Unraveling the Mechanism of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on Pt-V Tandem Catalyst
Abstract
:1. Introduction
2. Experimental Section
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Performance Test
3. Results
3.1. NH3-SCO Performance
3.2. N2 Adsorption and Desorption
3.3. XRD
3.4. XPS
3.5. O2-TPD
3.6. Redox Performance
3.7. NH3-TPD
3.8. HRTEM and EDX
3.9. In Situ DRIFTS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lagouvardou, S.; Psaraftis, H.N.; Zis, T. Impacts of a bunker levy on decarbonizing shipping: A tanker case study. Transp. Res. Part D Transp. Environ. 2022, 106, 103257. [Google Scholar] [CrossRef]
- Liu, J.; Cavagnaro, R.J.; Deng, Z.D.; Shao, Y.; Kuo, L.J.; Nguyen, M.T.; Glezakou, V. Renewable ammonia as an energy fuel for ocean exploration and transportation. Mar. Technol. Soc. J. 2020, 54, 126–136. [Google Scholar] [CrossRef]
- Kanberoğlu, B.; Kökkülünk, G. Assessment of CO2 emissions for a bulk carrier fleet. J. Clean. Prod. 2021, 283, 124590. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Reiter, A.J.; Kong, S.C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 2011, 90, 87–97. [Google Scholar] [CrossRef]
- Niki, Y. Reductions in unburned ammonia and nitrous oxide emissions from an ammonia-assisted diesel engine with early timing diesel pilot injection. J. Eng. Gas Turbines Power 2021, 143, 091014. [Google Scholar] [CrossRef]
- Niki, Y.; Nitta, Y.; Sekiguchi, H.; Hirata, K. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air. J. Eng. Gas Turbines Power 2019, 141, 061020. [Google Scholar] [CrossRef]
- Cui, J.; Chen, W.; Wang, B.; Fan, Y.; Tian, H.; Long, W.; Liu, X. Effects of relative position of injectors on the performance of ammonia/diesel two-stroke engines. Energy 2024, 309, 133085. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Z.; Cheng, S.; Xu, D.; Pan, X. A mixed catalyst prepared by mechanically milling VW/TiO2 and low content of Pt/Al2O3 for SCO of high-concentration NH3. New J. Chem. 2022, 46, 20108–20119. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.; Sani, Z.; Tang, X.; Yi, H.; Zhao, S.; Yu, Q.; Zhou, Y. Advances in selective catalytic oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic performances and reaction mechanisms. J. Environ. Chem. Eng. 2021, 9, 104575. [Google Scholar] [CrossRef]
- Lan, T.; Zhao, Y.; Deng, J.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic oxidation of NH3 over noble metal-based catalysts: State of the art and future prospects. Catal. Sci. Technol. 2020, 10, 5792–5810. [Google Scholar] [CrossRef]
- Kim, G.J.; Kwon, D.W.; Shin, J.H.; Kim, K.W.; Hong, S.C. Influence of the addition of vanadium to Pt/TiO2 catalyst on the selective catalytic oxidation of NH3 to N2. Environ. Technol. 2019, 40, 2588–2600. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H. Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia. ACS Catal. 2018, 8, 2670–2682. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, H.; Wang, S.; Cheng, H.; Qin, Y.; Wang, Z. Role of the support on the behavior of Ag-based catalysts for NH3 selective catalytic oxidation (NH3-SCO). Appl. Surf. Sci. 2014, 316, 373–379. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.H.; Kwon, D.W.; Lee, K.Y.; Ha, H.P. Unveiling the traits of rare earth metal (RM)-substituted bimetallic Ce0.5RM0.5V1O4 phases to activate selective NH3 oxidation and NOx reduction. Appl. Surf. Sci. 2020, 518, 146238. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Wang, Y.; Wang, W.; Zhou, S.; Zhang, S.; Li, W.; Li, S. Revealing the promotional effect of Ce doping on the low-temperature activity and SO2 tolerance of Ce/FeVO4 catalysts in NH3-SCR. J. Environ. Chem. Eng. 2022, 10, 107588. [Google Scholar] [CrossRef]
- Liang, C.; Li, X.; Qu, Z.; Tade, M.; Liu, S. The role of copper species on Cu/γ-Al2O3 catalysts for NH3-SCO reaction. Appl. Surf. Sci. 2012, 258, 3738–3743. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, Y.; Li, Z.; Shan, Y.; Shan, W.; Shi, X.; Yu, Y.B.; Zhang, C.B.; Li, K.; Ning, P.; et al. Promoting effect of acid sites on NH3-SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst. Catal. Today 2021, 376, 311–317. [Google Scholar] [CrossRef]
- Chang, S.; Harle, G.; Ma, J.; Yi, J. The effect of textural properties of CeO2-SiO2 mixed oxides on NH3-SCO activity of Pt/CeO2-SiO2 catalyst. Appl. Catal. A-Gen. 2020, 604, 117775. [Google Scholar] [CrossRef]
- Byun, S.W.; Lee, S.J.; Kim, M.; Bae, W.B.; Shin, H.; Hazlett, M.J.; Kang, D.; Tesfaye, B.; Park, P.W.; Kang, S.B. High N2 selectivity of Pt-VW/TiO2 oxidation catalyst for simultaneous control of NH3 and CO emissions. Chem. Eng. J. 2022, 444, 136517. [Google Scholar] [CrossRef]
- Liu, W.; Long, Y.; Zhou, Y.; Liu, S.; Tong, X.; Yin, Y.; Li, X.; Hu, K.; Hu, J. Excellent low temperature NH3-SCR and NH3-SCO performance over Ag-Mn/Ce-Ti catalyst: Evaluation and characterization. Mol. Catal. 2022, 528, 112510. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Z.; Lu, S.; Pan, X. Influence of deposition order of dual active components on the NH3-SCO performance of the bimetallic Pt-V system supported on TiO2. New J. Chem. 2023, 47, 11143–11155. [Google Scholar] [CrossRef]
- Kwon, D.W.; Lee, S.M.; Hong, S.C. Influence of attrition milling on V/Ti catalysts for the selective oxidation of ammonia. Appl. Catal. A-Gen. 2015, 505, 557–565. [Google Scholar] [CrossRef]
- Shen, M.; Li, C.; Wang, J.; Xu, L.; Wang, W.; Wang, J. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance. RSC Adv. 2015, 5, 35155–35165. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, L.; Lin, C.; Shan, W.; He, H. Hydrothermal aging treatment activates V2O5/TiO2 catalysts for NOx abatement. Environ. Sci. Technol. 2022, 56, 9744–9750. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, G.; Wang, C.; Gao, F.; Wang, J.; Shen, M. Mechanistic insights into the deactivation of Pd/BEA methane combustion catalysts by hydrothermal aging. Mol. Catal. 2024, 558, 114027. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, K.; Yang, X.; Chen, X.; Shen, X.; Li, Y.; Fang, Y.; Liu, Y.; Zhao, J.; Yang, X.; et al. In-situ formed stable Pt nanoclusters on ceria-zirconia solid solutions induced by hydrothermal aging for efficient low-temperature CO oxidation. Chem. Eng. J. 2024, 498, 155427. [Google Scholar] [CrossRef]
- Liu, S.R.; Luo, S.T.; Wu, X.D.; Wang, T.J.; Ran, R.; Weng, D.; Si, Z.; Liu, S. Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation. Rare Met. 2023, 42, 1614–1623. [Google Scholar] [CrossRef]
- Song, D.; Shao, X.; Yuan, M.; Wang, L.; Zhan, W.; Guo, Y.; Lu, G. Selective catalytic oxidation of ammonia over MnOx-TiO2 mixed oxides. RSC Adv. 2016, 6, 88117–88125. [Google Scholar] [CrossRef]
- Guo, J.; Yang, W.; Zhang, Y.; Gan, L.; Fan, C.; Chen, J.; Peng, Y.; Li, J. A multiple-active-site Cu/SSZ-13 for NH3-SCO: Influence of Si/Al ratio on the catalytic performance. Catal. Commun. 2020, 135, 105751. [Google Scholar] [CrossRef]
- Sun, M.; Liu, J.; Song, C.; Ogata, Y.; Rao, H.; Zhao, X.; Xu, H.D.; Chen, Y. Different reaction mechanisms of ammonia oxidation reaction on Pt/Al2O3 and Pt/CeZrO2 with various Pt states. ACS Appl. Mater. Interfaces 2019, 11, 23102–23111. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.M.; Liu, Y.R.; Zhao, P.P.; Cen, B.H.; Tang, C.; Jia, A.P.; Lu, J.; Luo, M.F. Total oxidation of propane over Pt-V/SiO2 catalysts: Remarkable enhancement of activity by vanadium promotion. Appl. Catal. A-Gen. 2020, 590, 117337. [Google Scholar] [CrossRef]
- Tian, Y.; Han, Z.; Zhou, Z.; Zhao, H.; Zeng, Q.; Li, Y.; Ma, D. Synthesis of Cu/CeTiOx tandem catalyst with dual-function sites for selective catalytic oxidation of ammonia. Chem. Eng. J. 2025, 503, 158212. [Google Scholar] [CrossRef]
- Jabłońska, M. TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO. Catal. Commun. 2015, 70, 66–71. [Google Scholar] [CrossRef]
- Góra-Marek, K.; Brylewska, K.; Tarach, K.A.; Rutkowska, M.; Jabłońska, M.; Choi, M.; Chmielarz, L. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Appl. Catal. B-Environ. 2015, 179, 589–598. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Wang, D.; Hong, Z.; Qu, Z.; Li, X. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep. Purif. Technol. 2019, 209, 1016–1026. [Google Scholar] [CrossRef]
- Hua, Z.; Xin, Q.; Ren, W.; Zheng, Z.; Zhou, F.; Liu, S.; Yang, Y.; Gao, X. Enhanced performance of Nb2O5 decorated RuO2/Sn0.2Ti0.8O2 for selective catalytic oxidation of ammonia. Process Saf. Environ. Prot. 2022, 160, 948–957. [Google Scholar] [CrossRef]
- Macina, D.; Opioła, A.; Rutkowska, M.; Basąg, S.; Piwowarska, Z.; Michalik, M.; Chmielarz, L. Mesoporous silica materials modified with aggregated transition metal species (Cr, Fe and Cr-Fe) in the role of catalysts for selective catalytic oxidation of ammonia to dinitrogen. Mater. Chem. Phys. 2017, 187, 60–71. [Google Scholar] [CrossRef]
- Lin, M.; An, B.; Takei, T.; Shishido, T.; Ishida, T.; Haruta, M.; Murayama, T. Features of Nb2O5 as a metal oxide support of Pt and Pd catalysts for selective catalytic oxidation of NH3 with high N2 selectivity. J. Catal. 2020, 389, 366–374. [Google Scholar] [CrossRef]
- Im, H.G.; Lee, M.J.; Kim, W.G.; Kim, S.J.; Jeong, B.; Ye, B.; Lee, H.; Kim, H.D. High-Dispersed V2O5-CuOx Nanoparticles on h-BN in NH3-SCR and NH3-SCO Performance. Nanomaterials 2022, 12, 2329. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Q.; Ran, G.; Kong, M.; Ren, S.; Yang, J.; Li, J. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem. Eng. J. 2019, 370, 810–821. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Wang, X.; Yang, S.; Liu, G.; Gao, Y.; Li, C. Acid treatment of ZrO2-supported CeO2 catalysts for NH3-SCR of NO: Influence on surface acidity and reaction mechanism. J. Taiwan Inst. Chem. Eng. 2022, 132, 104144. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Yang, X.; Chen, Y.; Hu, X.; Wu, X. CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance. Chem. Eng. Sci. 2021, 238, 116588. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, D.; Tong, Z.; Wang, J.; Chen, J.; He, C. Rationally engineered ReOx-CuSO4/TiO2 catalyst with superior NH3-SCO efficiency and remarkably boosted SO2 tolerance: Synergy of acid sites and surface adsorbed oxygen. Chem. Eng. J. 2022, 442, 136356. [Google Scholar] [CrossRef]
- Zhai, G.; Han, Z.; Wu, X.; Du, H.; Gao, Y.; Yang, S.; Song, L.; Dong, J.; Pan, X. Pr-modified MnOx catalysts for selective reduction of NO with NH3 at low temperature. J. Taiwan Inst. Chem. Eng. 2021, 125, 132–140. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Z.T.; Cheng, S.S.; Lu, S.J.; Pan, X.X. The enhancement effect of Cu modification on N2 selectivity of V0.5/Pt0.04/TiO2 catalyst for selective catalytic oxidation of NH3. J. Taiwan Inst. Chem. Eng. 2023, 149, 104947. [Google Scholar] [CrossRef]
- Song, K.; Zhao, S.; Li, Z.; Li, K.; Xu, Y.; Zhang, Y.; Cheng, Y.; Shi, J.W. Zinc and phosphorus poisoning tolerance of Cu-SSZ-13 and Ce-Cu-SSZ-13 in the catalytic reduction of nitrogen oxides. J. Colloid Interface Sci. 2023, 629, 243–255. [Google Scholar] [CrossRef]
- Han, Z.; Du, H.; Xu, D.; Gao, Y.; Yang, S.; Song, L.; Dong, J.; Pan, X. Fe and Mn mixed oxide catalysts supported on Sn-modified TiO2 for the selective catalytic reduction of NO with NH3 at low temperature. New J. Chem. 2022, 46, 1621–1636. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; He, G.; Chen, M.; Wang, S.; Zhang, C.; He, H. Synergistic effect of TiO2-SiO2 in Ag/Si-Ti catalyst for the selective catalytic oxidation of ammonia. Ind. Eng. Chem. Res. 2018, 57, 11903–11910. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Z.; Zhai, G.; Song, L.; Dong, J.; Yang, S.; Pan, X. Mechanistic insight into the promoting effect of partial substitution of Mn by Ce on N2 selectivity of MnTiOx catalyst for NH3-SCR of NO. J. Taiwan Inst. Chem. Eng. 2022, 133, 104269. [Google Scholar] [CrossRef]
- Jabłońska, M.; Wolkenar, B.; Beale, A.M.; Pischinger, S.; Palkovits, R. Comparison of Cu-Mg-Al-Ox and Cu/Al2O3 in selective catalytic oxidation of ammonia (NH3-SCO). Catal. Commun. 2018, 110, 5–9. [Google Scholar] [CrossRef]
- Peng, Y.; Si, W.; Li, X.; Luo, J.; Li, J.; Crittenden, J.; Hao, J. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Appl. Catal. B-Environ. 2016, 181, 692–698. [Google Scholar] [CrossRef]
- Yao, H.; Chen, Y.; Wei, Y.; Zhao, Z.; Liu, Z.; Xu, C. A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites. Surf. Sci. 2012, 606, 1739–1748. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Jiang, X.; Sun, H.; Qu, Z. Study of synergistic effect between CuO and CeO2 over CuO@CeO2 core-shell nanocomposites for NH3-SCO. Catal. Sci. Technol. 2019, 9, 2968–2981. [Google Scholar] [CrossRef]
- Shrestha, S.; Harold, M.P.; Kamasamudram, K.; Yezerets, A. Selective oxidation of ammonia on mixed and dual-layer Fe-ZSM-5+Pt/Al2O3 monolithic catalysts. Catal. Today 2014, 231, 105–115. [Google Scholar] [CrossRef]
- Sun, M.; Wang, S.; Li, Y.; Wang, Q.; Xu, H.; Chen, Y. Promotion of catalytic performance by adding Cu into Pt/ZSM-5 catalyst for selective catalytic oxidation of ammonia. J. Taiwan Inst. Chem. E. 2017, 78, 401–408. [Google Scholar] [CrossRef]
- Sun, M.; Wang, S.; Li, Y.; Xu, H.; Chen, Y. Promotion of catalytic performance by adding W into Pt/ZrO2 catalyst for selective catalytic oxidation of ammonia. Appl. Surf. Sci. 2017, 402, 323–329. [Google Scholar] [CrossRef]
- Wang, F.; He, G.; Zhang, B.; Chen, M.; Chen, X.; Zhang, C.; He, H. Insights into the activation effect of H2 pretreatment on Ag/Al2O3 catalyst for the selective oxidation of ammonia. ACS Catal. 2019, 9, 1437–1445. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Ning, P.; Song, Z.; Liu, X.; Duan, Y. In situ DRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen. Appl. Surf. Sci. 2017, 419, 733–743. [Google Scholar] [CrossRef]
- Gang, L.; Van Grondelle, J.; Anderson, B.G.; Van Santen, R.A. Selective low temperature NH3 oxidation to N2 on copper-based catalysts. J. Catal. 1999, 186, 100–109. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method. J. Catal. 2002, 207, 158–165. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.B.; Hong, S.C. Characterization and reactivity of natural manganese ore catalysts in the selective catalytic oxidation of ammonia to nitrogen. Chemosphere 2003, 50, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, P.; Mei, W. Unraveling the Mechanism of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on Pt-V Tandem Catalyst. Materials 2025, 18, 1782. https://doi.org/10.3390/ma18081782
Gao Y, Li P, Mei W. Unraveling the Mechanism of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on Pt-V Tandem Catalyst. Materials. 2025; 18(8):1782. https://doi.org/10.3390/ma18081782
Chicago/Turabian StyleGao, Yu, Pingshang Li, and Wan Mei. 2025. "Unraveling the Mechanism of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on Pt-V Tandem Catalyst" Materials 18, no. 8: 1782. https://doi.org/10.3390/ma18081782
APA StyleGao, Y., Li, P., & Mei, W. (2025). Unraveling the Mechanism of High N2 Selectivity in Ammonia Selective Catalytic Oxidation on Pt-V Tandem Catalyst. Materials, 18(8), 1782. https://doi.org/10.3390/ma18081782