Electrochemical Investigations of Galium verum Ethanolic Extract as a Steel Corrosion Eco-Inhibitor in the Acid Media: An Unexpected Versatility of Plant Chemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chromatography Methods
2.2.1. RP-HPLC Chromatography
2.2.2. GC-MS Chromatography
2.3. Electrochemical Methods
3. Results and Discussion
3.1. Brief GV Extract Chemical Characterization
3.2. Electrochemical Experimental Results at 20 °C (293 K)
3.2.1. OCP Assay
3.2.2. Tafel PP Assay
3.2.3. EIS Assay
3.3. Electrochemical Experimental Results at 30 °C (303 K)
3.3.1. OCP Assay
3.3.2. Tafel-PP Assay
3.3.3. EIS Assay
3.4. Electrochemical Experimental Results at 40 °C (313 K)
3.4.1. OCP Assay
3.4.2. Tafel-PP Assay
3.4.3. EIS Assay
3.5. Electrochemical Experimental Results at 50 °C (323 K)
3.5.1. OCP Assay
3.5.2. Tafel-PP Assay
3.5.3. EIS Assay
3.6. GV Extract—A New Corrosion Eco-Inhibitor
3.7. Consideration on Inhibitor Corrosion Mechanism of GV Extract
- -
- The anodic carbon steel dissolution reactions:
- -
- The cathodic hydrogen evolution reactions:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajni, R. Industrial applications of green chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2020, 2, 263. [Google Scholar] [CrossRef]
- Lgaz, H.; Lee, H.-S. Computational Exploration of Phenolic Compounds in Corrosion Inhibition: A Case Study of Hydroxytyrosol and Tyrosol. Materials 2023, 16, 6159. [Google Scholar] [CrossRef] [PubMed]
- Al-Moubaraki, A.H.; Chaouiki, A.; Alahmari, J.M.; Al-Hammadi, W.A.; Noor, E.A.; Al-Ghamdi, A.A.; Ko, Y.G. Development of Natural Plant Extracts as Sustainable Inhibitors for Efficient Protection of Mild Steel: Experimental and First-Principles Multi-Level Computational Methods. Materials 2022, 15, 8688. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, J.K. Corrosion protection of mild steel in corrosive media, a shift from synthetic to natural corrosion inhibitors: A review. Bull. Natl. Res. Cent. 2024, 48, 26. [Google Scholar] [CrossRef]
- Gabsi, M.; Ferkous, H.; Delimi, A.; Boublia, A.; Boulechfar, C.; Kahlouche, A.; Darwish, A.S.; Lemaoui, T.; Benguerba, Y. The curious case of polyphenols as green corrosion inhibitors: A review on their extraction, design, and applications. Environ. Sci. Pollut. Res. 2023, 30, 59081–59105. [Google Scholar] [CrossRef]
- Zaher, A.; Aslam, R.; Lee, H.S.; Khafouri, A.; Boufellous, M.; Alrashdi, A.A.; Lgaz, H.; Ouhssine, M. A combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution. Arab. J. Chem. 2022, 15, 103573. [Google Scholar] [CrossRef]
- Khadom, A.A.; Abd, A.N.; Ahmed, N.A.; Kadhim, M.M.; Fadhil, A.A. Combined influence of iodide ions and Xanthium Strumarium leaves extract as eco-friendly corrosion inhibitor for low-carbon steel in hydrochloric acid. Curr. Res. Green Sustain. Chem. 2022, 5, 100278. [Google Scholar] [CrossRef]
- da Silva, M.V.L.; de Britto Policarpi, E.; Spinelli, A. Syzygium cumini leaf extract as an eco-friendly corrosion inhibitor for carbon steel in acidic medium. J. Taiwan Inst. Chem. Eng. 2021, 129, 342–349. [Google Scholar] [CrossRef]
- Prasad, D.; Dagdag, O.; Safi, Z.; Wazzan, N.; Guo, L. Cinnamoum tamala leaves extract highly efficient corrosion bio-inhibitor for low carbon steel: Applying computational and experimental studies. J. Mol. Liq. 2022, 347, 118218. [Google Scholar] [CrossRef]
- Moustafa, A.H.E.; Abdel-Rahman, H.H.; Awad, M.K.; Naby, A.A.N.A.; Seleim, S.M. Molecular dynamic simulation studies and surface characterization of carbon steel corrosion with changing green inhibitors concentrations and temperatures. Alex. Eng. J. 2022, 61, 2492–2519. [Google Scholar] [CrossRef]
- Huang, L.; Yang, K.P.; Zhao, Q.; Li, H.J.; Wang, J.Y.; Wu, Y.C. Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1 M HCl solution. Bioelectrochemistry 2022, 143, 107969. [Google Scholar] [CrossRef] [PubMed]
- Zehra, B.F.; Said, A.; Eddine, H.M.; Hamid, E.; Najat, H.; Rachid, N.; Toumert, L.I. Crataegus oxyacantha leaves extract for carbon steel protection against corrosion in 1M HCl: Characterization, electrochemical, theoretical research, and surface analysis. J. Mol. Struct. 2022, 1259, 132737. [Google Scholar] [CrossRef]
- Abbout, S.; Chebabe, D.; Zouarhi, M.; Rehioui, M.; Lakbaibi, Z.; Hajjaji, N. Ceratonia Siliqua L seeds extract as eco-friendly corrosion inhibitor for carbon steel in 1 M HCl: Characterization, electrochemical, surface analysis, and theoretical studies. J. Mol. Struct. 2021, 1240, 130611. [Google Scholar] [CrossRef]
- Fernine, Y.; Salim, R.; Arrousse, N.; Haldhar, R.; El Hajjaji, F.; Kim, S.C.; Touhami, M.E.; Taleb, M. Anti-corrosion performance of Ocimum basilicum seed extract as environmental friendly inhibitors for mild steel in HCl solution: Evaluations of electrochemical, EDX, DFT and Monte Carlo. J. Mol. Liq. 2022, 355, 118867. [Google Scholar] [CrossRef]
- Zakaria, F.A.; Hamidon, T.S.; Hussin, M.H. Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte. J. Indian Chem. Soc. 2022, 99, 100329. [Google Scholar] [CrossRef]
- Damej, M.; Skal, S.; Aslam, J.; Zouarhi, M.; Erramli, H.; Alrashdi, A.A.; Lee, H.S.; Lgaz, H. An environmentally friendly formulation based on Cannabis sativa L. seed oil for corrosion inhibition of E24 steel in HCl medium: Experimental and theoretical study. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128745. [Google Scholar] [CrossRef]
- Ghalib, L.; Al Jaaf, H.J.M.; Abdulghani, H.A. Temperature effect on the efficiency of Eucalyptus Camaldulensis leaves in the acid corrosion of carbon steel. Mater. Today Proc. 2021, 42, 2475–2481. [Google Scholar] [CrossRef]
- Shahini, M.H.; Keramatinia, M.; Ramezanzadeh, M.; Ramezanzadeh, B.; Bahlakeh, G. Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution. J. Mol. Liq. 2021, 342, 117570. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, L.; Zhu, M.; Wang, K.; Zhang, R.; He, Z.; Lin, Y.; Leng, S.; Anadebe, V.C.; Zheng, X. Akebia trifoliate koiaz peels extract as environmentally benign corrosion inhibitor for mild steel in HCl solutions: Integrated experimental and theoretical investigations. J. Ind. Eng. Chem. 2021, 101, 227–236. [Google Scholar] [CrossRef]
- Shahmoradi, A.R.; Ranjbarghanei, M.; Javidparvar, A.A.; Guo, L.; Berdimurodov, E.; Ramezanzadeh, B. Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. J. Mol. Liq. 2021, 338, 116550. [Google Scholar] [CrossRef]
- Hossain, N.; Chowdhury, M.A.; Iqbal, A.P.; Islam, M.S.; Omar, N.Y.S.; Saifullah, A.Z.A. Paederia Foetida leaves extract as a green corrosion inhibitor for mild steel in hydrochloric acid solution. Curr. Res. Green Sustain. Chem. 2021, 4, 100191. [Google Scholar] [CrossRef]
- Aigbogun, J.A.; Adebayo, M.A. Green inhibitor from Thaumatococcus daniellii Benn for corrosion mitigation of mild steel in 1M HCl. Curr. Res. Green Sustain. Chem. 2021, 4, 100201. [Google Scholar] [CrossRef]
- Manh, T.D.; Huynh, T.L.; Thi, B.V.; Lee, S.; Yi, J.; Nguyen Dang, N. Corrosion inhibition of mild steel in hydrochloric acid environments containing sonneratia caseolaris leaf extract. ACS Omega 2022, 7, 8874–8886. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P.; Said-Ahmed, M.; Jama, C.; Lebrini, M. Molecules from Sargassum algae as Green Inhibitor for C38 in HCl Medium: Extraction, Characterization and Electrochemical Study. Coatings 2023, 13, 2076. [Google Scholar] [CrossRef]
- Prabakaran, M.; Hemapriya, V.; Kim, S.H.; Chung, I.-M. Evaluation of Antioxidant and Anticorrosion Properties of Epipremnum aureum. Arab. J. Sci. Eng. 2019, 44, 169–178. [Google Scholar] [CrossRef]
- Mauro, A.C.; Ribeiro, B.D.; Garrett, R.; Borges, R.M.; da Silva, T.U.; de Paula Machado, S.; de Araujo, J.R.; de Oliveira Massafra, S.; de Oliveira Junior, F.O.R.; D’Elia, E. Ziziphus joazeiro Stem Bark Extract as a Green Corrosion Inhibitor for Mild Steel in Acid Medium. Processes 2021, 9, 1323. [Google Scholar] [CrossRef]
- Badea, G.E.; Stănăşel, O.; Bassyouni, M.; Toderaș, M.; Petrehel, A.I.G.; Ionaș, C.D. An investigation on the antioxidant capabilities, chemical analysis and potential green applications of the yellow bedstraw (galium verum) ethanol extract. 2024. [Google Scholar] [CrossRef]
- Badea, G.E.; Dzitac, S.; Marin, L.; Petrehele, A.I.G.; Porumb, C.; Badea, P.G. An Investigation on the Electrochemical Behavior of Steel in the Presence of an Eco-inhibitor. In Proceedings of the 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 9–10 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Bavcon, J.; Malovrh, K.; Tomšič, M.; Ravnjak, B. In Situ Conservation of Dry Meadows. Land 2024, 13, 315. [Google Scholar] [CrossRef]
- Kim, E.-J.; Lee, S.-H.; Kim, S.-H.; Park, J.-H.; You, Y.-H. Changes in Competitors, Stress Tolerators, and Ruderals (CSR) Ecological Strategies after the Introduction of Shrubs and Trees in Disturbed Semiarid Steppe Grasslands in Hulunbuir, Inner Mongolia. Biology 2023, 12, 1479. [Google Scholar] [CrossRef]
- Hategan, A.R.; Puscas, R.; Cristea, G.; Dehelean, A.; Guyon, F.; Molnar, A.J.; Mirel, V.; Magdas, D.A. Opportunities and Constraints in Applying Artificial Neural Networks (ANNs) in Food Authentication. Honey—A Case Study. Appl. Sci. 2021, 11, 6723. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Ronga, D.; Avato, P. Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps. Molecules 2020, 25, 2333. [Google Scholar] [CrossRef]
- Mocan, A.; Diuzheva, A.; Bădărău, S.; Moldovan, C.; Andruch, V.; Carradori, S.; Campestre, C.; Tartaglia, A.; De Simone, M.; Vodnar, D.; et al. Liquid Phase and Microwave-Assisted Extractions for Multicomponent Phenolic Pattern Determination of Five Romanian Galium Species Coupled with Bioassays. Molecules 2019, 24, 1226. [Google Scholar] [CrossRef] [PubMed]
- Laanet, P.R.; Saar-Reismaa, P.; Jõul, P.; Bragina, O.; Vaher, M. Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules 2023, 28, 2867–2884. [Google Scholar] [CrossRef]
- Turcov, D.; Barna, A.S.; Trifan, A.; Blaga, A.C.; Tanasă, A.M.; Suteu, D. Antioxidants from Galium verum as Ingredients for the Design of New Dermatocosmetic Products. Plants 2022, 11, 2454. [Google Scholar] [CrossRef]
- Bradic, J.; Andjic, M.; Novakovic, J.; Kocovic, A.; Tomovic, M.; Petrovic, A.; Nikolic, M.; Mitrovic, S.; Jakovljevic, V.; Pecarski, D. Lady’s Bedstraw as a Powerful Antioxidant for Attenuation of Doxorubicin-Induced Cardiotoxicity. Antioxidants 2023, 12, 1277. [Google Scholar] [CrossRef]
- Semenescu, A.-D.; Moacă, E.-A.; Iftode, A.; Dehelean, C.-A.; Tchiakpe-Antal, D.-S.; Vlase, L.; Vlase, A.-M.; Muntean, D.; Chioibaş, R. Phytochemical and Nutraceutical Screening of Ethanol and Ethyl Acetate Phases of Romanian Galium verum Herba (Rubiaceae). Molecules 2023, 28, 7804. [Google Scholar] [CrossRef] [PubMed]
- Shinkovenko, I.L.; Kashpur, N.V.; Ilyina, T.V.; Kovalyova, A.M.; Goryacha, O.V.; Koshovyi, O.M.; Toryanyk, E.L.; Kryvoruchko, O.V. The immunomodulatory activity of the extracts and complexes of biologically active compounds of Galium verum L. herb. Čes. Slov. Farm. 2018, 67, 25–29. [Google Scholar] [CrossRef]
- Kanso, M.A.; Hijazi, M.A.; El-Lakany, A.; Aboul-Ela, M. Review on phytochemical constituents and pharmacological activities of genus Galium. J. Appl. Pharm. Sci. 2024, 14, 46–56. [Google Scholar] [CrossRef]
- Farcas, A.D.; Mot, A.C.; Zagrean-Tuza, C.; Toma, V.; Cimpoiu, C.; Hosu, A.; Parvu, M.; Roman, I.; Silaghi-Dumitrescu, R. Chemomapping and biochemical-modulatory and antioxidant/prooxidant effect of Galium verum extract during acute restraint and dark stres in female rats. PLoS ONE 2018, 13, e0200022. [Google Scholar] [CrossRef]
- Antoniak, K.; Studzińska-Sroka, E.; Szymański, M.; Dudek-Makuch, M.; Cielecka-Piontek, J.; Korybalska, K. Antiangiogenic, Anti-Inflammatory and Antioxidant Properties of Bidens tripartite Herb, Galium verum Herb and Rumex hydrolapathum Root. Molecules 2023, 28, 4966. [Google Scholar] [CrossRef]
- Semenescu, A.-D.; Moacă, E.-A.; Iftode, A.; Dehelean, C.-A.; Tchiakpe-Antal, D.-S.; Vlase, L.; Rotunjanu, S.; Muntean, D.; Chiriac, S.D.; Chioibaş, R. Recent Updates Regarding the Antiproliferative Activity of Galium verum Extracts on A375 Human Malignant Melanoma Cell Line. Life 2024, 14, 112. [Google Scholar] [CrossRef]
- Vuletic, M.; Jakovljevic, V.; Zivanovic, S.; Papic, M.; Papic, M.; Mladenovic, R.; Zivkovic, V.; Srejovic, I.; Jeremic, J.; Andjic, M.; et al. The Evaluation of Healing Properties of Galium verum-Based Oral Gel in Aphthous Stomatitis in Rats. Molecules 2022, 27, 4680. [Google Scholar] [CrossRef]
- Gurnule, T.R.; Gautam, S.P.; Awari, D.M.; Kediya, A.S.; Gandhare, B.R. Review: Bioactive Components, Phytochemical Screening, Traditional Claims and Pharmacological Applications of Galium verum. IJRAR 2024, 11, 743. [Google Scholar]
- Zaichikova, S.G.; Bokov, D.O.; Kiselevskii, M.V.; Antsyshkina, A.M.; Bondar, A.A.; Prostodusheva, T.V.; Shchepochkina, O.Y.; Gegechkori, V.I. Determination of The Chemical Composition of Lady’s Bedstraw (Galium verum L.) Herb Extract By GC-MS. Pharmacogn. J. 2020, 12, 857–863. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Galium verum—A Review. Indo Am. J. Pharm. Res. 2018, 5, 2142–2149. [Google Scholar]
- Casanova, L.; Ceriani, F.; Messinese, E.; Paterlini, L.; Beretta, S.; Bolzoni, F.M.; Brenna, A.; Diamanti, M.V.; Ormellese, M.; Pedeferri, M. Recent Advances in the Use of Green Corrosion Inhibitors to Prevent Chloride-Induced Corrosion in Reinforced Concrete. Materials 2023, 16, 7462. [Google Scholar] [CrossRef]
- Valdez-Salas, B.; Vazquez-Delgado, R.; Salvador-Carlos, J.; Beltran-Partida, E.; Salinas-Martinez, R.; Cheng, N.; Curiel-Alvarez, M. Azadirachta indica Leaf Extract as Green Corrosion Inhibitor for Reinforced Concrete Structures: Corrosion Effectiveness against Commercial Corrosion Inhibitors and Concrete Integrity. Materials 2021, 14, 3326. [Google Scholar] [CrossRef] [PubMed]
- Radha, K.; Patel, D.; Nithya, V.V.; Saravanan, D. Experimental study on corrosion inhibition of mild steel using Mukia maderaspatana leaves extract as green inhibitor. Surf. Sci. Tech. 2024, 2, 27. [Google Scholar] [CrossRef]
- Badea, G.E.; Fodor, A.; Petrehele, A.I.G.; Maior, I.; Toderaș, M.; Morgovan, C.M. Evaluation of Phosphopolyoxometalates with Mixed Addenda (Mo, W, V) as Corrosion Inhibitors for Steels. Materials 2023, 16, 7600. [Google Scholar] [CrossRef]
- El-Hashemy, M.A.; Almehmadi, A.M. Evaluation of Glebionis coronaria L. flower extract as a novel green inhibitor for mild steel corrosion in acidic environment. Biomass Convers. Biorefinery 2024, 15, 1121–1137. [Google Scholar] [CrossRef]
- Pahuja, P.; Yadav, M.; Dhanda, M.; Arora, R.; Ahlawat, S.; Satija, A.; Jhanjhariya, N.; Kumar, S.; Lata, S. An eco-friendly corrosion inhibitor Cuscuta reflexa extract and PEG400 for mild steel inhibition in acidic medium: Computational and experimental investigations. Environ. Sci. Pollut. Res. 2023, 30, 98701–98717. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Bahlakeh, G.; Sanaei, Z.; Ramezanzadeh, B. Studying the Urtica dioica leaves extract inhibition effect on the mild steel corrosion in 1 M HCl solution: Complementary experimental, ab initio quantum mechanics, Monte Carlo and molecular dynamics studies. J. Mol. Liq. 2018, 272, 120–136. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Ghaderi, M.; Ahmad Ramasani, S.A.; Mahdavian, M. Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid media. Sci. Rep. 2023, 13, 3737. [Google Scholar] [CrossRef]
- Pastore, C.; Dal Santo, S.; Zenoni, S.; Movahed, N.; Allegro, G.; Valentini, G.; Filippetti, I.; Tornielli, G.B. Whole Plant Temperature Manipulation Affects Flavonoid Metabolism and the Transcriptome of Grapevine Berries. Front. Plant Sci. 2017, 8, 929. [Google Scholar] [CrossRef]
- Sulaimon, A.A.; Murungi, P.I.; Tackie-Otoo, B.N.; Nwankwo, P.C.; Bustam, M.A. Analysis of natural okra extracts as corrosion inhibitors for mild steel in acidic medium. Environ. Sci. Pollut. Res. 2023, 30, 119309–119328. [Google Scholar] [CrossRef]
- Pourmohseni, M.; Rashidi, A.; Karimkhani, M. Preparation of corrosion inhibitor from natural plant for mild stil immersed in an acidic environmental: Experimental and theoretical study. Sci. Rep. 2024, 14, 7937. [Google Scholar] [CrossRef] [PubMed]
- Berrissoul, A.; Dafali, A.; Benhiba, F.; Outada, H.; Warad, I.; Dikici, B.; Zarrouk, A. Experimental and theoretical insights into Artemisia Stems aqueous extract as a sustainable and eco–friendly corrosion inhibitor for mild steel in 1 M HCl environment. Environ. Sci. Pollut. Res. 2024, 31, 36643–36662. [Google Scholar] [CrossRef] [PubMed]
- Latos-Brozio, M.; Masek, A.; Piotrowska, M. Effect of enzymatic polymerization on the thermal stability of flavonoids. J. Therm. Anal. Calorim. 2023, 148, 5357–5374. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, J.Y.; Park, S.K.; Han, H.J.; Lee, K.-Y.; Kim, A.-N.; Kim, J.C.; Choi, S.-G.; Heo, H.J. Effect of storage temperature on the antioxidant activity and catechins stability of Matcha (Camellia sinensis). Food Sci. Biotechnol. 2020, 29, 1261–1271. [Google Scholar] [CrossRef]
- Sun, X.; Tian, H.; Zou, F.; Li, W.; Qiang, Y.; Hou, B. Turning Waste into Treasure: Invasive Plant Ambrosia trifida L. Leaves as a High-Efficiency Inhibitor for Steel in Simulated Pickling Solutions. Materials 2024, 17, 3758. [Google Scholar] [CrossRef]
- Haldhar, R.; Vanaraj, R.; Dagdag, O.; Berisha, A.; Kim, S.-C. Convolvulus microphyllus Extract as a Green, Effective, and Affordable Corrosion Inhibitor: Theoretical Calculations and Experimental Studies. Coatings 2023, 13, 860. [Google Scholar] [CrossRef]
- Daoudi, W.; El Aatiaoui, A.; Dagdag, O.; Zaidi, K.; Haldhar, R.; Kim, S.-C.; Oussaid, A.; Aouinti, A.; Berisha, A.; Benhiba, F.; et al. Anti-Corrosion Coating Formation by a Biopolymeric Extract of Artemisia herba-alba Plant: Experimental and Theoretical Investigations. Coatings 2023, 13, 611. [Google Scholar] [CrossRef]
- de Souza Morais, W.R.; da Silva, J.S.; Queiroz, N.M.P.; de Paiva e Silva Zanta, C.L.; Ribeiro, A.S.; Tonholo, J. Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection. Appl. Sci. 2023, 13, 7482. [Google Scholar] [CrossRef]
- Abd-El-Nabey, B.A.; Abd-El-Khalek, D.E.; El-Housseiny, S.; Mohamed, M.E. Plant extracts as corrosion and scale inhibitors: A review. Int. J. Corros. Scale Inhib. 2020, 9, 1287–1328. [Google Scholar] [CrossRef]
- Badawi, A.K.; Fahim, I.S. Acritical review on green corrosion inhibitors based on plant extracts: Advances potential presence in the market. Int. J. Corros. Scale Inhib. 2021, 10, 1385–1406. [Google Scholar] [CrossRef]
Analytical Method | Chemical Compounds |
---|---|
RP-HPLC | kaempferol, umbelliferone gallic acid quercetin catechin vanillic acid caffeic acid, |
GC-MS (over 0.1%) | Palmitic acid Linoleic acid 2-Methyl-benzene Linolenic acid Methanol Butyric acid. octyl ester 3-O-Methyl-d-glucose 1,3,6-Trideoxy-3,6-epithio-D-Fructose Benzyl benzoate Phytol 2,3,4-Trimethyloxetane 5-Hydroxy-methyl-furfural Stearic acid |
HCl 1 M + GV Extract (ppm G.A.E), at 20 °C | Ecorr, (mV/SCE) | icorr, (µA/cm2) | Rp, (Ω × cm2) | ba, (mV/dec) | −bc, (mV/dec) | IE, % |
---|---|---|---|---|---|---|
0 | −492 | 28.278 | 543.42 | 53.0 | 132.4 | - |
50 | −507 | 17.122 | 887.72 | 80.1 | 105.3 | 39.45 |
100 | −500 | 17.064 | 809.15 | 70.8 | 109.7 | 39.66 |
200 | −490 | 15.447 | 996.38 | 86.6 | 104.6 | 45.37 |
300 | −489 | 8.270 | 1270 | 74.5 | 87.9 | 70.75 |
400 | −480 | 7.127 | 1500 | 58.7 | 78.5 | 74.79 |
HCl 1 M + GV Extract (ppm G.A.E.), at 20 °C | Rs, (Ω × cm2) | Rp, (Ω × cm2) | Cdl, (µF/cm2) | IE, % |
---|---|---|---|---|
blank | 8.96 | 239.5 | 132.8 | - |
50 | 4.11 | 475.9 | 125.4 | 44.72 |
100 | 4.65 | 462.3 | 117.1 | 48.19 |
200 | 6.22 | 641.8 | 116.5 | 62.68 |
300 | 8.52 | 966.2 | 107.2 | 75.21 |
400 | 25.11 | 1112 | 101.8 | 78.46 |
HCl 1 M + GV Extract (ppm G.A.E.), at 30 °C | Ecorr, (mV) | icorr, (µA/cm2) | Rp, (Ω × cm2) | ba, (mV) | −bc, (mV) | vcorr, (µm/Y) | IE, % |
---|---|---|---|---|---|---|---|
blank | −530 | 52.1491 | 471.99 | 90 | 220 | 403.0 | - |
50 | −496 | 33.0671 | 486.57 | 79 | 122 | 366.1 | 36.59 |
100 | −510 | 31.0798 | 510.61 | 61 | 126 | 238.4 | 40.40 |
200 | −496 | 27.0590 | 595.33 | 72 | 93 | 179.8 | 48.11 |
300 | −509 | 12.6644 | 806.01 | 80 | 149 | 166.5 | 75.72 |
400 | −529 | 9.7264 | 749.23 | 70 | 84 | 126.9 | 80.56 |
1 M HCl + GV Extract (ppm G.A.E.), at 30 °C | Rs, (Ω × cm2) | Rp, (Ω × cm2) | Cdl, (µF/cm2) | IE, % |
---|---|---|---|---|
blank | 6.64 | 371.8 | 119.8 | - |
50 | 0.25 | 1011.0 | 86.89 | 63.22 |
100 | 0.87 | 1229.0 | 64.08 | 69.74 |
200 | 2.48 | 1591.0 | 62.92 | 76.63 |
300 | 0.98 | 2411.0 | 58.30 | 84.57 |
400 | 4.65 | 2683.0 | 53.20 | 86.14 |
HCl 1 M + GV Extract (ppm G.A.E.), at 40 °C | Ecorr, (mV) | icorr, (µA/cm2) | Rp, (Ω × cm2) | ba, (mV) | −bc, (mV) | vcorr, (µm/Y) | IE, % |
---|---|---|---|---|---|---|---|
blank | −530 | 52.1491 | 471.99 | 90 | 220 | 403.0 | - |
50 | −496 | 33.0671 | 486.57 | 79 | 122 | 366.1 | 36.59 |
100 | −510 | 31.0798 | 510.61 | 61 | 126 | 238.4 | 40.40 |
200 | −496 | 27.0590 | 595.33 | 72 | 93 | 179.8 | 48.11 |
300 | −509 | 12.6644 | 806.01 | 80 | 149 | 166.5 | 75.72 |
400 | −529 | 9.7264 | 749.23 | 70 | 84 | 126.9 | 81.35 |
1 M HCl + GV Extract (ppm G.A.E.), at 40 °C | Rs, (Ω × cm2) | Rp, (Ω × cm2) | Cdl, (µF/cm2) | IE, % |
---|---|---|---|---|
blank | 8.949 | 94.28 | 106.6 | - |
50 | 8.119 | 213.24 | 211.9 | 55.79 |
100 | 8.329 | 440.20 | 180.7 | 78.58 |
200 | 9.272 | 520.00 | 76.51 | 81.87 |
300 | 9.397 | 766.40 | 58.14 | 87.70 |
400 | 8.160 | 1153.00 | 68.96 | 91.82 |
HCl 1 M + GV Extract (ppm G.A.E.) at 50 °C | Ecorr, (mV) | icorr, (µA/cm2) | Rp, (Ω × cm2) | ba, (mV) | −bc, (mV) | vcorr, (µm/Y) | IE, % |
---|---|---|---|---|---|---|---|
blank | −538.51 | 113.567 | 103.41 | 75.6 | 77.5 | 1071 | - |
50 | −501.19 | 46.519 | 176.13 | 69.3 | 131.4 | 543.5 | 59.04 |
100 | −513.02 | 36.921 | 272.06 | 72.8 | 76.3 | 371.0 | 67.49 |
200 | −513.67 | 34.473 | 333.48 | 66.7 | 94.6 | 290.6 | 69.65 |
300 | −516.91 | 34.751 | 378.08 | 40.6 | 53.9 | 286.4 | 69.40 |
400 | −516.12 | 23.620 | 303.70 | 45.2 | 48.1 | 245.1 | 79.20 |
HCl 1 M + Extract (ppm G.A.E.) at 50 °C | Rs, (Ω × cm2) | Rp, (Ω × cm2) | Cdl, (µF/cm2) | EI, % |
---|---|---|---|---|
blank | 6.155 | 36.78 | 154.0 | - |
50 | 10.08 | 141.1 | 82.61 | 73.93 |
100 | 6.056 | 155.6 | 143.1 | 76.36 |
200 | 11.94 | 203.9 | 98.31 | 81.96 |
300 | 6.588 | 269.7 | 126.3 | 86.36 |
400 | 10.27 | 270.5 | 74.10 | 86.40 |
EIS | |||||||
---|---|---|---|---|---|---|---|
GV Extract, ppm G.A.E. | Mean | SD | COV | Temperature, °C | Mean | SD | COV |
50 | 58.6825 | 11.18969 | 19.06819 | 20 | 61.8520 | 15.2897 | 24.7199 |
100 | 68.8775 | 14.43745 | 20.96106 | 30 | 76.0600 | 9.7360 | 12.8004 |
200 | 75.785 | 9.085022 | 11.98789 | 40 | 79.1520 | 14.0272 | 17.7218 |
300 | 83.46 | 5.647483 | 6.766694 | 50 | 80.9440 | 6.3796 | 7.8815 |
400 | 85.705 | 5.494103 | 6.410481 |
Plant Extract | Inhibition Efficiency, % | [Ref.] |
---|---|---|
Galium verum | 91.82 | This study |
Urtica dioica | >95 | [53] |
Falcaria vulgaris | 91.3 | [54] |
Artemisia Stems | 90 | [58] |
Marjoram | 92 | [57] |
Ambrosia trifida | 97.5 | [61] |
Convolvulus microphyllus | 92.47% | [62] |
Artemisia herba-alba | 96.17% | [63] |
Corrosion Inhibitor | GV Plant Extract | Plant Extracts | Classical |
---|---|---|---|
Origin | Ethanolic extract of aerial parts of Galium verum | Hydro and/or alcoholic extracts from different parts of plants (leaves, flowers, seeds, bark) | Synthetic compounds, such as phosphates, chromates, or hydrazine |
Efficiency in acid media | 91.82% | ≥80% | 90 ÷ 100% |
Advantages | Spontaneous flora Widespread on the globe Sustainability Cost-effectiveness High inhibitor efficiency Reduced Health Risks Phytotherapeutically use | Biodegradable, Environmentally friendly, Less toxic | Stability over time Constant efficiency in various conditions |
Disadvantages | Lower chemical stability and lower corrosion efficiency at temperatures over 50 °C | Performance depending on chemical composition and environmental conditions | High toxicity, Negative impact on the environment |
Chemical Category | Media | Corrosion Efficiency | Mechanism | [Ref.] |
---|---|---|---|---|
Alkaloids | acid | ≤85% | Interaction with metal surface | [64] |
Polyphenols | acid neutral | ≥85% ≥80% | Protective films on metal surface | [65] |
Tannins | alkaline | ≤90% | Forms complexes with metal ions on the metal surface | [66] |
Terpenoid | Acid | 70 ÷ 80% | Adsorption on metal surface | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocaru, A.; Badea, G.E.; Maior, I.; Dzitac, S.; Stănășel, O.D.; Sebeșan, M.; Ionaș, C.D.; Creț, P. Electrochemical Investigations of Galium verum Ethanolic Extract as a Steel Corrosion Eco-Inhibitor in the Acid Media: An Unexpected Versatility of Plant Chemistry. Materials 2025, 18, 2078. https://doi.org/10.3390/ma18092078
Cojocaru A, Badea GE, Maior I, Dzitac S, Stănășel OD, Sebeșan M, Ionaș CD, Creț P. Electrochemical Investigations of Galium verum Ethanolic Extract as a Steel Corrosion Eco-Inhibitor in the Acid Media: An Unexpected Versatility of Plant Chemistry. Materials. 2025; 18(9):2078. https://doi.org/10.3390/ma18092078
Chicago/Turabian StyleCojocaru, Anca, Gabriela Elena Badea, Ioana Maior, Simona Dzitac, Oana Delia Stănășel, Mioara Sebeșan, Camelia Daniela Ionaș, and Petru Creț. 2025. "Electrochemical Investigations of Galium verum Ethanolic Extract as a Steel Corrosion Eco-Inhibitor in the Acid Media: An Unexpected Versatility of Plant Chemistry" Materials 18, no. 9: 2078. https://doi.org/10.3390/ma18092078
APA StyleCojocaru, A., Badea, G. E., Maior, I., Dzitac, S., Stănășel, O. D., Sebeșan, M., Ionaș, C. D., & Creț, P. (2025). Electrochemical Investigations of Galium verum Ethanolic Extract as a Steel Corrosion Eco-Inhibitor in the Acid Media: An Unexpected Versatility of Plant Chemistry. Materials, 18(9), 2078. https://doi.org/10.3390/ma18092078