H.; Xiao, Q.G. Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali. Mater. Struct. 2015, 48, 699–708. [Google Scholar]
- Ma, C.; Long, G.; Shi, Y.; Xie, Y. Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China. J. Clean. Prod. 2018, 201, 636–647. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; He, Y.; Zhao, Y.; Shi, C. Alkali-activated materials from metakaolin and MSW incineration fly ash: Reaction kinetics and microstructure. Cem. Concr. Compos. 2022, 130, 104483. [Google Scholar]
- Lao, J.C.; Xu, L.Y.; Huang, B.T.; Zhu, J.X.; Khan, M.; Dai, J.G. Utilization of sodium carbonate activator in strain-hardening ultra-high-performance geopolymer concrete. Front. Mater. 2023, 10, 1142237. [Google Scholar] [CrossRef]
- Alhamoud, A.; Tajmir Riahi, H.; Ataei, A. A Practical Mix Design Method of Ground Granulated Blast-Furnace Slag-Based One-Part Geopolymer Concrete. Arab J. Sci. Eng. 2024, 49, 5447–5466. [Google Scholar] [CrossRef]
- Lu, P.; Zhao, Y.; Zhang, N.; Wang, Y.; Zhang, J.; Zhang, Y.; Liu, X. Structural characteristics and cementitious behavior of magnesium slag in comparison with granulated blast furnace slag. Materials 2024, 17, 360. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Mehrotra, S.P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash-based geopolymer. J. Mater. Sci. 2017, 52, 2618–2630. [Google Scholar] [CrossRef]
- Frías, M.; Moreno-Reyes, A.M.; Vigil, R.; García, R.; Villar, E.; Oleaga, A.; Vegas, I. Scientific advances regarding the effect of carbonated alkaline waste materials on pozzolanic reactivity. J. Build. Eng. 2024, 98, 111423. [Google Scholar] [CrossRef]
- Zhu, M.; Zhai, R.; Zhu, M.; He, J. Evaluating Alkali Activation in Magnesium Slag Carbonization and Its Mechanism. Crystals 2024, 14, 847. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Zhang, F.; Liang, H.; Niu, D.; Li, H. Mechanical and Ecological Properties of CO2 Curing Magnesium Slag Concrete. Materials 2024, 18, 109. [Google Scholar] [CrossRef]
- Nawaz, M.; Heitor, A.; Sivakumar, M. Geopolymers in construction-recent developments. Constr. Build. Mater. 2020, 260, 120472. [Google Scholar] [CrossRef]
- Sharma, A.; Basumatary, N.; Singh, P.; Kapoor, K.; Singh, S.P. Potential of geopolymer concrete as substitution for conventional concrete: A review. Mater. Today Proc. 2022, 57, 1539–1545. [Google Scholar]
- Neupane, K. Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry. Mech. Mater. 2016, 103, 110–122. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Yazıcı, N.; Karagöl, F. Investigation of mechanical and durability properties of fly ash-based and slag-incorporated geopolymer concretes. J. Inst. Sci. Technol. 2022, 12, 1592–1606. [Google Scholar]
- Fouad, H.E.E.; Serag, M.I.; Ragab, A.; Hussein, A. Mechanical Properties and Temperature Resistance of Fly Ash-Based Geopolymer Concrete. Mansoura Eng. J. 2025, 50, 13. [Google Scholar] [CrossRef]
- Altundal, M.B. Mechanical Behavior of Geopolymer Concretes Containing Ground Granulated Blast Furnace Slag and Fly Ash Under 5% Sulfuric Acid Exposure. Master’s Thesis, Istanbul Gelisim University, Istanbul, Turkey, 2019. [Google Scholar]
- Özbay, E.; Erdemir, M.; Durmuş, H.İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review. Constr. Build. Mater. 2016, 105, 423–434. [Google Scholar] [CrossRef]
- Yahyaee, T.; Elize, H.S. A comprehensive study on mechanical properties, durability, and environmental impact of fiber-reinforced concrete incorporating ground granulated blast furnace slag. Case Stud. Constr. Mater. 2024, 20, e03190. [Google Scholar] [CrossRef]
- Justnes, H.; Martius-Hammer, T.A. Sustainability—The pioneering role in concrete innovation. Hazır Beton 2016, 23, 77–82. [Google Scholar]
- EN 12620:2002+A1:2008; Aggregates for Concrete. European Committee for Standardization (CEN): Brussels, Belgium, 2008.
- EN 12350-2:2019; Testing Fresh Concrete—Part 2: Slump Test. European Committee for Standardization: Brussels, Belgium, 2019.
- Verma, M.; Dev, N. Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Struct. Concr. 2022, 23, 2015–2029. [Google Scholar] [CrossRef]
- ASTM C807-21; Standard Test Method for Time of Setting of Hydraulic Cement Mortar by Vicat Needle. ASTM International: West Conshohocken, PA, USA, 2021.
- EN 12390-7:2019; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 12504-4:2021; Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. European Committee for Standardization: Brussels, Belgium, 2021.
- EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 12390-6:2023; Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. European Committee for Standardization: Brussels, Belgium, 2023.
- EN 12390-5:2019; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. European Committee for Standardization: Brussels, Belgium, 2019.
- Zhang, S.S.; Wang, S.; Chen, X. Understanding the role of magnesium ions on setting of metakaolin-based geopolymer. Cem. Concr. Res. 2024, 177, 107430. [Google Scholar] [CrossRef]
- Dung, N.T.; Hooper, T.J.N.; Unluer, C. Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes. Cem. Concr. Res. 2019, 126, 105927. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.-K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, Z.; Li, W.; Li, Y.; Tam, V.W. Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr. Build. Mater. 2019, 226, 139–151. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z. Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater. Des. 2015, 85, 324–331. [Google Scholar] [CrossRef]
- Statkauskas, M.; Vaičiukynienė, D.; Grinys, A.; Borg, R.P. Mechanical properties and microstructure of ternary alkali activated system: Red brick waste, metakaolin and phosphogypsum. Constr. Build. Mater. 2023, 387, 131648. [Google Scholar] [CrossRef]
- Chen, C.; Gong, W.; Lutze, W.; Pegg, I.L.; Zhai, J. Kinetics of fly ash leaching in strongly alkaline solutions. J. Mater. Sci. 2011, 46, 590–597. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Mikuni, A.; Komatsu, R.; Ikeda, K. Dissolution properties of some fly ash fillers applying to geopolymeric materials in alkali solution. J. Mater. Sci. 2007, 42, 2953–2957. [Google Scholar] [CrossRef]
- Ji, G.; Peng, X.; Wang, S.; Hu, C.; Ran, P.; Sun, K.; Zeng, L. Influence of magnesium slag as a mineral admixture on the performance of concrete. Constr. Build. Mater. 2021, 295, 123619. [Google Scholar] [CrossRef]
- Wang, D.; Gao, X.; Liu, X.; Zeng, G. Strength, durability and microstructure of granulated blast furnace slag-modified magnesium oxychloride cement solidified waste sludge. J. Clean. Prod. 2021, 292, 126072. [Google Scholar] [CrossRef]
- Amini, O.; Ghasemi, M. Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil. Constr. Build. Mater. 2019, 223, 409–420. [Google Scholar] [CrossRef]
- Wei, F.; Xiao, H.; Zhang, J.; He, Z.; Cao, X.; Guan, B. Feasibility study of magnesium slag, fly ash, and metakaolin to replace part of cement as cementitious materials. Buildings 2024, 14, 3874. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Gordillo, M.; Provis, J.L. Mechanical and thermal characterization of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 2011, 46, 5477–5486. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. (Eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Li, Z.; Zhang, W.; Wang, R.; Chen, F.; Jia, X.; Cong, P. Effects of reactive MgO on the reaction process of geopolymer. Materials 2019, 12, 526. [Google Scholar] [CrossRef]















| Component Name | MS (wt%) | GGBS (wt%) |
|---|---|---|
| SiO2 | 29.68 | 29.40 |
| Al2O3 | 1.91 | 15.28 |
| Fe2O3 | 4.29 | 1.30 |
| CaO | 51.70 | 42.10 |
| MgO | 9.93 | 7.01 |
| SO3 | 0.52 | 2.87 |
| Na2O | 0.31 | 0.49 |
| K2O | 1.30 | 0.79 |
| Cl | 0 | 0.05 |
| Loi | 0.36 | 0.69 |
| Properties | Value |
|---|---|
| Molecular structure | Composed of sodium (Na), silicon (Si), and oxygen (O) atoms |
| Components | Sodium oxide (Na2O): provides alkaline structure Silica (SiO2): promotes the formation of reactive phases |
| Physical form | White granules |
| Density (solid) | 2.5 g/cm3 |
| Solubility | Easily dissolves in water; dissociates into Na+ and SiO32− ions |
| Reactivity | Initiates the alkaline activation process Supports the formation of C-S-H and N-A-S-H gel phases in geopolymer concrete production |
| Moisture absorption | Rapidly absorbs moisture from the air; should be stored in a dry environment |
| Thermal stability | Stable up to 1088 °C |
| Properties | Value |
|---|---|
| Dry-specific gravity | 2.56 |
| Saturated surface dry-specific gravity | 2.66 |
| Water absorption | 1.1 |
| Materials’ Name | Quantities (kg/m3) |
|---|---|
| Coarse aggregate | 961.0 |
| Fine aggregate | 693.0 |
| Alumina–silicate | 398.8 |
| Binder | 462.6 |
| Material ID | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Materials (kg/m3) | MS1 | MS2 | MS3 | MS4 | MS5 | MS6 | MS7 | MS8 | MS9 | MS10 |
| Coarse aggregate | 961.0 | 961.0 | 961.0 | 961.0 | 961.0 | 961.0 | 961.0 | 961.0 | 961.0 | 961.0 |
| Fine aggregate | 693.0 | 693.0 | 693.0 | 693.0 | 693.0 | 693.0 | 693.0 | 693.0 | 693.0 | 693.0 |
| MS | 39.9 | 79.8 | 119.6 | 159.5 | 199.4 | 239.3 | 279.2 | 319.0 | 358.9 | 398.8 |
| GGBS | 358.9 | 319.0 | 279.2 | 239.3 | 199.4 | 159.5 | 119.6 | 79.8 | 39.9 | 0.0 |
| Activator | 63.8 | 63.8 | 63.8 | 63.8 | 63.8 | 63.8 | 63.8 | 63.8 | 63.8 | 63.8 |
| Water | 217.4 | 217.4 | 217.4 | 217.4 | 217.4 | 217.4 | 217.4 | 217.4 | 217.4 | 217.4 |
| Binder | 462.6 | 462.6 | 462.6 | 462.6 | 462.6 | 462.6 | 462.6 | 462.6 | 462.6 | 462.6 |
| Material ID | Slump Value (cm) | MS Value (%) | GGBS Value (%) |
|---|---|---|---|
| MS1 | 7 | 10 | 90 |
| MS2 | 8 | 20 | 80 |
| MS3 | 8 | 30 | 70 |
| MS4 | 9 | 40 | 60 |
| MS5 | 10 | 50 | 50 |
| MS6 | 10 | 60 | 40 |
| MS7 | 11 | 70 | 30 |
| MS8 | 12 | 80 | 20 |
| MS9 | 12 | 90 | 10 |
| MS10 | 14 | 100 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Özdemir Mazlum, T.; Atmaca, N. Magnesium Slag-Activated One-Part Geopolymer Concretes: A Viable Supplementary Pathway Toward Low-Carbon Concrete Production. Materials 2026, 19, 551. https://doi.org/10.3390/ma19030551
Özdemir Mazlum T, Atmaca N. Magnesium Slag-Activated One-Part Geopolymer Concretes: A Viable Supplementary Pathway Toward Low-Carbon Concrete Production. Materials. 2026; 19(3):551. https://doi.org/10.3390/ma19030551
Chicago/Turabian StyleÖzdemir Mazlum, Tuğba, and Nihat Atmaca. 2026. "Magnesium Slag-Activated One-Part Geopolymer Concretes: A Viable Supplementary Pathway Toward Low-Carbon Concrete Production" Materials 19, no. 3: 551. https://doi.org/10.3390/ma19030551
APA StyleÖzdemir Mazlum, T., & Atmaca, N. (2026). Magnesium Slag-Activated One-Part Geopolymer Concretes: A Viable Supplementary Pathway Toward Low-Carbon Concrete Production. Materials, 19(3), 551. https://doi.org/10.3390/ma19030551
