Mechanical Properties and Stress–Strain Relationship of Grade 14.9 Superhigh-Tension Bolt (SHTB) Under Fire
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Materials
2.2. Specimen Design
2.3. Test Setup
2.3.1. Vibration Tests Under Elevated Temperature
2.3.2. Tensile Tests Under Elevated Temperature
3. Experimental Results
3.1. Overall Behavior
3.2. Stress–Strain Curves
3.3. Mechanical Properties
3.3.1. Young’s Modulus
3.3.2. Proportional Limit
3.3.3. Yield Stress
3.3.4. Ultimate Stress
3.3.5. Ultimate Strain
3.3.6. Reduction in Cross-Section Area
3.3.7. Failure Strain and Stress
4. Stress–Strain Relationship
5. Conclusions
- (1)
- Similar to the conventional high-strength bolts (Grades 8.8, 10.9, and 12.9), the surface states of the SHTB changed to some extent after the test. As the temperature increased, the surface color changed from silvery to black, and the “blue brittle” phenomenon was observed when the temperature was around 400 °C.
- (2)
- When the temperature was below 400 °C, the deterioration in the Young’s modulus of the SHTB was similar to the conventional high-strength bolts, but the SHTB had a larger value when the temperature exceeded 400 °C.
- (3)
- Both the yield stress and ultimate stress of the SHTB were much larger than that of the conventional high-strength bolts under the same temperature. When the temperature did not exceed 400 °C, there were few changes in the yield stress and ultimate stress but exhibited a marked decreasing trend when the temperature exceeded 400 °C.
- (4)
- Both the reduction in the cross-section area and failure strain of the SHTB exhibited an increasing trend with the increase in temperature. However, the failure stress first increased with the temperature increase, and then decreased with the increase in temperature.
- (5)
- Simplified prediction formulae for the reduction factors of the Young’s modulus, proportional limit, yield stress, ultimate tensile stress and strain, failure stress and strain, and the reduction in the cross-section area of the SHTB are suggested. These formulae could well predict the reduction factor of the mechanical properties of the SHTB with the elevated temperature varying from 20 to 750 °C. These formulae can be used to perform future fire safety designs and evaluation.
- (6)
- A three-stage model is suggested to describe the full uniaxial stress–strain curves of the SHTB under various elevated temperatures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ketabdari, H.; Daryan, A.S.; Hassani, N. Predicting post-fire mechanical properties of grade 8.8 and 10.9 steel bolts. J. Constr. Steel Res. 2019, 162, 105735. [Google Scholar] [CrossRef]
- Ban, H.; Yang, Q.; Shi, Y.; Luo, Z. Constitutive model of high-performance bolts at elevated temperatures. Eng. Struct. 2021, 233, 111889. [Google Scholar] [CrossRef]
- Kodur, V.; Kand, S.; Khaliq, W. Effect of temperature on thermal and mechanical properties of steel bolts. J. Mater. Civ. Eng. 2012, 24, 765–774. [Google Scholar] [CrossRef]
- Chen, C.; Chiew, S.P.; Zhao, M.S.; Lee, C.K.; Fung, T.C. Experimental study of welding effect on grade S690Q high strength steel butt joint. Steel Compos. Struct. 2021, 39, 401–417. [Google Scholar]
- Cai, W.Y.; Wang, Y.B.; Li, G.Q.; Stroetmann, R. Comparative study on strength of TMCP and QT high-strength steel butt-welded joints. J. Constr. Steel Res. 2022, 197, 107447. [Google Scholar] [CrossRef]
- Ghafouri, M.; Amraei, M.; Pokka, A.P.; Bjork, T.; Larkiola, J.; Piili, H.; Zhao, X.L. Mechanical properties of butt-welded ultra-high strength steels at elevated temperatures. J. Constr. Steel Res. 2022, 198, 107499. [Google Scholar] [CrossRef]
- Keränen, L.; Nousiainen, O.; Javaheri, V.; Kaijalainen, A.; Pokka, A.P.; Keskitalo, M.; Niskanen, J.; Kurvinen, E. Mechanical properties of welded ultrahigh-strength S960 steel at low and elevated temperatures. J. Constr. Steel Res. 2022, 198, 107517. [Google Scholar] [CrossRef]
- Kamei, Y.; Ishikawa, M.; Nishimura, N.; Kiryu, S.; Takeuchi, S. Application to Steel Girder Bridges of Super High Tension Bolt. Steel Constr. Eng. 2003, 10, 39–49. [Google Scholar]
- Uno, N.; MKubota; Nagata, M.; Tarui, T.; Kanisawa, H.; Yamasaki, S.; Azuma, K.; Miyagawa, T. Super-High-Strength Bolt, “SHTB®”; Nippon Steel Corporation: Tokyo, Japan, 2008; pp. 95–104. [Google Scholar]
- ASTM F3043-15; Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM F3111-16; Standard Specification for Heavy Hex Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength. ASTM International: West Conshohocken, PA, USA, 2016.
- Wood, M.T.; Galitz, C.L.; Shaw, R.E.; Eatherton, M.R. Pretensioning procedures for ASTM F3043 twist-off type tension control bolt assemblies. J. Constr. Steel Res. 2019, 155, 385–394. [Google Scholar] [CrossRef]
- Yang, B.; Wang, F.; Ding, M.; Shen, L.; Elchalakani, M. Experimental study on the post-fire mechanical properties of grade 14.9 superhigh-tension bolt. J. Struct. Eng. 2023, 149, 04023011. [Google Scholar] [CrossRef]
- Gao, H.; Yang, B.; Liu, Z.K.; Elchalakani, M.; Shen, L. Study on Post-Fire Constitutive Model and Fracture Performance of Grade 14.9 Superhigh Tension Bolts. J. Struct. Eng. 2025, accepted. [Google Scholar]
- Laim, L.; Rodrigues, J.P.C.; da Silva, L.S. Experimental analysis on cold-formed steel beams subjected to fire. Thin-Walled Struct. 2014, 74, 104–117. [Google Scholar] [CrossRef]
- Pantousa, D.; Karavasilis, T. Experimental and numerical investigation of the ductile fracture of structural steel at elevated temperatures. J. Constr. Steel Res. 2021, 177, 106444. [Google Scholar] [CrossRef]
- Knobloch, M.; Pauli, J.; Fontana, M. Influence of the strain-rate on the mechanical properties of mild carbon steel at elevated temperatures. Mater. Des. 2013, 49, 553–565. [Google Scholar] [CrossRef]
- Heidarpour, A.; Cevro, S.; Song, Q.Y.; Zhao, X.L. Behaviour of stub columns utilising mild-steel plates and VHS tubes under fire. J. Constr. Steel Res. 2014, 95, 220–229. [Google Scholar] [CrossRef]
- Aziz, E.M.; Kodur, V.K.; Glassman, J.D.; Garlock, M.E.M. Behavior of steel bridge girders under fire conditions. J. Constr. Steel Res. 2015, 106, 11–22. [Google Scholar] [CrossRef]
- Hassler, D.; Hothan, S. Mechanical properties of cold drawn steel S355 at elevated temperatures used for tension rods. Stahlbau 2015, 84, 332–339. [Google Scholar]
- Yuan, G.L.; Shu, Q.J.; Huang, Z.H.; Li, Q. An experimental investigation of properties of Q345 steel pipe at elevated temperatures. J. Constr. Steel Res. 2016, 118, 41–48. [Google Scholar] [CrossRef]
- Wu, Z.L.; Liu, Z.Q.; Li, L.Z.; Lu, Z.D. Experimental and neural networks analysis on elevated-temperature mechanical properties of structural steels. Mater. Today Commun. 2022, 32, 104092. [Google Scholar] [CrossRef]
- Qiang, X.H.; Bijlaard, F.S.K.; Kolstein, H. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition. Mater. Des. 2012, 40, 521–527. [Google Scholar] [CrossRef]
- Schneider, R.; Lange, J. Analysis of the time-dependent mechanical behaviour of S460 in case of fire. Stahlbau 2012, 81, 379–390. [Google Scholar] [CrossRef]
- Wang, W.Y.; Liu, B.; Kodur, V. Effect of temperature on strength and elastic modulus of high-strength steel. J. Mater. Civ. Eng. 2013, 25, 174–182. [Google Scholar] [CrossRef]
- Hanus, F.; Caillet, N.; Gaillard, S.; Vassart, O. Strength reduction factors for S355 to S500 steel grades under steady-state and transient-state heating. J. Struct. Fire Eng. 2019, 11, 137–149. [Google Scholar] [CrossRef]
- Qiang, X.H.; Bijlaard, F.; Kolstein, H. Dependence of mechanical properties of high strength steel S690 on elevated temperatures. Constr. Build. Mater. 2012, 30, 73–79. [Google Scholar] [CrossRef]
- Chiew, S.P.; Zhao, M.S.; Lee, C.K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions. J. Constr. Steel Res. 2014, 98, 12–19. [Google Scholar] [CrossRef]
- Xiong, M.X.; Liew, J.Y.R. Experimental study to differentiate mechanical behaviours of TMCP and QT high strength steel at elevated temperatures. Constr. Build. Mater. 2020, 242, 118105. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhao, X.J.; Qi, J.J.; Zhu, W.T.; Feng, Y.; Chen, L.Q.; Wang, G.D. Effect of tempering on the microstructure and properties of a new multi-functional 460 MPa Grade construction structural steel. J. Mater. Res. Technol. 2022, 18, 1092–1104. [Google Scholar] [CrossRef]
- Wang, M.J.; Li, Y.Z.; Li, G.Q.; Wang, W.Y.; Jiang, B.H. Comparative experimental studies of high-temperature mechanical properties of HSSs Q460D and Q690D. J. Constr. Steel Res. 2022, 189, 107065. [Google Scholar] [CrossRef]
- Xiong, M.X.; Pi, P.W.; Gong, W.; Yang, M.F.; Ou, Z.F. Mechanical properties of TMCP high strength steels with different strength grades at elevated temperatures. J. Build. Eng. 2022, 48, 103874. [Google Scholar] [CrossRef]
- Heidarpour; Tofts, N.S.; Korayem, A.H.; Zhao, X.L.; Hutchinson, C.R. Mechanical properties of very high strength steel at elevated temperatures. Fire Saf. J. 2014, 64, 27–35. [Google Scholar] [CrossRef]
- Azhari, F.; Heidarpour, A.; Zhao, X.L.; Hutchinson, C.R. Mechanical properties of ultra-high strength (Grade 1200) steel tubes under cooling phase of a fire: An experimental investigation. Constr. Build. Mater. 2015, 93, 841–850. [Google Scholar] [CrossRef]
- Niu, Q.L.; Ming, W.W.; Chen, M.; Tang, S.W.; Li, P.N. Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures. J. Iron Steel Res. Int. 2017, 24, 724–729. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, W.B.; Zou, J.; Elchalakani, M. Constitutive Model for equivalent stress-plastic strain curves including full-range strain hardening behavior of high-strength steel at elevated temperatures. Materials 2022, 15, 8075. [Google Scholar] [CrossRef] [PubMed]
- Sakumoto, Y.; Keira, K.; Furumura, F.; Ave, T. Tests of fire-resistant bolts and joints. J. Struct. Eng. 1993, 119, 3131–3150. [Google Scholar] [CrossRef]
- Kirby, B.R. The behavior of high-strength grade 8.8 bolts in fire. J. Constr. Steel Res. 1995, 33, 3–38. [Google Scholar] [CrossRef]
- Li, G.Q.; Jiang, S.C.; Yin, Y.Z.; Chen, K.; Li, M.F. Experimental studies on the properties of constructional steel at elevated temperatures. J. Struct. Eng. 2003, 129, 1717–1721. [Google Scholar] [CrossRef]
- Yu, L. Behavior of Bolted Connections During and After a Fire; The University of Texas at Austin: Austin, TX, USA, 2006. [Google Scholar]
- Yu, L.A.; Frank, K.H. Shear behavior of A325 and A490 high-strength bolts in fire and post-fire. Eng. J. 2009, 46, 99–106. [Google Scholar] [CrossRef]
- Lange, J.; González, F. Behavior of high-strength grade 10.9 bolts under fire conditions. Struct. Eng. Int. 2012, 22, 470–475. [Google Scholar] [CrossRef]
- Weigand, J.; Main, J.; Peixoto, R.; Vieira, L. Shear Behavior of High-Strength Bolts at Elevated Temperature: Testing and Formulation of Reduced-Order Model; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1978. [Google Scholar]
- Pang, X.P.; Hu, Y.; Tang, S.L.; Xiang, Z.; Wu, G.; Xu, T.; Wang, X.Q. Physical properties of high-strength bolt materials at elevated temperatures. Results Phys. 2019, 13, 102156. [Google Scholar] [CrossRef]
- Rezaeian, A.; Shafiei, M.; Eskandari, M. Effect of temperature on mechanical properties of steel bolts. J. Mater. Civ. Eng. 2020, 32, 04020239. [Google Scholar] [CrossRef]
- Kawohl, A.K.; Lange, J. Tests on 10.9 bolts under combined tension and shear during and after fire. In Proceedings of the International Conference on Applications of Structural Fire Engineering, Dubrovnik, Croatia, 15–16 October 2015. [Google Scholar]
- Lange, J.; Kawohl, A. Tension-shear interaction of high-strength bolts during and after fire. Steel Constr.-Des. Res. 2019, 12, 124–134. [Google Scholar] [CrossRef]
- Ding, H.M. Study on Fracture Properties of 8.8s Grade High Strength Bolts, in School of Civil Engineering; Chongqing University: Chongqing, China, 2021. [Google Scholar]
- Lu, Y.; Jiang, J.; Chen, Q.; Cai, W.; Chen, W.; Ye, J. Fracture behavior of Grade 10.9 high-strength bolts and T-stub connections in fire. J. Constr. Steel Res. 2022, 199, 107618. [Google Scholar] [CrossRef]
- Saglik, H.; Chen, A.; Ma, R. Ductile fracture of high-strength bolts under combined actions at elevated temperatures. J. Constr. Steel Res. 2024, 213, 108437. [Google Scholar] [CrossRef]
- BS EN 1993-1-2; Eurocode 3: Design of Steel Structures—Part 1–2: General Rules—Structural Fire Design. European Committee for Standardization: Brussels, Belgium, 2005.
- BS 5950-9; Structural Use of Steel Work in Building—Part 8: Code of Practice for Fire Resistance Design. Standards Policy and Strategy Committee: London, UK, 2003.
- GB 51249-2017; Code for Fire Safety of Steel Structures in Buildings. China Planning Press: Beijing, China, 2017.
- GB/T 228.1-2021; Metallic Materials: Tensile Testing: Part 1: Method of Test at Room Temperature. Stand. Press China: Beijing, China, 2021.
- ASTM E1876-15; Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM International: West Conshohocken, PA, USA, 2015.
- GB/T 228.2-2015; Metallic Materials-Tensile Testing-Part 2: Method of Test at Elevated Temperature. Stand. Press China: Beijing, China, 2015.
- Wiman, P.; Boonpensin, M.; Saranyachot, P.; Thublaor, T. Approximation in Ellingham diagram and calculation approach using heat capacity of oxides and metals constituent in stainless steels. Mater. Today Proc. 2022, 52, 2539–2542. [Google Scholar] [CrossRef]
- Epifano, E.; Monceau, D. Ellingham diagram: A new look at an old tool. Corros. Sci. 2023, 217, 111113. [Google Scholar] [CrossRef]
- Bao, Y.; Wierzbicki, T. On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 2004, 46, 81–98. [Google Scholar] [CrossRef]
- Zhu, C.; Rasmussen, K.J.R.; Yan, S. Generalised component model for structural steel joints. J. Constr. Steel Res. 2019, 153, 330–342. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Mo | Cr | Ni | Cu | V |
---|---|---|---|---|---|---|---|---|---|
0.4 | 0.19 | 0.51 | 0.015 | 0.012 | 0.57 | 0.99 | 0.11 | 0.09 | 0.28 |
°C | GPa | MPa | MPa | MPa | % | MPa | ||
---|---|---|---|---|---|---|---|---|
20 | 211.7 | 1348.8 | 1497.9 | 0.025 | 1573.3 | 47.5 | 0.060 | 1143.4 |
100 | 208.2 | 1337.2 | 1485.8 | 0.027 | 1539.6 | 43.3 | 0.061 | 1187.1 |
200 | 203.7 | 1363.3 | 1514.8 | 0.023 | 1552.6 | 45.7 | 0.063 | 1240.5 |
300 | 197.9 | 1269.5 | 1410.6 | 0.033 | 1575.7 | 45.8 | 0.071 | 1253.0 |
400 | 189.1 | 1130.6 | 1256.2 | 0.028 | 1510.2 | 64.1 | 0.099 | 820.8 |
500 | 179.3 | 1007.4 | 1118.9 | 0.016 | 1187.1 | 67.0 | 0.080 | 592.2 |
600 | 170.6 | 672.2 | 746.8 | 0.015 | 816.0 | 81.2 | 0.152 | 254.7 |
650 | 164.1 1 | 489.9 | 544.6 | 0.012 | 590.4 | 91.2 | 0.190 | 80.8 |
700 | 157.5 1 | 236.5 | 262.9 | 0.013 | 292.9 | 97.1 | 0.359 | 12.4 |
°C | °C | ||||
---|---|---|---|---|---|
20 | 10.162 | 0.106 | 500 | 5.011 | 0.054 |
100 | 13.632 | 0.106 | 600 | 4.007 | 0.160 |
200 | 13.136 | 0.123 | 650 | 3.475 | 0.103 |
300 | 8.210 | 0.142 | 700 | 3.577 | 0.076 |
400 | 4.406 | 0.141 | 750 | 6.611 | 0.097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Ding, M.; Ge, Y.; Wang, X.; Shen, L.; Ran, C. Mechanical Properties and Stress–Strain Relationship of Grade 14.9 Superhigh-Tension Bolt (SHTB) Under Fire. Materials 2025, 18, 1780. https://doi.org/10.3390/ma18081780
Xiao X, Ding M, Ge Y, Wang X, Shen L, Ran C. Mechanical Properties and Stress–Strain Relationship of Grade 14.9 Superhigh-Tension Bolt (SHTB) Under Fire. Materials. 2025; 18(8):1780. https://doi.org/10.3390/ma18081780
Chicago/Turabian StyleXiao, Xiaofang, Miao Ding, Yiqing Ge, Xiaohong Wang, Le Shen, and Chunhua Ran. 2025. "Mechanical Properties and Stress–Strain Relationship of Grade 14.9 Superhigh-Tension Bolt (SHTB) Under Fire" Materials 18, no. 8: 1780. https://doi.org/10.3390/ma18081780
APA StyleXiao, X., Ding, M., Ge, Y., Wang, X., Shen, L., & Ran, C. (2025). Mechanical Properties and Stress–Strain Relationship of Grade 14.9 Superhigh-Tension Bolt (SHTB) Under Fire. Materials, 18(8), 1780. https://doi.org/10.3390/ma18081780