Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells
Highlights
- A sulfur-doping of the zinc oxide electron extraction layer used in inverted organic solar cells is proposed.
- The crystalline size, hydrophobicity, and conductivity of the sulfur-doped ZnO are affected by doping.
- Efficient electron transport/extraction, interfacial exciton dissociation, and charge generation of sulfur-doped ZnO-based organic solar cells are suggested.
- Enhanced performance of the sulfur-doped ZnO-based device is demonstrated.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO Films
2.2. Sulfurization Process
2.3. Device Fabrication
2.4. Characterization Techniques
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, N.S. Toward Cost-Effective Solar Energy Use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Wang, J.; Zhang, F. Ternary polymer solar cells with alloyed donor achieving 14.13% efficiency and 78.4% fill factor. Nano Energy 2019, 60, 768–774. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; An, Q.; Zhang, F. Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance. Sci. Bull. 2020, 65, 131–137. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Q.; Gao, J.; Wang, J.; Xu, C.; Ma, X.; Zhang, F. Recent progress of organic photovoltaics with efficiency over 17%. Energies 2021, 14, 4200. [Google Scholar] [CrossRef]
- Han, S.; Deng, Y.; Han, W.; Ren, G.; Song, Z.; Liu, C.; Guo, W. Recent advances of semitransparent organic solar cells. Sol. Energy 2021, 225, 97–107. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Y.; Zhang, R.; Mou, H.; Ding, J.; Zhou, J.; Wang, Z.; Li, H.; Chen, W.; Zhu, J.; et al. Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 2025, 24, 444–453. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; et al. 17% efficiency organic photovoltaic cell with superior processability. Natl. Sci. Rev. 2019, 7, 1239–1246. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Cai, G.; Zhang, Y.; Lu, X.; Lin, Y. Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells. J. Am. Chem. Soc. 2020, 142, 18741–18745. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef]
- Wang, T.; Sun, R.; Shi, M.; Pan, F.; Hu, Z.; Huang, F.; Li, Y.; Min, J. Solution-processed polymer solar cells with over 17% efficiency enabled by an iridium complexation approach. Adv. Energy Mater. 2020, 10, 2000590. [Google Scholar] [CrossRef]
- Wu, J.; Li, G.; Fang, J.; Guo, X.; Zhu, L.; Guo, B.; Wang, Y.; Zhang, G.; Arunagiri, L.; Liu, F.; et al. Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells. Nat. Commun. 2020, 11, 4612. [Google Scholar] [CrossRef]
- Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci. China Chem. 2020, 63, 325–330. [Google Scholar] [CrossRef]
- Yao, J.; Qiu, B.; Zhang, Z.-G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Zheng, Z.; Zu, Y.; Liao, Q.; Bi, P.; Zhang, S.; Yang, Y.; Xu, B.; Hou, J. n-doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells. Joule 2021, 5, 646–658. [Google Scholar] [CrossRef]
- Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O.M.; et al. 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Adv. Mater. 2019, 31, 1902965. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, S.H.; Noh, J.; Han, S.H. Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes. Thin Solid Film. 2006, 510, 305–310. [Google Scholar] [CrossRef]
- De Jong, M.P.; van IJzendoorn, L.J.; de Voigt, M.J.A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255–2257. [Google Scholar] [CrossRef]
- Kemerink, M.; Timpanaro, S.; De Kok, M.M.; Meulenkamp, E.A.; Touwslager, F.J. Three-dimensional inhomogeneities in PEDOT:PSS films. J. Phys. Chem. B 2004, 108, 18820–18825. [Google Scholar] [CrossRef]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015, 115, 12666–12731. [Google Scholar] [CrossRef]
- Wang, K.; Liu, C.; Meng, T.; Yi, C.; Gong, X. Inverted organic photovoltaic cells. Chem. Soc. Rev. 2016, 45, 2937–2975. [Google Scholar] [CrossRef]
- Lattante, S. Electron and hole transport layers: Their use in inverted bulk heterojunction polymer solar cells. Electronics 2014, 3, 132–164. [Google Scholar] [CrossRef]
- Dahiya, H.; Suthar, R.; Khandelwal, K.; Karak, S.; Sharma, G.D. Recent advances in organic and inorganic hole and electron transport layers for organic solar cells: Basic concept and device performance. ACS Appl. Electron. Mater. 2022, 4, 5119–5143. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.; Wang, Y.; Tu, J.; Deng, X.; Li, Q.; Li, Z. Materials for interfaces in organic solar cells and photodetectors. ACS Appl. Mater. Interfaces 2019, 12, 3301–3326. [Google Scholar] [CrossRef]
- Hewlett, R.M.; McLachlan, M.A. Surface structure modification of ZnO and the impact on electronic properties. Adv. Mater. 2016, 28, 3893–3921. [Google Scholar] [CrossRef]
- Kamalasanan, M.N.; Chandra, S. Sol-gel synthesis of ZnO thin films. Thin Solid Film. 1996, 288, 112–115. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Luo, Q.; Ma, C.-Q. Solution-processable zinc oxide for printed photovoltaics: Progress, challenges, and prospect. Adv. Energy Sustain. Res. 2023, 4, 2200179. [Google Scholar] [CrossRef]
- Kohan, A.F.; Ceder, G.; Morgan, D.; Van de Walle, C.G. First-principles study of native point defects in ZnO. Phys. Rev. B 2000, 61, 15019. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202. [Google Scholar] [CrossRef]
- Ha, Y.E.; Jo, M.Y.; Park, J.; Kang, Y.-C.; Yoo, S.I.; Kim, J.H. Inverted type polymer solar cells with self-assembled monolayer treated ZnO. J. Phys. Chem. C 2013, 117, 2646–2652. [Google Scholar] [CrossRef]
- Ha, Y.E.; Jo, M.Y.; Park, J.; Kang, Y.-C.; Moon, S.-J.; Kim, J.H. Effect of self-assembled monolayer treated ZnO as an electron transporting layer on the photovoltaic properties of inverted type polymer solar cells. Synth. Met. 2014, 187, 113–117. [Google Scholar] [CrossRef]
- Sin, D.H.; Kim, S.H.; Lee, J.; Lee, H. Modification of electrode interface with fullerene-based self-assembled monolayer for high-performance organic optoelectronic devices. Micromachines 2022, 13, 1613. [Google Scholar] [CrossRef]
- Gebremariam, K.G.; Hone, F.G.; Negash, A.; Genene, Z.; Dai, J.; Waketola, A.G.; Mola, G.T.; Mammo, W.; Tegegne, N.A. Self-assembled monolayer engineered ZnO electron transport layer to improve the photostability of organic solar cells. Energy Fuels 2024, 38, 13304–13314. [Google Scholar] [CrossRef]
- Hu, L.; Chen, L.; Hu, X.; Chen, Y. Solution processed and self-assembled polymerizable fullerenes/metal oxide as an interlayer for high efficient inverted polymer solar cells. J. Mater. Chem. C 2014, 2, 10282–10290. [Google Scholar] [CrossRef]
- Tountas, M.; Topal, Y.; Verykios, A.; Soultati, A.; Kaltzoglou, A.; Papadopoulos, T.A.; Auras, F.; Seintis, K.; Fakis, M.; Palilis, L.C.; et al. A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO2 cathode interlayers for highly efficient and extremely stable polymer solar cells. J. Mater. Chem. C 2018, 6, 1459–1469. [Google Scholar] [CrossRef]
- Seo, J.H.; Gutacker, A.; Sun, Y.M.; Wu, H.B.; Huang, F.; Cao, Y.; Scherf, U.; Heeger, A.J.; Bazan, G.C. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 2011, 133, 8416–8419. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.-Y.; Ginting, R.T.; Jin, S.-H.; Kang, J.-W. Highly stable and efficient inverted organic solar cells based on low-temperature solution-processed PEIE and ZnO bilayers. J. Mater. Chem. A 2016, 4, 3784–3791. [Google Scholar] [CrossRef]
- You, H.; Zhang, J.; Zhang, Z.; Zhang, C.; Lin, Z.; Chang, J.; Han, G.; Zhang, J.; Lu, G.; Hao, Y. Low temperature aqueous solution-processed ZnO and polyethylenimine ethoxylated cathode buffer bilayer for high performance flexible inverted organic solar cells. Energies 2017, 10, 494. [Google Scholar] [CrossRef]
- He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymersolar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.; Li, H.; Winget, P.; Papadopoulos, T.A.; Cheun, H.; Kim, J.; et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef]
- Lee, B.R.; Lee, W.; Nguyen, T.L.; Park, J.S.; Kim, J.-S.; Kim, J.Y.; Woo, H.Y.; Song, M.H. Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone. ACS Appl. Mater. Interfaces 2013, 5, 5690–5695. [Google Scholar] [CrossRef]
- Lee, B.R.; Choi, H.; SunPark, J.; Lee, H.J.; Kim, S.O.; Kim, J.Y.; Song, M.H. Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices. J. Mater. Chem. 2011, 21, 2051–2053. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, M.; Nian, L.; Wang, P.; Rong, Q.; Shui, L.; Coehoorn, R.; Zhou, G.; Li, N. Ionic liquid-modified ZnO-based electron transport layer for inverted organic solar cells. J. Mater. Sci. Mater. Electron. 2020, 31, 12678–12683. [Google Scholar] [CrossRef]
- Polydorou, E.; Zeniou, A.; Tsikritzis, D.; Soultati, A.; Sakellis, I.; Gardelis, S.; Papadopoulos, T.A.; Briscoe, J.; Palilis, L.C.; Kennou, S.; et al. Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. J. Mater. Chem. A 2016, 4, 11844–11858. [Google Scholar] [CrossRef]
- Papamakarios, V.; Polydorou, E.; Soultati, A.; Droseros, N.; Tsikritzis, D.; Douvas, A.M.; Palilis, L.; Fakis, M.; Kennou, S.; Argitis, P.; et al. Surface modification of ZnO layers via hydrogen plasma treatment for efficient inverted polymer solar cells. ACS Appl. Mater. Interfaces 2016, 8, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, E.; Botzakaki, M.A.; Sakellis, I.; Soultati, A.; Kaltzoglou, A.; Papadopoulos, T.A.; Briscoe, J.; Drivas, C.; Seintis, K.; Fakis, M.; et al. Improved stability of polymer solar cells in ambient air via atomic layer deposition of ultrathin dielectric layers. Adv. Mater. Interfaces 2017, 4, 1700231. [Google Scholar] [CrossRef]
- Polydorou, E.; Botzakaki, M.; Drivas, C.; Seintis, K.; Sakellis, I.; Soultati, A.; Kaltzoglou, A.; Speliotis, T.; Fakis, M.; Palilis, L.C.; et al. Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. J. Mater. Chem. C 2018, 6, 8051–8059. [Google Scholar] [CrossRef]
- Lilliedal, M.R.; Medford, A.J.; Madsen, M.V.; Norrman, K.; Krebs, F.C. The effect of post-processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer photovoltaics. Sol. Energy Mater. Sol. Cells 2010, 94, 2018–2031. [Google Scholar] [CrossRef]
- Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L.-D.; Margeat, O.; Ackermann, J.; Fahlman, M. Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. J. Mater. Chem. A 2014, 2, 17676–17682. [Google Scholar] [CrossRef]
- Lee, H.B.; Ginting, R.T.; Tan, S.T.; Tan, C.H.; Alshanableh, A.; Oleiwi, H.F.; Yap, C.C.; Jumali, M.H.H.; Yahaya, M. Controlled defetcs of fluorine-incorporated ZnO nanorods for photovoltaic enhancement. Sci. Rep. 2016, 6, 32645. [Google Scholar]
- Soultati, A.; Fakharuddin, A.; Polydorou, E.; Drivas, C.; Kaltzoglou, A.; Haider, M.I.; Kournoutas, F.; Fakis, M.; Palilis, L.C.; Kennou, S.; et al. Lithium doping of ZnO for high efficiency and stability fullerene and non-fullerene organic solar cells. ACS App. Energy Mater. 2019, 2, 1663–1675. [Google Scholar] [CrossRef]
- Wang, J.; Pan, H.; Xu, X.; Jin, H.; Ma, W.; Xiong, S.; Bao, Q.; Tang, Z.; Ma, Z. Li-doped ZnO electron transport layer for improved performance and photostability of organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 12450–12460. [Google Scholar] [CrossRef] [PubMed]
- Ierides, I.; Ligorio, G.; McLachlan, M.A.; Guo, K.; List-Kratochvil, E.J.W.; Cacialli, F. Inverted organic photovoltaics with a solution-processed Mg-doped ZnO electron transport layer annealed at 150 °C. Sustain. Energy Fuels 2022, 6, 2835–2845. [Google Scholar] [CrossRef]
- Pachoumi, O.; Li, C.; Vaynzof, Y.; Banger, K.K.; Sirringhaus, H. Improved performance and stability of inverted organic solar cells with sol–gel processed, amorphous mixed metal oxide electron extraction layers comprising alkaline earth metals. Adv. Energy Mater. 2013, 3, 1428–1436. [Google Scholar] [CrossRef]
- Shin, K.-S.; Lee, K.-H.; Lee, H.H.; Choi, D.; Kim, S.-W. Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution. J. Phys. Chem. C 2010, 114, 15782–15785. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, R.; Zhang, C.; Chen, D.; Lin, Z.; Chang, J.; Zhang, J.; Hao, Y. Inverted organic solar cells with low-temperature Al-doped-ZnO electron transport layer processed from aqueous solution. Polymers 2018, 10, 127. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Y.; Xia, Z.; Zhang, D.; Cheng, Y.; Liu, X.; Ren, X.; Liu, X.; Huang, H.; Zhu, Y.; et al. In-doped ZnO electron transport layer for high-efficiency ultrathin flexible organic solar cells. Adv. Sci. 2024, 11, 2402158. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, E.; Soultati, A.; Vasilopoulou, M. Highly conductive, optically transparent, low work-function hydrogen-doped boron-doped ZnO electrodes for efficient ITO-free polymer solar cells. J. Mater. Chem. C 2016, 4, 691–703. [Google Scholar] [CrossRef]
- Patil, A.B.; Patil, K.R.; Pardeshi, S.K. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J. Hazard. Mater. 2010, 183, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Liu, S.; Chang, P.; Tang, Y. Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition. Mater. Sci. Semicond. Process. 2007, 10, 241–245. [Google Scholar] [CrossRef]
- Zafar, M.; Yun, J.-Y.; Kim, D.-H. Improved inverted-organic-solar-cell performance via sulfur doping of ZnO films as electron buffer layer. Mater. Sci. Semicond. Process. 2019, 96, 66–72. [Google Scholar] [CrossRef]
- Lin, M.-H.; Ho, C.-H. Synthesis and optical characterization of oxygen-incorporated ZnS(1–x)Ox for UV-visible color palette light-emission matter. ACS Omega 2017, 2, 4514–4523. [Google Scholar] [CrossRef]
- Bulliard, X.; Ihn, S.-G.; Yun, S.; Kim, Y.; Choi, D.; Choi, J.-Y.; Kim, M.; Sim, M.; Park, J.-H.; Choi, W.; et al. Enhanced performance in polymer solar cells by surface energy control. Adv. Funct. Mater. 2010, 20, 4381–4387. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. Res. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Xu, C.L.; Fang, L.; Wu, F.; Huang, Q.L.; Yin, B. Wetting behavior of triethoxyoctylsilane modified ZnO nanowire films. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 48–53. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Su, I.-L.; Hsueh, T.-J. Sulfur-doped-ZnO-nanospire-based transparent flexible nanogenerator self-powered by environmental vibration. RSC Adv. 2015, 5, 34019–34026. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Zhang, L.; Lin, H.; Zhang, Z.; Wang, D.; Peng, S.; He, D.; Ye, J.; Gao, P. Modulation-doped ZnO as high performance electron-selective layer for efficient silicon heterojunction solar cells. Nano Energy 2018, 54, 99–105. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, X.; Yang, L.; Tao, Z. Simple air oxidation synthesis and optical properties of S-doped ZnO microspheres. Mater. Lett. 2007, 61, 3870–3872. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, L.; Jiang, F.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Liu, T.; Hu, L.; Jiang, X.; et al. Photocatalytic effect of ZnO on nonfullerene acceptors and its mitigation by SnO2 for nonfullerene organic solar cells. Mater. Horiz. 2019, 6, 1438–1443. [Google Scholar] [CrossRef]
- Soultati, A.; Verykios, A.; Panagiotakis, S.; Armadorou, K.-K.; Haider, M.I.; Kaltzoglou, A.; Drivas, C.; Fakharuddin, A.; Bao, X.; Yang, C.; et al. Suppressing the photocatalytic activity of zinc oxide electron-transport layer in nonfullerene organic solar cells with a pyrene-bodipy interlayer. ACS Appl. Mater. Interfaces 2020, 12, 2196–21973. [Google Scholar] [CrossRef]
EEL | Jsc (mA cm−2) | Voc (V) | FF | PCE (%) | Rs (Ω cm2) | Rsh (Ω cm2) |
---|---|---|---|---|---|---|
ZnO | 10.28 | 0.57 | 0.36 | 2.11 | 26.34 | 162.88 |
S-ZnO (250 °C) | 12.26 | 0.57 | 0.45 | 3.14 | 6.40 | 177.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polydorou, E.; Manginas, G.; Chatzigiannakis, G.; Georgiopoulou, Z.; Verykios, A.; Sakellis, E.; Rizou, M.E.; Psycharis, V.; Palilis, L.; Davazoglou, D.; et al. Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells. Materials 2025, 18, 1767. https://doi.org/10.3390/ma18081767
Polydorou E, Manginas G, Chatzigiannakis G, Georgiopoulou Z, Verykios A, Sakellis E, Rizou ME, Psycharis V, Palilis L, Davazoglou D, et al. Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells. Materials. 2025; 18(8):1767. https://doi.org/10.3390/ma18081767
Chicago/Turabian StylePolydorou, Ermioni, Georgios Manginas, Georgios Chatzigiannakis, Zoi Georgiopoulou, Apostolis Verykios, Elias Sakellis, Maria Eleni Rizou, Vassilis Psycharis, Leonidas Palilis, Dimitris Davazoglou, and et al. 2025. "Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells" Materials 18, no. 8: 1767. https://doi.org/10.3390/ma18081767
APA StylePolydorou, E., Manginas, G., Chatzigiannakis, G., Georgiopoulou, Z., Verykios, A., Sakellis, E., Rizou, M. E., Psycharis, V., Palilis, L., Davazoglou, D., Soultati, A., & Vasilopoulou, M. (2025). Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells. Materials, 18(8), 1767. https://doi.org/10.3390/ma18081767