A Novel Ge-Doping Approach for Grain Growth and Recombination Suppression in Buffer-Free CIGSe Solar Cells
Highlights
- Ge doping promotes grain growth in CIGSe absorbers.
- Ge does not introduce notable impurity phases as a result of its loss via volatile Ge-Se compounds.
- Ge-doping enhances band bending at grain boundaries and suppresses carrier recombination.
- Ge-doping leads to the device performance enhancement of CIGSe buffer-free solar cells.
- Provides a novel approach to enhancing the crystallinity of CIGSe thin films.
- Demonstrates the effects of grain boundary passivation on suppressing recombination.
- Offers a method for improving the performance of CIGSe cells with a simplified structure.
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of CIGSe Absorbers and Buffer-Free Solar Cells
2.2. Characterization
3. Results and Discussion
3.1. Morphologies and Composition Analysis of Absorbers
3.2. Buffer-Free CIGSe Solar Cells’ Performance
3.3. Recombination Analysis of Ge-Doped CIGSe Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, H.; Yang, M.; Ru, X.; Wang, G.; Yin, S.; Peng, F.; Hong, C.; Qu, M.; Lu, J.; Fang, L.; et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 2023, 8, 789–799. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E. CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies 2021, 14, 1684. [Google Scholar] [CrossRef]
- Li, D.B.; Bista, S.S.; Awni, R.A.; Neupane, S.; Abudulimu, A.; Wang, X.; Subedi, K.K.; Jamarkattel, M.K.; Phillips, A.B.; Heben, M.J.; et al. 20%-efficient polycrystalline Cd(Se,Te) thin-film solar cells with compositional gradient near the front junction. Nat. Commun. 2022, 13, 7849. [Google Scholar] [CrossRef]
- Dalibor, T.; Reichel, R.; Wu, C.H.; Borowski, P.; Peng, S.; Chen, J. Cu(In, Ga)(Se, S)2 thin-film technology: Aspects of historical development, current status, and future prospects. Int. J. Appl. Glass Sci. 2024, 16, e16696. [Google Scholar] [CrossRef]
- Tong, H.; Kou, Z.; Zhao, M.; Zhuang, D.; Wang, C.; Li, Y. Effects of annealing temperature and atmosphere on performances of Zn0.9Mg0.1O buffer layers for CIGS solar cell. Ceram. Int. 2022, 48, 24523–24530. [Google Scholar] [CrossRef]
- Cretì, A.; Prete, P.; Lovergine, N.; Lomascolo, M. Enhanced Optical Absorption of GaAs Near-Band-Edge Transitions in GaAs/AlGaAs Core–Shell Nanowires: Implications for Nanowire Solar Cells. ACS Appl. Nano Mater. 2022, 5, 18149–18158. [Google Scholar] [CrossRef]
- Prete, P.; Lovergine, N. High efficiency III–V nanowire solar cells: The road ahead. Nano Futures 2025, 9, 42502. [Google Scholar] [CrossRef]
- Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite Solar Cells: A Review of the Recent Advances. Coatings 2022, 12, 1089. [Google Scholar] [CrossRef]
- Han, J.; Park, K.; Tan, S.; Vaynzof, Y.; Xue, J.; Diau, E.W.-G.; Bawendi, M.G.; Lee, J.-W.; Jeon, I. Perovskite solar cells. Nat. Rev. Methods Primers 2025, 5, 3. [Google Scholar] [CrossRef]
- Keller, J.; Kiselman, K.; Donzel-Gargand, O.; Martin, N.M.; Babucci, M.; Lundberg, O.; Wallin, E.; Stolt, L.; Edoff, M. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 2024, 9, 467–478. [Google Scholar] [CrossRef]
- Guillemoles, J.-F.; Rau, U.; Kronik, L.; Schock, H.-W.; Cahen, D. Cu(In,Ga)Se2 solar cells: Device stability based on chemical flexibility. Adv. Mater. 1999, 11, 957–961. [Google Scholar] [CrossRef]
- Masuda, T.; Hirai, S.; Inoue, M.; Chantana, J.; Kudo, Y.; Minemoto, T. Colorful, flexible, and lightweight Cu(In,Ga)Se2 solar cell by lift-off process with automotive painting. IEEE J. Photovolt. 2018, 8, 1326–1330. [Google Scholar] [CrossRef]
- Ishizuka, S.; Nishinaga, J.; Iioka, M.; Higuchi, H.; Kamikawa, Y.; Koida, T.; Shibata, H.; Fons, P. Si-doped Cu(In,Ga)Se2 photovoltaic devices with energy conversion efficiencies exceeding 16.5% without a buffer layer. Adv. Energy Mater. 2018, 8, 7. [Google Scholar] [CrossRef]
- Julayhi, J.; Minemoto, T. Buffer-less Cu(In,Ga)Se2 solar cells with Zn(O,S):Al transparent conductive oxide film. Phys. Status Solidi C 2013, 10, 1026–1030. [Google Scholar] [CrossRef]
- Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A.R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Mater. 2013, 12, 1107–1111. [Google Scholar] [CrossRef]
- Ishizuka, S.; Koida, T.; Taguchi, N.; Tanaka, S.; Fons, P.; Shibata, H. Si-doping effects in Cu(In,Ga)Se2 thin films and applications for simplified structure high-efficiency solar cells. ACS Appl. Mater. Interfaces 2017, 9, 31119–31128. [Google Scholar] [CrossRef]
- Minemoto, T.; Julayhi, J. Buffer-less Cu(In,Ga)Se solar cells with new transparent electrode for band offset control. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference (Pvsc), Austin, TX, USA, 3–8 June 2012; pp. 1577–1579. [Google Scholar]
- Kuwahata, Y.; Minemoto, T. Impact of Zn1-xMgxO:Al transparent electrode for buffer-less Cu(In,Ga)Se2 solar cells. Renew. Energy 2014, 65, 113–116. [Google Scholar] [CrossRef]
- Mizumoto, Y.; Chantana, J.; Hironiwa, D.; Yamamoto, A.; Yabuki, K.; Nakaue, A.; Minemoto, T. Evaluation of junction quality of buffer-free Zn(O,S):Al/Cu(In,Ga)Se2 thin-film solar cells. Appl. Phys. Express 2014, 7, 125503. [Google Scholar] [CrossRef]
- Ishizuka, S.; Nishinaga, J.; Koida, T.; Shibata, H. An over 18%-efficiency completely buffer-free Cu(In,Ga) Se2 solar cell. Appl. Phys. Express 2018, 11, 4. [Google Scholar] [CrossRef]
- Ishizuka, S.; Kato, S.; Okamoto, Y.; Akimoto, K. Control of hole carrier density of polycrystalline Cu2O thin films by Si doping. Appl. Phys. Lett. 2002, 80, 950–952. [Google Scholar] [CrossRef]
- Ishizuka, S.; Akimoto, K. Control of the growth orientation and electrical properties of polycrystalline Cu2O thin films by group-IV elements doping. Appl. Phys. Lett. 2004, 85, 4920–4922. [Google Scholar] [CrossRef]
- Romanyuk, Y.E.; Haass, S.G.; Giraldo, S.; Placidi, M.; Tiwari, D.; Fermin, D.J.; Hao, X.J.; Xin, H.; Schnabel, T.; Kauk-Kuusik, M.; et al. Doping and alloying of kesterites. J. Phys.-Energy 2019, 1, 044004. [Google Scholar] [CrossRef]
- Giraldo, S.; Saucedo, E.; Neuschitzer, M.; Oliva, F.; Placidi, M.; Alcobé, X.; Izquierdo-Roca, V.; Kim, S.; Tampo, H.; Shibata, H.; et al. How small amounts of Ge modify the formation pathways and crystallization of kesterites. Energy Environ. Sci. 2018, 11, 582–593. [Google Scholar] [CrossRef]
- Giraldo, S.; Neuschitzer, M.; Thersleff, T.; López-Marino, S.; Sánchez, Y.; Xie, H.; Colina, M.; Placidi, M.; Pistor, P.; Izquierdo-Roca, V.; et al. Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer. Adv. Energy Mater. 2015, 5, 1501070. [Google Scholar] [CrossRef]
- Zhai, J.; Cao, H.; Zhao, M.; Wang, C.; Li, Y.; Tong, H.; Li, Z.; Yin, S.; Zhuang, D. Smooth and highly-crystalline Ag-doped CIGS films sputtered from quaternary ceramic targets. Ceram. Int. 2021, 47, 2288–2293. [Google Scholar] [CrossRef]
- Wang, C.; Zhuang, D.; Zhao, M.; Li, Y.; Dong, L.; Wang, H.; Wei, J.; Gong, Q. Surface modifications of CIGS absorbers and their effects on performances of CIGS solar cells. Ceram. Int. 2021, 47, 34508–34513. [Google Scholar] [CrossRef]
- Wang, C.; Zhuang, D.; Zhao, M.; Li, Y.; Dong, L.; Wang, H.; Wei, J.; Gong, Q. Effects of silver-doping on properties of Cu(In,Ga)Se2 films prepared by CuInGa precursors. J. Energy Chem. 2022, 66, 218–225. [Google Scholar] [CrossRef]
- Zeng, L.L.; Zhang, L.Q.; Liang, Y.F.; Zeng, C.H.; Qiu, Z.Y.; Lin, H.F.; Hong, R.J. Growth-promoting mechanism of bismuth-doped Cu(In,Ga)Se2 solar cells fabricated at 400 °C. ACS Appl. Mater. Interfaces 2022, 14, 23426–23435. [Google Scholar] [CrossRef]
- Stolen, S.; Johnsen, H.; Boe, C.; Grande, T.; Karlsen, O. Stable and metastable phase equilibria in the GeSe2-Se system. J. Phase Equilib. 1999, 20, 17–28. [Google Scholar] [CrossRef]
- OHare, P.; Zywocinski, A.; Curtiss, L. Thermodynamics of (germanium plus selenium): A review and critical assessment. J. Chem. Thermodyn. 1996, 28, 459–480. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, D.; Zhao, M.; Gong, Q.; Ouyang, L.; Guo, L.; Sun, R.; Wei, Y.; Zhan, S.; Lyu, X.; et al. Investigation on Sb-doped induced Cu(InGa)Se2 films grain growth by sputtering process with Se-free annealing. Sol. Energy 2017, 157, 1074–1081. [Google Scholar] [CrossRef]
- Han, J.; Zhuang, D.; Zhao, M.; Tao, S.; Wang, H.; Jia, M.; Wu, Z.; Zhou, J.; Baranova, M.; Gong, Q. Trade-offs in morphology and electrical performance of selenium-deficient Cu(In,Ga)Se2 precursors: Systematic analysis of In2Se volatilization. Sol. Energy Mater. Sol. Cells 2026, 294, 113876. [Google Scholar] [CrossRef]
- Neupane, S.; Li, D.-B.; Jamarkattel, M.K.; Abudulimu, A.; Jiang, C.-S.; Bista, S.S.; Adhikari, A.; Budhathoki, S.; Sharif, H.; Lamichhane, K.; et al. Evaporated CdSe for efficient polycrystalline CdSeTe thin-film solar cells. ACS Energy Lett. 2024, 9, 6233–6237. [Google Scholar] [CrossRef]
- Hegedus, S.; Shafarman, W. Thin-film solar cells: Device measurements and analysis. Prog. Photovolt. 2004, 12, 155–176. [Google Scholar] [CrossRef]
- Sozzi, G.; Troni, F.; Menozzi, R. On the combined effects of window/buffer and buffer/absorber conduction-band offsets, buffer thickness and doping on thin-film solar cell performance. Sol. Energy Mater. Sol. Cells 2014, 121, 126–136. [Google Scholar] [CrossRef]
- Wang, T.; Daiber, B.; Frost, J.M.; Mann, S.A.; Garnett, E.C.; Walsh, A.; Ehrler, B. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 2017, 10, 509–515. [Google Scholar] [CrossRef]
- Yang, J.; Du, H.W.; Li, Y.; Gao, M.; Wan, Y.Z.; Xu, F.; Ma, Z.Q. Structural defects and recombination behavior of excited carriers in Cu(In,Ga)Se2 solar cells. AIP Adv. 2016, 6, 085215. [Google Scholar] [CrossRef]
- Liao, Y.; Kuo, S.; Lin, W.; Lai, F.; Hsieh, D.; Tsai, M.; Chen, S.; Chiou, D.; Chang, J.; Wu, K.; et al. Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells. Opt. Express 2012, 20, A836–A842. [Google Scholar] [CrossRef]
- Prot, A.J.-C.M.; Melchiorre, M.; Dingwell, F.; Zelenina, A.; Elanzeery, H.; Lomuscio, A.; Dalibor, T.; Guc, M.; Fonoll-Rubio, R.; Izquierdo-Roca, V.; et al. Composition variations in Cu(In,Ga)(S,Se)2 solar cells: Not a gradient, but an interlaced network of two phases. APL Mater. 2023, 11, 101120. [Google Scholar] [CrossRef]
- Massé, G.; Redjai, E. Radiative recombination and shallow centers in CuInSe2. J. Appl. Phys. 1984, 56, 1154–1159. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, D.; Zhao, M.; Gong, Q.; Guo, L.; Ouyang, L.; Sun, R.; Wei, Y.; Zhan, S. The effects of annealing temperature on CIGS solar cells by sputtering from quaternary target with Se-free post annealing. Appl. Surf. Sci. 2017, 413, 175–180. [Google Scholar] [CrossRef]
- Grover, S.; Li, J.V.; Young, D.L.; Stradins, P.; Branz, H.M. Reformulation of solar cell physics to facilitate experimental separation of recombination pathways. Appl. Phys. Lett. 2013, 103, 93502. [Google Scholar] [CrossRef]
- Li, J.V.; Grover, S.; Contreras, M.A.; Ramanathan, K.; Kuciauskas, D.; Noufi, R. A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions. Sol. Energy Mater. Sol. Cells 2014, 124, 143–149. [Google Scholar]
- Chantana, J.; Nishimura, T.; Kawano, Y.; Suyama, N.; Yamada, A.; Kimoto, Y.; Kato, T.; Sugimoto, H.; Minemoto, T. Aging effect of a Cu(In,Ga)(S,Se)2 absorber on the photovoltaic performance of its Cd-free solar cell fabricated by an all-dry process: Its carrier recombination analysis. Adv. Energy Mater. 2019, 9, 1902896. [Google Scholar]
- Wang, Y.; Muryobayashi, T.; Nakada, K.; Li, Z.; Yamada, A. Correlation between carrier recombination and valence band offset effect of graded Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 2019, 201, 110070. [Google Scholar] [CrossRef]
- Wang, C.; Zhuang, D.; Zhao, M.; Li, Y.; Tong, H.; Wang, H.; Wei, J.; Gong, Q. High-performance sub-micron CIGSSe solar cells optimized for sodium doping by adjusting diffusion barriers. Chem. Eng. J. 2022, 439, 135713. [Google Scholar] [CrossRef]
- Dong, L.; Tao, S.; Zhao, M.; Zhuang, D.; Gong, Q.; Zhu, H.; Wang, Y.; Li, Y.; Wang, H.; Jia, M.; et al. Passivation of grain boundaries and defects in CZTSSe solar cells by in situ Na doping. Sol. RRL 2023, 7, 2300061. [Google Scholar] [CrossRef]
- Jiang, C.S.; Noufi, R.; Ramanathan, K.; AbuShama, J.A.; Moutinho, H.R.; Al-Jassim, M.M. Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device? Appl. Phys. Lett. 2004, 85, 2625–2627. [Google Scholar] [CrossRef]
- Czudek, A.; Urbaniak, A.; Eslam, A.; Wuerz, R.; Igalson, M. Grain boundary barrier model can explain the beneficial effect of alkali doping in Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 2025, 279, 113252. [Google Scholar] [CrossRef]
- Cojocaru-Mirédin, O.; Raghuwanshi, M.; Wuerz, R.; Sadewasser, S. Grain boundaries in Cu(In,Ga)Se2: A review of composition–electronic property relationships by atom probe tomography and correlative microscopy. Adv. Funct. Mater. 2021, 31, 2103119. [Google Scholar] [CrossRef]
- Yan, Y.; Jiang, C.S.; Noufi, R.; Wei, S.H.; Moutinho, H.R.; Al-Jassim, M.M. Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films. Phys. Rev. Lett. 2007, 99, 235504. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Wang, H.; Jia, M.; Han, J.; Wu, Z.; Zhou, J.; Baranova, M.; Zhu, H.; Zhao, M.; Zhuang, D. Ge-doped CZTSe solar cell efficiency beyond 14% by suppressing recombination. Adv. Funct. Mater. 2025, 35, 2423251. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jia, M.; Zhuang, D.; Zhao, M.; Wu, Z.; Han, J.; He, Y.; Zhou, J.; Baranova, M.; Lu, W.; Gong, Q. A Novel Ge-Doping Approach for Grain Growth and Recombination Suppression in Buffer-Free CIGSe Solar Cells. Materials 2026, 19, 499. https://doi.org/10.3390/ma19030499
Jia M, Zhuang D, Zhao M, Wu Z, Han J, He Y, Zhou J, Baranova M, Lu W, Gong Q. A Novel Ge-Doping Approach for Grain Growth and Recombination Suppression in Buffer-Free CIGSe Solar Cells. Materials. 2026; 19(3):499. https://doi.org/10.3390/ma19030499
Chicago/Turabian StyleJia, Mengyao, Daming Zhuang, Ming Zhao, Zhihao Wu, Junsu Han, Yuan He, Jihui Zhou, Maria Baranova, Wei Lu, and Qianming Gong. 2026. "A Novel Ge-Doping Approach for Grain Growth and Recombination Suppression in Buffer-Free CIGSe Solar Cells" Materials 19, no. 3: 499. https://doi.org/10.3390/ma19030499
APA StyleJia, M., Zhuang, D., Zhao, M., Wu, Z., Han, J., He, Y., Zhou, J., Baranova, M., Lu, W., & Gong, Q. (2026). A Novel Ge-Doping Approach for Grain Growth and Recombination Suppression in Buffer-Free CIGSe Solar Cells. Materials, 19(3), 499. https://doi.org/10.3390/ma19030499

