Synergy in Polyphase Materials—Harnessing the Power of Glass and Ceramics
Conflicts of Interest
List of Contributions
- Veselov, I.; Shakhgildyan, G.; Savinkov, V.; Golubev, N.; Tregubov, K.; Vinogradov, D.; Avakyan, L.; Ojovan, M.; Ghosh, M.; Sigaev, V. Ultra-Strong Transparent ZnAl2O4 Glass-Ceramics via Controlled Crystallization and Ion Exchange. Materials 2025, 18, 5230. https://doi.org/10.3390/ma18225230.
- Maltsev, S.; Dymshits, O.; Alekseeva, I.; Volokitina, A.; Tenevich, M.; Bachina, A.; Bogdanov, K.; Zapalova, S.; Shakhgildyan, G.; Zhilin, A. Glass-Ceramics of the Lithium Aluminosilicate System Nucleated by TiO2: The Role of Redox Conditions of Glass Melting in Phase Transformations and Properties. Materials 2025, 18, 785. https://doi.org/10.3390/ma18040785.
- Monrós, G.; Esteve, V.; Delgado, C.; Monrós-Andreu, G.; Llusar, M. In Search of Ultra-Black Ceramic Pigments Using Microwaves: Delafossite Cuprates CuMO2 (M = Mn, Fe, Cr). Materials 2025, 18, 4910. https://doi.org/10.3390/ma18214910.
- Thiem, M.; Yan, R.; Weidenkaff, A.; Xie, W. Thermoelectric Properties of NbCoNixSn (x = 0–1). Materials 2025, 18, 3189. https://doi.org/10.3390/ma18133189.
- Liu, J.; Guo, J.; Deng, J.; Fan, S.; Cai, X.; Kou, S.; Yang, S. Preparation and Properties of Boron Modified Phenolic Resin for Automotive Friction Materials. Materials 2025, 18, 1624. https://doi.org/10.3390/ma18071624.
- Feliksik, K.; Adamczyk-Habrajska, M.; Makowska, J.; Bartkowska, J.A.; Pikula, T.; Panek, R.; Starczewska, O. The Impact of the Final Sintering Temperature on the Microstructure and Dielectric Properties of Ba0.75Ca0.25TiO3 Perovskite Ceramics. Materials 2024, 17, 5210. https://doi.org/10.3390/ma17215210.
- Zou, Y.; Fang, B.; Lu, X.; Zhang, S.; Ding, J. Preparation and Properties of Nb5+-Doped BCZT-Based Ceramic Thick Films by Scraping Process. Materials 2024, 17, 4348. https://doi.org/10.3390/ma17174348.
- Liu, Q.; Chen, H.; Wu, X.; Yan, J.; Yang, B.; Shi, C.; Li, Y.; Yu, S. Microstructure and Bioactivity of Ca- and Mg-Modified Silicon Oxycarbide-Based Amorphous Ceramics. Materials 2024, 17, 6159. https://doi.org/10.3390/ma17246159.
References
- Höland, W.; Beall, G.H.; Smith, C.M. Glass-ceramics: From ideas to products. J. Am. Ceram. Soc. 2025, 108, e20086. [Google Scholar] [CrossRef]
- Naumov, A.S.; Sigaev, V.N. Transparent Lithium-Aluminum-Silicate Glass-Ceramics (Overview). Glass Ceram. 2024, 80, 491–499. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Y.; Jiang, G.; Fang, G.; Xue, Y.; Tan, Z.; Pan, D. Advances in glass-ceramics raw material selection-performance modulation-application expression: A review. Mater. Today 2025, 89, 270–292. [Google Scholar] [CrossRef]
- McCloy, J.S.; Schuller, S. Vitrification of wastes: From unwanted to controlled crystallization, a review. Compt. Rendus Geosci. 2022, 354, 121–160. Available online: https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.5802/crgeos.111/ (accessed on 6 January 2026). [CrossRef]
- Zanotto, E.D. A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 2010, 89, 19–27. [Google Scholar]
- Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. Glass-ceramics: Their production from wastes—A Review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef]
- Colombo, P.; Brusatin, G.; Bernardo, V.; Scarinci, G. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr. Opin. Solid State Mater. Sci. 2003, 7, 225–239. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Louzguine-Luzgin, D.V. Role of Structural Changes at Vitrification and Glass–Liquid Transition. Materials 2025, 18, 3886. [Google Scholar] [CrossRef] [PubMed]
- Ojovan, M.I.; Darmaev, M.V.; Mashanov, A.A. Advances in glass and glass crystalline materials: An overview. AIMS Mater. Sci. 2025, 12, 1241–1245. [Google Scholar] [CrossRef]
- Shakhgildyan, G.; Ojovan, M.I. Advanced Glasses and Glass-Ceramics; MDPI: Basel, Switzerland, 2024; 168p. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shakhgildyan, G.; Xu, K.; Ojovan, M.I. Synergy in Polyphase Materials—Harnessing the Power of Glass and Ceramics. Materials 2026, 19, 478. https://doi.org/10.3390/ma19030478
Shakhgildyan G, Xu K, Ojovan MI. Synergy in Polyphase Materials—Harnessing the Power of Glass and Ceramics. Materials. 2026; 19(3):478. https://doi.org/10.3390/ma19030478
Chicago/Turabian StyleShakhgildyan, Georgiy, Kai Xu, and Michael I. Ojovan. 2026. "Synergy in Polyphase Materials—Harnessing the Power of Glass and Ceramics" Materials 19, no. 3: 478. https://doi.org/10.3390/ma19030478
APA StyleShakhgildyan, G., Xu, K., & Ojovan, M. I. (2026). Synergy in Polyphase Materials—Harnessing the Power of Glass and Ceramics. Materials, 19(3), 478. https://doi.org/10.3390/ma19030478
