Soldering and Bonding in Contemporary Electronic Device Packaging
Abstract
:1. Introduction
2. Wafer Bonding
2.1. Direct Wafer Bonding
2.2. Indirect Wafer Bonding
3. Die Attachment
3.1. Conductive Adhesive Bonding
3.2. Nanosilver Sintering
3.3. Au-Si Eutectic Bonding
3.4. Soldering
3.5. Insulation Adhesive Bonding
4. Wire Bonding
4.1. Ball Bonding
4.2. Wedge Bonding
4.3. Challenges of New Wire Bonding
5. Flip Chip Bonding and Bump Bonding
6. Surface Mounting Technology
7. Sealing Technology
8. Comparison
9. Conclusions
- (1)
- With the continuous promotion of high density and low cost, new soldering and bonding processes are constantly emerging in electronic devices. At the same time, conventional die attachment and wire bonding are still widely used. New technologies, such as low temperature wafer bonding or micro bump bonding, are more complementary to the traditional technologies than the substitutes.
- (2)
- The process of the semiconductor wafer level is increasingly integrated with the process of the electronic packaging level. Wafer bonding is directly used in electronic device packaging, and flip chip bonding is also used on wafers. The integration of semiconductor manufacturing and packaging obviously improves the production efficiency, but the diversification of structure also brings hidden dangers of reliability. These risks need to be identified through more accurate multi-physical field simulations and in-depth interface analyses.
- (3)
- The innovation of die attachment mainly focuses on developing new adhesive materials to improve the electrical and thermal conductivity of the chip and at the same time reduce the sintering temperature and cost. The low-temperature sintering of highly reliable nanoscale Ag paste and low-cost nanoscale Cu paste is a research hotspot. However, at the same time, it is necessary to solve the storage stability before sintering and the long-term reliability after sintering.
- (4)
- At present, the development of wire bonds mainly focuses on developing new alloy wires to improve the mechanical reliability and reduce the cost. Copper wire and silver wire will eventually be connected with pads made of different materials, and the control and evaluation of interfacial intermetallic compounds will be the key. In addition, the bonding process of copper wire needs to be continuously optimized to adapt to various application scenarios.
- (5)
- As an extension of flip chip bonding technology, micro bump and micro bump bonding technology are vigorously being developed. The related technologies of precision welding and 3D printing have great application potential in the manufacture of micro bumps. Various forms of copper–copper bonding are the research focus at present, and copper–copper bonding has been applied in advanced packaging. The reliability of copper–copper bonding is affected by the IMC layer, and the IMC layer can be controlled by prefabricating nanomaterials in order to improve the service performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bender, E.; Bernstein, J.B.; Boning, D.S. Modern Trends in Microelectronics Packaging Reliability Testing. Micromachines 2024, 15, 398. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yuan, T.; Yu, X. Package Structure Materials; Wang, Y., Chi, M., Lou, J.J., Chen, C., Eds.; Springer Nature: Singapore, 2024; pp. 1775–1800. ISBN 9819928354/9789819928354. [Google Scholar]
- Zhou, D. Micro-Assembly Technology of Electronic Products. Electro-Mech. Eng. 2011, 27, 1–6. [Google Scholar] [CrossRef]
- Cheng, Z.; Hu, Q.; Liu, J.; Liu, L. Key Mount Technology of Microwave Module. Electron. Process Technol. 2014, 345–349, 357. [Google Scholar]
- Jiang, N.; Zhang, L.; Xiong, M.; Zhao, M.; Xu, K. Research Progress on Lead-free Soldering Technology for Electronic Packaging. Mater. Rep. 2019, 33, 3862–3875. [Google Scholar] [CrossRef]
- Kinga Synkiewicz, B.; Skwarek, A.; Witek, K. Voids investigation in solder joints performed with vapour phase soldering (VPS). Solder. Surf. Mt. Technol. 2014, 26, 8–11. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, L.; Liu, Z.; Sun, L.; Long, W.; He, P.; Xiong, M.; Zhao, M. Reliability issues of lead-free solder joints in electronic devices. Sci. Technol. Adv. Mater. 2019, 20, 876–901. [Google Scholar] [CrossRef]
- Chuang, H.Y.; Yang, T.L.; Kuo, M.S.; Chen, Y.J.; Yu, J.J.; Li, C.C.; Kao, C.R. Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages. IEEE Trans. Device Mater. Reliab. 2012, 12, 233–240. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, L.; Liu, Z.; Dong, W.; Zhao, N. Research Progress of Copper-Copper Direct Bonding Technology in Advanced Packaging. Electron. Packag. 2023, 23, 54–64. [Google Scholar] [CrossRef]
- Shen, D. Research Progress of Bump Technology in Advanced Packaging. Electron. Packag. 2023, 23, 44–53. [Google Scholar] [CrossRef]
- Arai, S.; Nakajima, S.; Shimizu, M.; Horita, M.; Aizawa, M.; Kiyoshi, O. Direct Cu-Cu bonding by low-temperature sintering using three-dimensional nanostructured plated Cu films. Mater. Today Commun. 2023, 35, 105790. [Google Scholar] [CrossRef]
- Park, H.; Seo, H.; Kim, Y.; Park, S.; Kim, S.E. Low Temperature (260 °C) Solderless Cu-Cu Bonding for Fine Pitch 3D Packaging and Heterogeneous Integration. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 565–572. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, P.; Zhao, T.; Sun, R.; Wong, C. An Introduction to Flip-Chip Packaging Technology. J. Integr. Technol. 2014, 3, 84–91. [Google Scholar]
- Ye, L.; Tang, L.; Liu, Z. Summary of Flip Chip Bonding Technology and Equipment. Equip. Electron. Prod. Manuf. 2014, 43, 1–5. [Google Scholar]
- Manoharan, S.; Patel, C.; Mccluskey, P. Advancements in silver wire bonding. In Proceedings of the ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, CA, USA, 29 August–1 September 2017. [Google Scholar]
- Shah, A.; Rockey, T.; Xu, H.; Qin, I.; Jie, W.; Yauw, O.; Chylak, B. Advanced wire bonding technology for Ag wire. In Proceedings of the 17th Electronics Packaging Technology Conference, Singapore, 2–4 December 2015; pp. 1–8. [Google Scholar]
- Zhou, H.; Chang, A.; Fan, J.; Cao, J.; An, B.; Xia, J.; Yao, J.; Cui, X.; Zhang, Y. Copper Wire Bonding: A Review. Micromachines 2023, 14, 1612. [Google Scholar] [CrossRef]
- Liu, J. Preparation and Sintering Mechanism of Nano Metal Paste for Power Electronic Packaging. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2023. [Google Scholar]
- Zhang, H.; Minter, J.; Lee, N. A Brief Review on High-Temperature, Pb-Free Die-Attach Materials. J. Electron. Mater. 2019, 48, 201–210. [Google Scholar] [CrossRef]
- Yuan, H. Applied Study of Au-Si Eutectic Bonding Process. Electron. Process Technol. 2012, 33, 18–20, 37. [Google Scholar] [CrossRef]
- Zong, F.; Wang, Z.; Xu, Y.; Ye, D.; Shu, A.; Chen, Q. A Review on Wire Bonding Process in Electronic Manufacturing. Electron. Packag. 2013, 13, 1–8. [Google Scholar] [CrossRef]
- Wang, F. Microelectronics Surface Mount Key Technology and Equipment. Mod. Ind. Econ. Informationization 2023, 13, 98–100. [Google Scholar] [CrossRef]
- Tian, F. Application of Wafer Bonding Technology in Wafer on Wafer 3D Package. Equip. Electron. Prod. Manuf. 2013, 42, 5–7. [Google Scholar] [CrossRef]
- Lin, Y.C.; Baum, M.; Haubold, M.; Fromel, J.; Wiemer, M.; Gessner, T.; Esashi, M. Development and evaluation of AuSi eutectic wafer bonding. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, 21–25 June 2009; pp. 244–247. [Google Scholar]
- Dai, J. The development of Wafer level package. China Integr. Circuit 2016, 25, 22–24, 79. [Google Scholar] [CrossRef]
- Ge, Y. Study on MEMS Low Temperature Wafer Level Adhesive Bonding Process. Piezoelectr. Acoustooptics 2013, 35, 105–107. [Google Scholar] [CrossRef]
- Shravan, C.; Radhika, N.; Deepak Kumar, N.H.; Sivasailam, B. A review on welding techniques: Properties, characterisations and engineering applications. Adv. Mater. Process. Technol. 2024, 10, 1126–1181. [Google Scholar] [CrossRef]
- Akbari, M.; Asadi, P.; Sadowski, T. A Review on Friction Stir Welding/Processing: Numerical Modeling. Materials 2023, 16, 5890. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, M. Numerical simulations of oscillating laser welding: A review. J. Manuf. Process. 2024, 119, 744–757. [Google Scholar] [CrossRef]
- Masteika, V.; Kowal, J.; Braithwaite, N.S.J.; Rogers, T. A Review of Hydrophilic Silicon Wafer Bonding. ECS J. Solid State Sci. Technol. 2014, 3, Q42–Q54. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, R.; Cheng, P.; Zuo, Z. Research Progress of Wafer Low Temperature Direct Bonding Technology. Semicond. Optoelectron. 2021, 42, 603–609. [Google Scholar] [CrossRef]
- Liu, X.; Pei, W.; Zhao, J.; Xu, R.; Zhong, Y.; Yu, D. A Review of Wafer-Level Packaging Technology for SAW and BAW Filters. Micromachines 2025, 16, 320. [Google Scholar] [CrossRef]
- Plach, T.; Hingerl, K.; Tollabimazraehno, S.; Hesser, G.; Dragoi, V.; Wimplinger, M. Mechanisms for room temperature direct wafer bonding. J. Appl. Phys. 2013, 113, 4794319. [Google Scholar] [CrossRef]
- Baum, M.; Jia, C.; Haubold, M.; Wiemer, M.; Schneider, A.; Rank, H.; Trautmann, A.; Gessner, T. Eutectic Wafer Bonding for 3-D Integration. In Proceedings of the Electronic System-Integration Technology Conference, Berlin, Germany, 13–16 September 2010; pp. 1–6. [Google Scholar]
- Jia, Y.; Li, L.; Li, Q.; Yang, Z. Au-Au Thermal-compression Bonding for MEMS. J. Hebei Univ. Technol. 2014, 43, 17–20. [Google Scholar] [CrossRef]
- Guo, H.; Dia, J.; Pan, B.; Zhou, S.; Kong, Y.; Chen, T.; Zhu, J. Study of GaAs/Si Wafer Bonding Deviation and Effect Factors. Res. Prog. SSE 2021, 41, 10–13. [Google Scholar] [CrossRef]
- Wang, C.; Hu, B.; Yang, X.; Wu, C. Current Situation and Research Progress of 3D Integration Wafer Bonding Equipment. Electron. Process Technol. 2022, 43, 63–67. [Google Scholar] [CrossRef]
- Mo, Z.; Wang, F.; Li, J.; Liu, Q.; Zhang, G.; Li, W.; Yang, C.; Sun, R. Temporary Bonding and Debonding in Advanced Packaging: Recent Progress and Applications. Electronics 2023, 12, 1666. [Google Scholar] [CrossRef]
- Karn, N.K.; Sharma, M.M.; Awana, V.P.S. Non-trivial band topology in the superconductor AuSn4: A first principle study. Supercond. Sci. Technol. 2022, 35, 114002. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Cui, Y.; Wang, H.; Liu, Y.; Wang, Z.; Ren, Z.; Cao, G. Superconductivity in SnSb with a natural superlattice structure. Supercond. Sci. Technol. 2018, 31, 125011. [Google Scholar] [CrossRef]
- Alim, M.A.; Abdullah, M.Z.; Aziz, M.S.A.; Kamarudin, R. Die attachment, wire bonding, and encapsulation process in LED packaging: A review. Sens. Actuators A Phys. 2021, 329, 112817. [Google Scholar] [CrossRef]
- Ran, C.; Wang, Y. Research and application of reliability of high thermal conductivity nano-silver adhesive. J. Technol. 2023, 23, 48–51. [Google Scholar] [CrossRef]
- Cui, Z.; Jia, Q.; Zhang, H.; Wang, Y.; Ma, L.; Zou, G.; Guo, F. Review on Shear Strength and Reliability of Nanoparticle Sintered Joints for Power Electronics Packaging. J. Electron. Mater. 2024, 53, 2703–2726. [Google Scholar] [CrossRef]
- Yu, C.; Wang, Y.; He, Z.; Li, W.; Chen, J.; Li, S.; Li, J. Research Progress on Modification of Epoxy Adhesives for Electronic Packaging. Mater. Rep. 2023, 37, 237–246. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Liu, J.; Li, M.; Chen, H. Research status and prospect of conductive adhesive for electronic packaging. China Adhes. 2022, 31, 51–56. [Google Scholar] [CrossRef]
- Bao, J.; Guan, J.; He, J.; Wang, P.; Hou, Z. Development of low temperature sintering of nano silver paste for high power devices. Precious Met. 2024, 45, 71–77. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Y.; Tan, C.; Hu, Y.; Yu, Y.; Gao, W.; Chen, Y.; Xin, Z. Research Progress in Conductive Adhesives. Packag. Eng. 2024, 45, 8–17. [Google Scholar] [CrossRef]
- Siow, K.S. Mechanical properties of nano-silver joints as die attach materials. J. Alloys Compd. 2012, 514, 6–19. [Google Scholar] [CrossRef]
- Yang, W.; Hu, S.; Zhu, W.; Li, M. Research progress of low-temperature sintering nano silver paste. Trans. China Weld. Inst. 2022, 43, 137–146. [Google Scholar] [CrossRef]
- Feng, X.; Xia, W.; Sun, P.; Lian, K. Fully Automatic Au80Sn20 Eutectic Soldering Process for Microwave Chip. Electron. Process Technol. 2020, 41, 346–349. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Z.; Zhang, F.; Huang, J.; Zhao, W. Research of Eutectic Soldering of Microwave Power Chip. Electron. Process Technol. 2018, 39, 157–159, 167. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Lin, Z.; Wang, Y.; Lü, L.; Xu, J.; Zheng, S. A Composite Thermal Conductive Insulating Epoxy Adhesive Material for Electronic Package. Insul. Mater. 2009, 42, 14. [Google Scholar] [CrossRef]
- Chao, Y.; Yang, Z.; Qiao, H. Progress on Technology of Wire Bonding. Electron. Process Technol. 2007, 28, 205–210. [Google Scholar] [CrossRef]
- Qin, I.; Shah, A.; Xu, H.; Chylak, B.; Wong, N. Advances in Wire Bonding Technology for Different Bonding Wire Material. In Proceedings of the 48th Annual International Symposium on Microelectronics, Orlando, FL, USA, 27–29 October 2015. [Google Scholar]
- Wu, Y.; Dai, X.; Wang, Y.; Li, D.; Liu, G. State-of-the-art Progress of Advanced Interconnection Technology for IGBT Power Module Packaging. High Power Convert. Technol. 2015, 2, 6–11. [Google Scholar] [CrossRef]
- Zhong, Z.W. Overview of wire bonding using copper wire or insulated wire. Microelectron. Reliab. 2011, 51, 4–12. [Google Scholar] [CrossRef]
- Schneider-Ramelow, M.; Ehrhardt, C. The reliability of wire bonding using Ag and Al. Microelectron. Reliab. 2016, 63, 336–341. [Google Scholar] [CrossRef]
- Xie, Y.; Xiao, Y.; Tang, H.; Wang, Y.; Hou, X.; Wu, H.; Wu, B.; Tan, S.; Sun, L. Research Progress of Bonding Au Ribbon for Radio Frequency Components. Electron. Packag. 2024, 24, 5–12. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, Y.; Cao, J.; Su, C.; Li, C.; Chang, A.; An, B. Research Progress on Bonding Wire for Microelectronic Packaging. Micromachines 2023, 14, 432. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, R. Research Progress in Copper Wire Bonding Technology for Chip Packaging. Mater. Rev. 2009, 23, 206–209. [Google Scholar] [CrossRef]
- Yu, C.; Chan, C.; Chan, L.; Hsieh, K. Cu wire bond microstructure analysis and failure mechanism. Microelectron. Reliab. 2011, 51, 119–124. [Google Scholar] [CrossRef]
- Suppiah, S.; Ong, N.R.; Sauli, Z.; Alcain, K.S.J.B.; Visvanathan, S.M.; Retnasamy, V. A review on solder reflow and flux application for flip chip. In Proceedings of the 3rd Electronic & Green Materials International Conference, Krabi, Thailand, 30 April 2017. [Google Scholar]
- Liu, B.; Xia, L.; He, J.; Kong, Y.; Chen, P. Research progress on applications of wafer micro-bump technology in advanced packaging. Micro/Nano Electron. Intell. Manuf. 2024, 6, 1–11. [Google Scholar] [CrossRef]
- Ren, C.; Lu, K.; Ding, R. Flip Chip Technology and Its Application. Electron. Packag. 2009, 9, 15–20. [Google Scholar] [CrossRef]
- Pei, W.; Deng, H.; Chen, H. Flip chip bonding technology used in modern micro-photoelectron package. Micronanoelectron. Technol. 2003, 231–234. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, K. Advances in Preparation Technology of Metal Micro-bumps for Electronic Packaging. Electro-Mech. Eng. 2023, 39, 1–8. [Google Scholar] [CrossRef]
- Lee, T.; Kang, T.G.; Yang, J.; Jo, J.; Kim, K.; Choi, B.; Kim, D. Drop-on-Demand Solder Droplet Jetting System for Fabricating Microstructure. IEEE Trans. Electron. Packag. Manuf. 2008, 31, 202–210. [Google Scholar] [CrossRef]
- Jiang, H.; Robertson, S.; Zhou, Z.; Liu, C. Cu-Cu Bonding with Cu Nanowire Arrays for Electronics Integration. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tonsberg, Norway, 15–18 September 2020. [Google Scholar]
- Liu, B.; Li, X.; Chai, X.; Cai, K.; Meng, Y.; Hua, P.; Xu, Z. Effect of Laser Solder Ball Soft Brazing Process Parameters on the Morphology and Wettability of Micro Solder Joints. Welded Pipe Tube 2024, 47, 22–27. [Google Scholar] [CrossRef]
- Wang, S.; Zou, G.; Liu, L. Research progress of low-temperature Cu-Cu bonding technology for advanced packaging. Trans. China Weld. Inst. 2022, 43, 112–125. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Chen, M. Developments of copper-to-copper low temperature bonding technology for 3D packaging. Electron. Compon. Mater. 2015, 34, 9–14. [Google Scholar] [CrossRef]
- Lau, J.H. Current Advances and Outlooks in Hybrid Bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2025, 1, 3533926. [Google Scholar] [CrossRef]
- Chen, K.; Li, R.; Gao, L.; Meng, Z.; Liu, C.; Liu, Z. Study on the Cu Microstructure and Sn Supply Affecting the Interfacial Reaction of Cu/Sn Nanowires for Advanced Electronic Packaging. ACS Appl. Electron. Mater. 2025, 7, 1472–1482. [Google Scholar] [CrossRef]
- Feng, J.; Wang, S.; Wang, W.; Liang, J.; Wen, J.; Wang, S.; Tian, R.; Tian, Y. Thermal-electrical coupling effect on the reliability of copper pillar bump joints with different initial IMC thickness and microstructure. J. Manuf. Process. 2025, 139, 182–192. [Google Scholar] [CrossRef]
- Saeed, W.; Liu, Z.; Yan, R.; Li, Y.; Xu, H.; Tian, Y.; Chen, X.; Liu, W. Nanostructured compliant interconnections for advanced Micro-Electronic packaging. Mater. Des. 2024, 244, 113166. [Google Scholar] [CrossRef]
- Wu, Y. Interfacial Reaction and Reliability of Micro Scale Solder Interconnects with (111)-oriented Nanotwinned Cu. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2021. [Google Scholar]
- Deng, B.; Shen, L. Technology Analysis and Temperature Control of SMT Reflow Soldering. Electron. Process Technol. 2008, 29, 30–32. [Google Scholar]
- Arunasalam, M.; Leman, Z.B.; Baharudin, B.T.H.T.; Sulaiman, S.B.; Anthony Das, C.S. Challenges in Minimizing Copper Dissolution for Lead Free Wave Soldering in Surface Mount Technology Going Towards Green Manufacturing. Int. J. Precis Eng Manuf-Green Technol. 2022, 9, 645–660. [Google Scholar] [CrossRef]
- Jayaram, V.; Gupte, O.; Bhangaonkar, K.; Nair, C. A Review of Low Temperature Solders in Microelectronics Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 570–579. [Google Scholar] [CrossRef]
- Dele-Afolabi, T.T.; Ansari, M.N.M.; Azmah Hanim, M.A.; Oyekanmi, A.A.; Ojo-Kupoluyi, O.J.; Atiqah, A. Recent advances in Sn-based lead-free solder interconnects for microelectronics packaging: Materials and technologies. J. Mater. Res. Technol. 2023, 25, 4231–4263. [Google Scholar] [CrossRef]
- Laurila, T.; Vuorinen, V.; Paulasto-Kröckel, M. Impurity and alloying effects on interfacial reaction layers in Pb-free soldering. Mater. Sci. Eng. R Rep. 2010, 68, 1–38. [Google Scholar] [CrossRef]
- Misra, T.; Rana, S.S.; Desai, N.M.; Dave, D.B.; Rajeevjyoti; Arora, R.K.; Rao, C.V.N.; Bakori, B.V.; Neelakantan, R.; Vachchani, J.G. Synthetic Aperture Radar payload on-board RISAT-1: Configuration, technology and performance. Curr. Sci. 2013, 104, 446–461. [Google Scholar]
- Xian, F. New Technology New Challenge—Hot and advanced technology in current SMT enviroment. MaschinenMarkt 2004, 15, 46–48. [Google Scholar]
- Sun, R.; Zheng, H.; Lin, H. Sealing Technologies in the Packaging of Microelectromechanical System. MEMS Device Technol. 2007, 5, 259–263. [Google Scholar]
- Wang, G.; Li, X. Technology and Process of Hermetic Parallel Seam Soldering. Electron. Process Technol. 2014, 35, 42–44. [Google Scholar]
- Zhang, X.; Wang, Y.; Li, F.; Qin, C. Study on Parallel Seam Welding Technology for Microsystem Packaging. Sci.-Tech. Innov. Product. 2021, 5, 71–73. [Google Scholar] [CrossRef]
- Lin, Y.; Qin, Y.; Gong, B.; Yin, C.; Xia, L.; Liu, G.; Pan, K.; Gong, Y. Analysis of the Parallel Seam Welding Process by Developing a Directly Coupled Multiphysics Simulation Model. Processes 2024, 12, 78. [Google Scholar] [CrossRef]
Wafer Bonding | Die Attachment | Wire Bonding | Flip Chip Bonding and Bump Bonding | |
---|---|---|---|---|
Electrical conductivity | Very high | High | Low | Average |
Heat dissipation | Very high | High | Low | Average |
Cost | Very high | Average | Low | High |
Integration density | Very high | Average | Low | High |
Utilization | Large-area bonding between two wafers | Fixing a chip on a substrate or a lead frame | Electrical connection between chip pads and the outside | Electrical connection between chip pads and the outside |
Reliability challenges | ① Warpage or crack caused by thermal stress ② Interface defects caused by lattice mismatch | ① Separation caused by thermal stress ② Silver migration under high temperature and high humidity | ① Corrosion and IMC caused by new wire | ① Brittle (IMC) layer of interface ② Thermal stress |
Development tendency | ① Reliable bonding of heterogeneous wafers ② Reduce the implementation cost and process difficulty | ① Higher electrical and thermal conductivity ② Lower sintering Temperature ③ Higher storage Stability | ① Developing new wire for wire bonding | ① Smaller size bump bonding ② Bonding techniques for micro bumps with diverse nanomaterials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Pan, B.; Ge, Z.; Chen, P.; Bi, B.; Yi, X.; Wu, C.; Wang, C. Soldering and Bonding in Contemporary Electronic Device Packaging. Materials 2025, 18, 2015. https://doi.org/10.3390/ma18092015
Li Y, Pan B, Ge Z, Chen P, Bi B, Yi X, Wu C, Wang C. Soldering and Bonding in Contemporary Electronic Device Packaging. Materials. 2025; 18(9):2015. https://doi.org/10.3390/ma18092015
Chicago/Turabian StyleLi, Yuxuan, Bei Pan, Zhenting Ge, Pengpeng Chen, Bo Bi, Xin Yi, Chaochao Wu, and Ce Wang. 2025. "Soldering and Bonding in Contemporary Electronic Device Packaging" Materials 18, no. 9: 2015. https://doi.org/10.3390/ma18092015
APA StyleLi, Y., Pan, B., Ge, Z., Chen, P., Bi, B., Yi, X., Wu, C., & Wang, C. (2025). Soldering and Bonding in Contemporary Electronic Device Packaging. Materials, 18(9), 2015. https://doi.org/10.3390/ma18092015