Advances in New Alloys, Polymers and Composites for Biomedical Applications
Author Contributions
Conflicts of Interest
References
- Karunakar, K.K.; Cheriyan, B.V.; Nandhini, J.; Kataria, K.; Yabase, L.; Devan, P.; Kannan, M.S. Comprehensive Review of Biomedical Metals and Strategies for Advancing Regenerative Medicine. Biomed. Mater. Devices 2025, 5, 1280–1289. [Google Scholar] [CrossRef]
- Ladani, L.; Palmieri, M. Review of the Use of Metals in Biomedical Applications: Biocompatibility, Additive Manufacturing Technologies, and Standards and Regulations. Metals 2024, 14, 1039. [Google Scholar] [CrossRef]
- Zaman, H.A.; Sharif, S.; Idris, M.H.; Kamarudin, A. Metallic Biomaterials for Medical Implant Applications: A Review. Appl. Mech. Mater. 2015, 735, 19–25. [Google Scholar] [CrossRef]
- Mahapatro, A. Metals for Biomedical Applications and Devices. J. Biomater. Tissue Eng. 2012, 2, 259–268. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2023, 17, 114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gil, F.; Rodríguez, D.; Planell, J. Grain growth kinetics of pure titanium. Scr. Met. Mater. 1995, 33, 1361–1366. [Google Scholar] [CrossRef]
- Senopati, G.; Rahman Rashid, R.A.; Kartika, I.; Palanisamy, S. Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals 2023, 13, 194. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.H. A review on alloy design, biological response, and strengthening of beta-titanium alloys as biomaterials. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 121, 16. [Google Scholar] [CrossRef]
- Rodriguez-González, R.; Monsalve-Guil, L.; Jimenez-Guerra, A.; Velasco-Ortega, E.; Moreno-Muñoz, J.; Nuñez-Marquez, E.; Pérez, R.A.; Gil, J.; Ortiz-Garcia, I. Relevant Aspects of Titanium Topography for Osteoblastic Adhesion and Inhibition of Bacterial Colonization. Materials 2023, 16, 3553. [Google Scholar] [CrossRef]
- Idelsohn, S.; Peña, J.; Lacroix, D.; Planell, J.A.; Gil, F.J.; Arcas, A. Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). J. Mater. Sci. Mater. Med. 2004, 15, 541–546. [Google Scholar] [CrossRef]
- Shahee, S.A.; Saeed, E.M.; Radhi, N.S. Ni-free Ti-based shape memory alloys: Review. AIP Conf. Proc. 2024, 3009, 030041. [Google Scholar] [CrossRef]
- Gil, F.J.; Solano, E.; Peña, J.; Engel, E.; Mendoza, A.; Planell, J.A. Microstructural, mechanical and citotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J. Mater. Sci. Mater. Med. 2004, 15, 1181–1185. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q. Magnesium-based biodegradable metal materials: Past, present and future. Biomater. Transl. 2021, 2, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Escobar, D.; Champagne, S.; Yilmazer, H.; Dikici, B.; Boehlert, C.J.; Hermawan, H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomater. 2019, 97, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Giammona, G.; Craparo, E.F. Biomedical Applications of Polylactide (PLA) and Its Copolymers. Molecules 2018, 23, 980. [Google Scholar] [CrossRef] [PubMed]
- Kurowiak, J.; Klekiel, T.; Będziński, R. Biodegradable Polymers in Biomedical Applications: A Review—Developments, Perspectives and Future Challenges. Int. J. Mol. Sci. 2023, 24, 16952. [Google Scholar] [CrossRef]
- Ebbinghaus, T.; Lang, G.; Scheibel, T. Biomimetic polymer fibers—Function by design. Bioinspir. Biomim. 2023, 18, 041003. [Google Scholar] [CrossRef]
- Balcerak-Woźniak, A.; Dzwonkowska-Zarzycka, M.; Kabatc-Borcz, J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives. Materials 2024, 17, 4255. [Google Scholar] [CrossRef]
- Wu, J.; Xue, W.; Yun, Z.; Liu, Q.; Sun, X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater. Today Bio. 2024, 10, 100998. [Google Scholar] [CrossRef]
- Boase, N.R.B.; Gillies, E.R.; Goh, R.; Kieltyka, R.E.; Matson, J.B.; Meng, F.; Sanyal, A.; Sedláček, O. Stimuli-Responsive Polymers at the Interface with Biology. Biomacromolecules 2024, 25, 5417–5436. [Google Scholar] [CrossRef]
- Guo, Z.; Poot, A.; Grijpma, D.K. Advanced polymer-based composites and structures for biomedical applications. Eur. Polym. J. 2021, 149, 110388. [Google Scholar] [CrossRef]
- Zagho, M.M.; Hussein, E.A.; Elzatahry, A.A. Recent Overviews in Functional Polymer Composites for Biomedical Applications. Polymers 2018, 10, 739. [Google Scholar] [CrossRef]
- Anil, S.; Suresh, N.; Sweety, V.K.; Suraj, A.R.; Thomas, N.G. Biocompatible Nanocomposites: An Overview of Materials Used in Biomedical Applications. In Biocompatible Nanocomposites. Advanced Structured Materials; Balakrishnan, R., Mohammed, R., Thomas, N.G., Dalvi, Y.B., Eds.; Springer: Singapore, 2025; Volume 239. [Google Scholar] [CrossRef]
- Meretsky, C.R.; Polychronis, A.; Liovas, D.; Schiuma, A.T. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Cureus 2024, 16, e68872. [Google Scholar] [CrossRef]
- Qin, Y.; Wen, P.; Guo, H.; Xia, D.; Zheng, Y.; Jauer, L.; Poprawe, R.; Voshage, M.; Schleifenbaum, J.H. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater. 2019, 98, 3–22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gil, J.; Velasco-Ortega, E.; Rondón-Romero, J.L.; Moreno-Muñoz, J.; Nuñez-Marquez, E.; Puigdollers, A.; Pegueroles, M. Advances in New Alloys, Polymers and Composites for Biomedical Applications. Materials 2026, 19, 304. https://doi.org/10.3390/ma19020304
Gil J, Velasco-Ortega E, Rondón-Romero JL, Moreno-Muñoz J, Nuñez-Marquez E, Puigdollers A, Pegueroles M. Advances in New Alloys, Polymers and Composites for Biomedical Applications. Materials. 2026; 19(2):304. https://doi.org/10.3390/ma19020304
Chicago/Turabian StyleGil, Javier, Eugenio Velasco-Ortega, José Luis Rondón-Romero, Jesus Moreno-Muñoz, Enrique Nuñez-Marquez, Andreu Puigdollers, and Marta Pegueroles. 2026. "Advances in New Alloys, Polymers and Composites for Biomedical Applications" Materials 19, no. 2: 304. https://doi.org/10.3390/ma19020304
APA StyleGil, J., Velasco-Ortega, E., Rondón-Romero, J. L., Moreno-Muñoz, J., Nuñez-Marquez, E., Puigdollers, A., & Pegueroles, M. (2026). Advances in New Alloys, Polymers and Composites for Biomedical Applications. Materials, 19(2), 304. https://doi.org/10.3390/ma19020304

