Bump-Fabrication Technologies for Micro-LED Display: A Review
Abstract
:1. Introduction
- Patterning process: Micron-scale graphic templates are formed on the substrate surface through photolithography technology (for example, using positive photoresist and defining the bump positions through exposure and development), controlling the position accuracy of the bumps within ±0.5 μm.
- Metal deposition technology: The optimal deposition process is selected according to different metal materials.
2. Evaporation
2.1. Evaporation Process and Material Selection
2.2. Reflow Process Optimization
2.2.1. Reflow in Glycerol
2.2.2. Reflow in Flux
2.2.3. Reflow on Micro-LED Chips
2.3. Challenges and Limitations
3. Electroplating
3.1. Fundamentals of Electroplating for Bump Fabrication
3.2. Process Parameter Optimization
3.2.1. Anode–Cathode Spacing Optimization for Bump Uniformity
3.2.2. Stirring Rate Modulation for Enhanced Mass Transfer and Surface Quality
3.2.3. Current Density Balancing for Polarization and Deposition Control
3.2.4. Semi-Additive Plating (SAP) Process
3.3. Electroplating Technology Improvement
3.4. Challenges and Limitations
4. Emerging Bump-Fabrication Technology
4.1. Electroless Plating
4.2. Ball Mounting
4.3. Dip Soldering
4.4. Photosensitive Conductive Polymer Materials
4.5. Challenges and Limitations
5. Critical Analyses
- Evaporation demonstrates notable merits in micron-level dimensional precision, highly dense film formation, and low defect density, making it extensively applicable for bump preparation. This technique is particularly suitable for multilayer heterogeneous material deposition through parameter optimization, fulfilling requirements for small-batch high-precision production with relatively low environmental impact. However, three critical limitations persist: restricted production efficiency, prohibitive equipment costs, and low material utilization rates.
- Electroplating offers cost-effectiveness and batch-processing capabilities compared to evaporation. Nevertheless, non-uniform current density distribution induces height variations among bumps. Although Luo et al. and Tang et al. achieved bump-height uniformities of 2.83% and 2.26%, respectively, precise current density regulation remains a core technical challenge in large-scale commercial applications.
- Electroless Plating eliminates current density heterogeneity inherent to electroplating while bypassing conductive layer preparation/post-processing steps. However, this method suffers from stringent chemical agent ratio control, limited material selectivity, low deposition rates, and environmental concerns associated with specific chemical reagents.
- Ball Mounting exhibits advantages in automation accuracy and circumvention of conventional processes. Yet, it encounters miniaturization bottlenecks at sub-10-micron scales due to nozzle aperture constraints, coupled with reliability issues including poor solder wettability, dimple formation, and ablation defects.
- Dip Soldering simplifies interconnection processes by directly immersing substrates into molten solder, eliminating specialized environments required for vacuum evaporation or electrochemical deposition. Nevertheless, this technology faces limitations in yield rates, sensitivity to multiple parameters (e.g., solder composition, melting temperature, flux activation temperature, immersion duration), and questionable capability for fine-pitch bump fabrication.
- Photosensitive Conductive Polymer Materials have achieved recent breakthroughs in bump formation, featuring short manufacturing cycles and 8 μm ultra-fine pitch capabilities. This method attained 99.9% device yield in TFT driving substrate-to-Micro-LED bonding applications. However, systematic validation remains imperative for mechanical stability, long-term reliability, and optoelectronic performance characteristics.
6. Conclusions and Outlook
- Process integration: For example, combining processes such as evaporating the seed layer and electroplating bumps to balance precision and efficiency.
- Green manufacturing: Developing environmentally friendly electroplating solutions and low-toxicity electroless plating reagents.
- Material innovation: Exploring low-temperature bonding alloys and weather-resistant polymer composite materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geffroy, B.; Roy, P.L.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 2006, 55, 572–582. [Google Scholar] [CrossRef]
- Chen, H.; Tan, G.; Wu, S.T. Ambient contrast ratio of LCDs and OLED displays. Opt. Express 2017, 25, 33643. [Google Scholar] [CrossRef]
- Tang, C.W.; Vanslyke, S.A. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Weber, L.F. History of the plasma display panel. IEEE Trans. Plasma Sci. 2006, 34, 268–278. [Google Scholar] [CrossRef]
- Chang, N.; Choi, I.; Shim, H. DLS: Dynamic backlight luminance scaling of liquid crystal display. IEEE Trans. Very Large Scale Integr. Syst. 2004, 12, 837–846. [Google Scholar] [CrossRef]
- Boeuf, J.P. Plasma display panels: Physics, recent developments and key issues. J. Phys. D Appl. Phys. 2003, 36, 53–79. [Google Scholar] [CrossRef]
- Ray-Hua, H.; Huan-Yu, C.; Fu-Gow, T.; Dong-Sing, W. Fabrication and Study on Red Light Micro-LED Displays. IEEE J. Electron Devices Soc. 2018, 6, 1064–1069. [Google Scholar] [CrossRef]
- Paranjpe, A.; Montgomery, J.; Lee, S.M.; Morath, C. Micro-LED Displays: Key Manufacturing Challenges and Solutions. SID Symp. Dig. Tech. Pap. 2018, 49, 597–600. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, K.; Liu, Y.; Yan, S.; Kwok, H.S.; Deen, J.; Sun, X. Fully multi-functional GaN-based micro-LEDs for 2500 PPI micro-displays, temperature sensing, light energy harvesting, and light detection. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, D.; Lau, K.M.; Liu, Z. Fully-integrated Active Matrix Programmable UV and Blue Micro-LED Display System-on-Panel (SoP). J. Soc. Inf. Disp. 2017, 25, 240–248. [Google Scholar] [CrossRef]
- Du, Z.; Feng, H.; Liu, Y.; Tang, P.; Qian, F.; Sun, J.; Guo, W.; Song, J.; Chen, E.; Guo, T.; et al. Localized Surface Plasmon Coupling Nanorods With Graphene as a Transparent Conductive Electrode for Micro Light-Emitting Diodes. IEEE Electron Device Lett. 2022, 43, 2133–2136. [Google Scholar] [CrossRef]
- Fang, A.; Li, Q.; Liu, J.; Du, Z.; Tang, P.; Xu, H.; Xie, Y.; Song, J.; Zhang, K.; Yang, T.; et al. Enhanced Light Emission of Micro LEDs Using Graphene-Connected Micropillar Structures and Ag/SiO2 Nanoparticles. ACS Photonics 2025, 12, 1342–1350. [Google Scholar] [CrossRef]
- Bornacelli, J.; Torres-Torres, C.; Crespo-Sosa, A.; Reyes-Esqueda, J.A.; Oliver, A. Plasmon-enhanced multi-photon excited photoluminescence of Au, Ag, and Pt nanoclusters. Nanotechnology 2024, 35, 175705. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, Y.-C.; Zeng, G.; Zhang, D.W.; Lu, H.-L. Integration technology of micro-led for next-generation display. Research 2023, 6, 0047. [Google Scholar] [CrossRef]
- Horng, R.-H.; Chen, Y.-F.; Wang, C.-H.; Chen, H.-Y. Development of metal bonding for passive matrix micro-LED display applications. IEEE Electron Device Lett. 2021, 42, 1017–1020. [Google Scholar] [CrossRef]
- Tingzhu, W.; Chin-Wei, S.; Yue, L.; Chun-Fu, L.; Shijie, L.; Yijun, L.; Sung-Wen, H.C.; Weijie, G.; Hao-Chung, K.; Zhong, C. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef]
- Kang, S.-K.; Shih, D.-Y.; Bernier, W.E. Flip-chip interconnections: Past, present, and future. In Advanced Flip Chip Packaging; Springer: Boston, MA, USA, 2013; p. 2. [Google Scholar]
- Datta, M. Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: An overview. J. Micromanufacturing 2019, 3, 69–83. [Google Scholar] [CrossRef]
- Lin, K.-L.; Chang, S.-Y. The morphologies and the chemical states of the multiple zincating deposits on Al pads of Si chips. Thin Solid Film. 1996, 288, 36–40. [Google Scholar] [CrossRef]
- Yau, E.W.C.; Gong, J.F.; Chan, P. Al surface morphology effect on flip-chip solder bump shear strength. Microelectron. Reliab. 2004, 44, 323–331. [Google Scholar] [CrossRef]
- Rogalski, A. Scaling infrared detectors-status and outlook. Rep. Prog. Phys. 2022, 85, 126501. [Google Scholar] [CrossRef]
- Clayton, J.E.; Chen, C.M.H.; Cook, W.R.; Harrison, F.A. Assembly technique for a fine-pitch, low-noise interface; Joining a CdZnTe pixel-array detector and custom VLSI chip with Au stud bumps and conductive epoxy. In Proceedings of the 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), Portland, OR, USA, 19–25 October 2003; pp. 3513–3517. [Google Scholar] [CrossRef]
- Luo, C.; Lin, C.; Ye, J.; Zeng, H.; Zhou, X.; Wu, C.; Zhang, Y.; Sun, J.; Guo, T.; Yan, Q. Electroplating of Cu/Sn bumps with ultrafine pitch and high uniformity for micro-LED interconnection. J. Mater. Sci. Mater. Electron. 2024, 35, 878. [Google Scholar] [CrossRef]
- Yang, T.; Sun, J.; Chen, Y.; Yan, Z.; Li, Y.; Zhou, Y.; Huang, Z.; Lin, C.; Yan, Q. Fabrication and Reflow of Indium Bumps for Active-Matrix Micro-LED Display of 3175 PPI. Displays 2025, 86, 102897. [Google Scholar] [CrossRef]
- Tian, L.; Lin, C.; Pan, K.; Lu, Y.; Deng, L.; Huang, Z.; Yang, T.; Zhang, Y.; Sun, J.; Yan, Q. Electroless Deposition of 4 μm High Ni/Au Bumps for 8 μm Pitch Interconnection. ACS Appl. Electron. Mater. 2022, 4, 4966–4971. [Google Scholar] [CrossRef]
- Day, J.; Li, J.; Lie, D.Y.C.; Bradford, C.; Lin, J.Y.; Jiang, H.X. III-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 2011, 99, 031116. [Google Scholar] [CrossRef]
- Chong, W.C.; Cho, W.K.; Liu, Z.J.; Wang, C.H.; Lau, K.M. 1700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC. In Proceedings of the 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Shin, J.; Kim, H.; Sundaram, S.; Jeong, J.; Park, B.I.; Chang, C.S.; Choi, J.; Kim, T.; Saravanapavanantham, M.; Lu, K.; et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 2023, 614, 81–87. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Chao, P.C.-P. A high 6318-PPI pixel circuit that realizes 10-bit Gray levels for analog-PWM driven micro-LED displays. IEEE Trans. Electron Devices 2024, 71, 1122–1130. [Google Scholar] [CrossRef]
- Höfler, G.E.; Vanderwater, D.A.; DeFevere, D.C.; Kish, F.A.; Camras, M.D.; Steranka, F.M.; Tan, I.H. Wafer bonding of 50-mm diameter GaP to AlGaInP-GaP light-emitting diode wafers. Appl. Phys. Lett. 1996, 69, 803–805. [Google Scholar] [CrossRef]
- Wierer, J.; Steigerwald, D.; Krames, M.; O’shea, J.; Ludowise, M.; Christenson, G.; Shen, Y.-C.; Lowery, C.; Martin, P.; Subramanya, S. High-power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett. 2001, 78, 3379–3381. [Google Scholar] [CrossRef]
- Ji, X.; Wang, F.; Lin, P.; Yin, L.; Zhang, J. Fabrication and Mechanical Properties Improvement of Micro Bumps for High-Resolution Micro-LED Display Application. IEEE Trans. Electron Devices 2022, 69, 3737–3741. [Google Scholar] [CrossRef]
- Zhu, W.-H.; Xiao, X.-Y.; Chen, Z.; Chen, G.; Yan, Y.-M.; Wang, L.-C.; Li, G.-L. Preparation and atmospheric wet-reflow of indium microbump for low-temperature flip-chip applications. Adv. Manuf. 2022, 11, 203–211. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, C.; Tian, L.; Wang, S.; Zhang, K.; Lang, T.; Li, Y.; Li, Q.; Yang, T.; Huang, Z.; et al. Electroless deposition of high-uniformity nickel microbumps with ultrahigh resolution of 8 μm pitch for monolithic Micro-LED display. Mater. Sci. Semicond. Process. 2024, 175, 108263. [Google Scholar] [CrossRef]
- Ji, X.; Wang, F.; Yin, L.; Zhang, J. Simulation study on thermal mechanical properties of 4× 4 Micro-LED array in flip-chip bonding process. In Proceedings of the 2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 6–8 December 2021; pp. 135–138. [Google Scholar] [CrossRef]
- Xiao, X.; Yan, Y.; Chen, G.; Zhu, W. Thermodynamic simulation and analysis of metal bumps in flip-chip micro-LED packaging. In Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, H.; Zhou, L.; Li, H.; Chen, Y.; Wei, C.; Wu, T.; Lv, W.; Zhang, G.; Zhang, S.; et al. Research Progress of Micro-LED Display Technology. Crystals 2023, 13, 1001. [Google Scholar] [CrossRef]
- Anwar, A.R.; Sajjad, M.T.; Johar, M.A.; Hernández-Gutiérrez, C.A.; Usman, M.; Łepkowski, S.P. Recent Progress in Micro-LED-Based Display Technologies. Laser Photonics Rev. 2022, 16, 2100427. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-color realization of micro-LED displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.W.; Twu, N.; Kymissis, I. Micro-LED technologies and applications. Inf. Disp. 2016, 32, 16–23. [Google Scholar] [CrossRef]
- He, H.; Huang, J.; Tao, T.; Zhi, T.; Zhang, K.; Zhuang, Z.; Yan, Y.; Liu, B. Monolithic integration of GaN-based transistors and micro-LED. Nanomaterials 2024, 14, 511. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges. J. Phys. D Appl. Phys. 2021, 54, 123001. [Google Scholar] [CrossRef]
- Pandey, A.; Reddeppa, M.; Mi, Z. Recent progress on micro-LEDs. Light Adv. Manuf. 2024, 4, 519–542. [Google Scholar] [CrossRef]
- Ryu, J.E.; Park, S.; Park, Y.; Ryu, S.W.; Hwang, K.; Jang, H.W. Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for High-Performance Micro-LED Displays. Adv. Mater. 2023, 35, e2204947. [Google Scholar] [CrossRef]
- Ma, T.; Chen, J.; Chen, Z.; Liang, L.; Hu, J.; Shen, W.; Li, Z.; Zeng, H. Progress in Color Conversion Technology for Micro-LED. Adv. Mater. Technol. 2023, 8, 2200632. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Q.; Yu, B.; Lemmer, U. A review on quantum dot-based color conversion layers for mini/micro-LED displays: Packaging, light management, and pixelation. Adv. Opt. Mater. 2024, 12, 2300873. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, P.; Sher, C.-W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.-C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263. [Google Scholar] [CrossRef]
- Fan, X.; Yang, X.; Kong, X.; Zhang, T.; Wang, S.; Lin, Y.; Chen, Z. Recent progresses on perovskite quantum dots patterning techniques for color conversion layer in micro-LED displays. Next Nanotechnol. 2024, 5, 100045. [Google Scholar] [CrossRef]
- Seo, S.J.; Park, S.; Jang, H.W. Flexible Micro-LEDs: Advanced Fabrication Techniques and Applications. Electron. Mater. Lett. 2025. [Google Scholar] [CrossRef]
- Gao, H.; Zou, M.; Zhong, C.; Zhuang, J.; Lin, J.; Lu, Z.; Jiang, Z.; Lu, Y.; Chen, Z.; Guo, W. Advances in pixel driving technology for micro-LED displays. Nanoscale 2023, 15, 17232–17248. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.C.; Hsiao, F.H.; Sheng, Y.; Lee, T.Y.; Hong, Y.H.; Tsai, C.W.; Chen, H.L.; Liu, Z.; Lin, C.L.; Chung, R.J.; et al. Microdisplays: Mini-LED, Micro-OLED, and Micro-LED. Adv. Opt. Mater. 2023, 12, 2300112. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, G.; Gou, F.; Li, M.C.; Lee, S.L.; Wu, S.T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387–401. [Google Scholar] [CrossRef]
- Hsiang, E.L.; Yang, Z.; Yang, Q.; Lan, Y.F.; Wu, S.T. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J. Soc. Inf. Disp. 2021, 29, 446–465. [Google Scholar] [CrossRef]
- Arshad, M.K.M.; Hashim, U.; Isa, M. Under bump metallurgy (UBM)-A technology review for flip chip packaging. Int. J. Mech. Mater. Eng. 2007, 2, 48–54. [Google Scholar]
- Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing; William Andrew: Burlington, MA, USA, 2010; pp. 237–277. [Google Scholar]
- Menon, S.; George, E.; Osterman, M.; Pecht, M. High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. 2015, 26, 4021–4030. [Google Scholar] [CrossRef]
- Schoeller, H.; Bansal, S.; Knobloch, A.; Shaddock, D.; Cho, J. Microstructure Evolution and the Constitutive Relations of High-Temperature Solders. J. Electron. Mater. 2009, 38, 802–809. [Google Scholar] [CrossRef]
- Plötner, M.; Sadowski, G.; Rzepka, S.; Blasek, G. Aspects of Indium Solder Bumping and Indium Bump Bonding Useful for Assembling Cooled Mosaic Sensors. Microelectron. Int. 1991, 8, 27–30. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, C.; Hutt, D.; Stevens, B. Electrodeposition of Indium Bumps for Ultrafine Pitch Interconnection. J. Electron. Mater. 2014, 43, 594–603. [Google Scholar] [CrossRef]
- George, T.; Dutta, A.K.; Islam, M.S.; Douglass, D.; Desmarais, B.; Schumacher, J.; Zhang, C.; Robinson, M.; Outten, C.; Manasson, A.; et al. Indium bump deposition for flip-chip micro-array image sensing and display applications. In Proceedings of the Micro- and Nanotechnology Sensors, Systems, and Applications X, Orlando, FL, USA, 15–19 April 2018; pp. 425–437. [Google Scholar] [CrossRef]
- Jiang, B.-X.; Chen, H.; Zhang, W.-J.; Lan, J.-H.; Yang, T.-X.; Lin, C.; Huang, Z.-H.; Zhang, K.-X.; Zhu, X.-Q.; He, J.; et al. Fabrication and bonding of In bumps on Micro-LED with 8 μm pixel pitch. Eng. Res. Express 2024, 6, 025303. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, G.; Yuan, Y.; Cheng, X.; Luo, L. Development of indium bumping technology through AZ9260 resist electroplating. J. Micromech. Microeng. 2010, 20, 055035. [Google Scholar] [CrossRef]
- Yadollahpour, M.; Kadkhodapour, J.; Ziaei-Rad, S.; Karimzadeh, F. An experimental and numerical investigation on damping capacity of nanocomposite. Mater. Sci. Eng. A 2009, 507, 149–154. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, X.; Zhou, H.; Li, J.; Wang, X.; Lu, X.; Yin, L.; Zhang, J. Research on Au-In Flip-Chip Bonding Process of 2300 PPI Micro-LED Arrays. IEEE Trans. Electron Devices 2024, 71, 7637–7643. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Z.; Zhou, H.; Ji, X.; Lu, X.; Yin, L.; Zhang, J. Optical, electrical, and mechanical reliability of 1700 PPI Micro-LED device. Microelectron. Reliab. 2024, 158, 115431. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Guo, C.-L.; Zhou, Y.-J.; Zhu, X.-Q.; Yan, Z.-B.; Li, Y.; Yang, T.-X.; Sun, J.; Yan, Q. Process optimization of preparing CMOS backplane for ultrahigh pixel density red Micro-LED display. Eng. Res. Express 2024, 6, 045310. [Google Scholar] [CrossRef]
- Yin, L.; Li, J.; Yang, Z.; Ji, X.; Zhou, H.; Zhang, J. Research on Hybrid Bonding Process of Micro-LED Preparation Based on Asymmetric Structure. IEEE Electron Device Lett. 2024, 45, 2475–2478. [Google Scholar] [CrossRef]
- Liu, M.; Nie, J.; Liu, Y.; Sun, J.; Li, M.; Yan, C.; Yan, Q. Research on the reliability of Micro LED high-density solder joints under thermal cycling conditions. J. Phys. Conf. Ser. 2022, 2221, 012010. [Google Scholar] [CrossRef]
- Lang, T.; Lin, X.; Huang, X.; Xie, Y.; Bai, S.; Zhou, Y.; Wang, S.; Lu, Y.; Tang, X.; Lin, C.; et al. Thin-Film Assisted Laser Transfer and Bonding (TFA-LTAB) for the Fabrication of Micro-LED Displays. Adv. Electron. Mater. 2024, 11, 2400380. [Google Scholar] [CrossRef]
- Tian, W.; Ma, Z.; Cao, X.; Lin, J.; Cui, Y.; Huang, X. Application of metal interconnection process with micro-LED display by laser-assisted bonding technology. J. Mater. Sci. Mater. Electron. 2023, 34, 2253. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, K.; Ji, X.; Yin, L.; Zhang, J. High Resolution Micro-LED Arrays Using Au–Sn Flip-Chip Bonding. IEEE Trans. Electron Devices 2023, 70, 3140–3144. [Google Scholar] [CrossRef]
- Jiang, J.; Tsao, S.; O’Sullivan, T.; Razeghi, M.; Brown, G.J. Fabrication of indium bumps for hybrid infrared focal plane array applications. Infrared Phys. Technol. 2004, 45, 143–151. [Google Scholar] [CrossRef]
- Ohara, Y.; Noriki, A.; Iwata, E.; Hiraki, T.; Lee, K.W.; Murugesan, M.; Bea, J.C.; Fukushima, T.; Tanaka, T.; Koyanagi, M. Development of EEB (Electroplated-Evaporation Bumping) Technology for Fine Pitch and Low Resistance Cu/Sn Micro-Bumps. In Proceedings of the Extended Abstracts of the 2009 International Conference on Solid State Devices and Materials, Miyagi, Japan, 6–9 October 2009. [Google Scholar] [CrossRef]
- Zhao Jun, L.; Ka Ming, W.; Chi Wing, K.; Chak Wah, T.; Kei May, L. Monolithic LED Microdisplay on Active Matrix Substrate Using Flip-Chip Technology. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1298–1302. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, L.; Chong, W.C.; Li, P.; Tang, C.W.; Lau, K.M. Active matrix monolithic micro-LED full-color micro-display. J. Soc. Inf. Disp. 2020, 29, 47–56. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.; Liu, X.; Liu, Z.; Sun, L.; Yuen, S.H.; Chong, W.C.; Ki, W.-H.; Yue, C.P.; Lau, K.M. A Fully-Integrated Micro-Display System With Hybrid Voltage Regulator. IEEE J. Emerg. Sel. Top. Circuits Syst. 2023, 13, 605–616. [Google Scholar] [CrossRef]
- Shen, J.; Liu, C.; Kino, H.; Tanaka, T.; Fukushima, T. FOWLP-Based Flexible Hybrid Electronics II: Heterogeneous Integration Technology of Micro-LEDs on 3D-IC for Smart Skin Display. In Proceedings of the 2023 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, 15–17 November 2023; pp. 49–52. [Google Scholar] [CrossRef]
- Tang, X.; Huang, X.; Lang, T.; Xie, Y.; Lin, X.; Li, Y.; Zhou, Y.; Yan, Q.; Zhang, K.; Lin, C.; et al. Active-matrix TFT driven GaN blue Micro-LED display realized with electroplated copper-tin-silver micro bumps-based bonding structure. J. Alloys Compd. 2025, 1010, 177695. [Google Scholar] [CrossRef]
- Schlesinger, M. Electroless and Electrodeposition of Silver; Wiley: Hoboken, NJ, USA, 2010; pp. 131–138. [Google Scholar]
- Loto, C. Electroless nickel plating–a review. Silicon 2016, 8, 177–186. [Google Scholar] [CrossRef]
- Yokoshima, T.; Nomura, K.; Yamaji, Y.; Kikuchi, K.; Nakagawa, H.; Koshiji, K.; Aoyagi, M.; Iwai, R.; Tokuhisa, T.; Kato, M. Formation of au microbump arrays for flip-chip bonding using electroless au deposition from a non-cyanide plating bath. Trans. Jpn. Inst. Electron. Packag. 2009, 2, 109–115. [Google Scholar] [CrossRef]
- Watanabe, N.; Nemoto, S.; Kikuchi, K.; Aoyagi, M.; Tokuhisa, T.; Owada, T.; Kato, M. Basic evaluation of Au micro-bumps formed by cyanide-free electroless Au plating process. In Proceedings of the 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, 3–5 December 2014; pp. 525–530. [Google Scholar] [CrossRef]
- Ha, H.-B.; Lee, B.H.; Qaiser, N.; Seo, Y.; Kim, J.; Koo, J.M.; Hwang, B. Highly reliable anisotropic interconnection system fabricated using Cu/Sn-Soldered microdumbbell arrays and polyimide films for application to flexible electronics. Intermetallics 2022, 144, 107535. [Google Scholar] [CrossRef]
- Wang, S.; Lin, C.; Lu, Y.; Sun, J.; Yan, Q.; Zhang, K.; Huang, Z.; Yang, T.; Guo, T. 23-2: Invited Paper: Fabrication of Super Uniform Nickel Bumps Using Electroless Plating on Micro-LEDs’ TFT Driver Substrates. SID Symp. Dig. Tech. Pap. 2024, 55, 194–196. [Google Scholar] [CrossRef]
- Shimauchi, H.; Ozawa, S.; Tamura, K.; Osaka, T. Preparation of Ni-Sn Alloys by an Electroless-Deposition Method. J. Electrochem. Soc. 1994, 141, 1471. [Google Scholar] [CrossRef]
- Akhter, M.; Lee, J.S.; Maaskant, P.P.; Rensing, M.; Nudds, N.; O’Brien, P.; Degenaar, P.; Corbett, B. A LED Micro-Display with 90× 90 pixels on a 80 μm pitch. In Proceedings of the 2015 European Microelectronics Packaging Conference (EMPC), Friedrichshafen, Germany, 14–16 September 2015; pp. 1–5. [Google Scholar]
- Rao, M.; Lusth, J.; Burkett, S. Analysis of a dip-solder process for self-assembly. J. Vac. Sci. Technol. B 2011, 29, 042003. [Google Scholar] [CrossRef]
- Lee, D.; Cho, S.; Park, C.; Park, K.R.; Lee, J.; Nam, J.; Ahn, K.; Park, C.; Jeon, K.; Yuh, H.; et al. Fluidic self-assembly for MicroLED displays by controlled viscosity. Nature 2023, 619, 755–760. [Google Scholar] [CrossRef]
- Hauptman, N.; Žveglič, M.; Maček, M.; Klanjšek Gunde, M. Carbon based conductive photoresist. J. Mater. Sci. 2009, 44, 4625–4632. [Google Scholar] [CrossRef]
- Benlarbi, M.; Blum, L.J.; Marquette, C.A. SU-8-carbon composite as conductive photoresist for biochip applications. Biosens. Bioelectron. 2012, 38, 220–225. [Google Scholar] [CrossRef]
- Huang, J.C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. J. Polym. Process. Inst. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- Zhu, X.; Lang, T.; Lin, X.; Huang, X.; Xie, Y.; Li, Y.; Zhou, Y.; Yang, Y.; Lin, C.; Sun, J.; et al. Fabrication of micro-bump array using a photosensitive conductive polymer for the integration of micro-light-emitting diode displays. J. Micro/Nanopatterning Mater. Metrol. 2024, 23, 044901. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, T.; Zhu, X.; Lin, C.; Huang, X.; Sun, J.; Yan, C.; Yan, Q. Preparation of Bumps Using a Novel Photosensitive Conductive Polymer Material for Micro-LED Display Application. In Proceedings of the 2024 3rd International Symposium on Semiconductor and Electronic Technology (ISSET), Xi’an, China, 23–25 August 2024; pp. 30–33. [Google Scholar] [CrossRef]
- Aschenbrenner, R.; Ostmann, A.; Beutler, U.; Simon, J.; Reichl, H. Electroless nickel/copper plating as a new bump metallization. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 1995, 18, 334–338. [Google Scholar] [CrossRef]
- Atsuo SENDA, Y.T.a.T.N. Formation of Indium Films by Electroless Platin. J. Surf. Finish. Soc. Jpn. 1992, 43, 694–699. [Google Scholar] [CrossRef]
- Ji, H.; Ma, Y.; Li, M.; Wang, C. Effect of the silver content of SnAgCu solder on the interfacial reaction and on the reliability of angle joints fabricated by laser-jet soldering. J. Electron. Mater. 2015, 44, 733–743. [Google Scholar] [CrossRef]
- Yue, W.; Zhou, M.-B.; Zhang, X.-P. Reliability and failure analysis of electronic components induced by the reflection of laser beam in the laser jet solder ball bonding process. In Proceedings of the 2017 18th International Conference on Electronic Packaging Technology (ICEPT), Harbin, China, 16–19 August 2017; pp. 1658–1662. [Google Scholar] [CrossRef]
- Randhawa, J.S.; Kanu, L.N.; Singh, G.; Gracias, D.H. Importance of surface patterns for defect mitigation in three-dimensional self-assembly. Langmuir 2010, 26, 12534–12539. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Lusth, J.C.; Burkett, S.L. Self-assembly solder process to form three-dimensional structures on silicon. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 76–80. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, L. Preparation and characterization of indium films by electroless plating under hydrothermal conditions. J. Mater. Sci. Lett. 2000, 19, 1611–1613. [Google Scholar] [CrossRef]
- Sharma, A.; Cheon, C.-S.; Jung, J.P. Recent progress in electroless plating of copper. J. Microelectron. Packag. Soc. 2016, 23, 1–6. [Google Scholar] [CrossRef]
- Datta, M. Flip-chip interconnection. In Microelectronic Packaging; CRC Press: Boca Raton, FL, USA, 2005; pp. 167–200. [Google Scholar]
Process | Bump Size (μm) | Cost | Pitch (μm) | Process Complexity | Uniformity | Bump Materials |
---|---|---|---|---|---|---|
Evaporation | 4.52 | High | 8 | Low | High | Low-melting-point and easily evaporated metals |
Electroplating | About 5 | Medium | 8 | Medium | Medium | Most metals and alloys used in Flip-Chip |
Electroless Plating | About 3 | Low | 8 | Low | High | Ni, Cu, Au, Sn |
Ball Mounting | 50 | Medium | 80 | Low | - | Low melting point alloy solder |
Dip Soldering | About 40 | Low | 120 | Medium | - | Low melting point alloy solder |
PCPM | About 5 | Medium | 8 | Low | High | Photosensitive conductive materials only |
Bump Material | Process | Bump Diameter | Bump Height | Bump Pitch | References |
---|---|---|---|---|---|
In | Evaporation | 7.5 μm | About 3 μm | 10.8 μm | [64] |
In | Evaporation | 10 μm | 3 μm | 15 μm | [65] |
In | Evaporation | - | About 4.5 μm | 8 μm | [66] |
In | Evaporation | 12 μm | 2.7 μm | - | [67] |
In | Evaporation | 10 μm | 4 μm | - | [68] |
In | Evaporation | - | - | 74 μm | [69] |
Sn | Evaporation | - | 3 μm | - | [70] |
Sn | Evaporation | 13.2 μm | - | 15 μm | [71] |
Metal/Alloy | Melting Temp. (°C) | CTE (10−6 °C−1) | Conductivity (104 Ω−1cm−1) | Yield Strength (MPa) |
---|---|---|---|---|
In | 156.6 | 32.1 | - | - |
Sn | 231.9 | 22 | 9.1 | - |
Cu | 1083 | 16.5 | 58.8 | 56.4 |
Ag | 960.5 | 18.9 | 62.1 | - |
Au | 1063 | 14.3 | 45.5 | 308 |
Ni | 1455 | 13.4 | 14.3 | - |
Sn96.5Ag3.5 | 221 | 22 | 9.0 | 39 |
Sn95.5Ag3.9Cu0.6 | 217 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhu, X.; Wang, S.; Tang, X.; Lang, T.; Belyaev, V.; Abduev, A.; Kazak, A.; Lin, C.; Yan, Q.; et al. Bump-Fabrication Technologies for Micro-LED Display: A Review. Materials 2025, 18, 1783. https://doi.org/10.3390/ma18081783
Wu X, Zhu X, Wang S, Tang X, Lang T, Belyaev V, Abduev A, Kazak A, Lin C, Yan Q, et al. Bump-Fabrication Technologies for Micro-LED Display: A Review. Materials. 2025; 18(8):1783. https://doi.org/10.3390/ma18081783
Chicago/Turabian StyleWu, Xin, Xueqi Zhu, Shuaishuai Wang, Xuehuang Tang, Taifu Lang, Victor Belyaev, Aslan Abduev, Alexander Kazak, Chang Lin, Qun Yan, and et al. 2025. "Bump-Fabrication Technologies for Micro-LED Display: A Review" Materials 18, no. 8: 1783. https://doi.org/10.3390/ma18081783
APA StyleWu, X., Zhu, X., Wang, S., Tang, X., Lang, T., Belyaev, V., Abduev, A., Kazak, A., Lin, C., Yan, Q., & Sun, J. (2025). Bump-Fabrication Technologies for Micro-LED Display: A Review. Materials, 18(8), 1783. https://doi.org/10.3390/ma18081783