The Prediction of Elastic Modulus in Sheet-Reinforced Composites Using a Homogenization Approach
Abstract
:1. Introduction
2. The Fundamental Theory
2.1. Mechanical Theory of Materials
2.1.1. Equal-Stress Model
2.1.2. Equal-Strain Model
2.2. Derivation of the Mixed Formula
2.3. Degradation of the Mixed Formula
2.3.1. The Three-Phase Model Degenerates into a Two-Phase Model
2.3.2. The Mixed Formula Degenerates into ROM
3. Finite-Element Simulation of Graphene Composites
3.1. Calculation Model and Parameters
3.2. Boundary-Condition Setting
4. Results and Discussion
4.1. Comparative Analysis of Young’s Modulus Prediction
4.1.1. Predictive Comparison of Analytical Solutions
4.1.2. Comparison with FEM
4.2. Interface Effect
4.2.1. Influence of Interface on Prediction Results of Elastic Modulus
4.2.2. Effect of Interface Thickness on Elastic Modulus
4.3. The Application of the Mixed Formula
4.3.1. Determine the Range of Solutions of the Mixed Formula
4.3.2. Comparison with Experimental Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, G.; Hu, G. Composite Mechanics; Tsinghua University Publishing House Co., Ltd.: Beijing, China, 2006. [Google Scholar]
- Ding, X.; Pu, Y.; Tang, M.; Zhang, T. Environmental and health effects of graphene-family nanomaterials: Potential release pathways, transformation, environmental fate and health risks. Nano Today 2022, 42, 101379. [Google Scholar] [CrossRef]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers 2022, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Wernik, J.M.; Meguid, S.A. Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes. Appl. Mech. Rev. 2011, 63, 50801. [Google Scholar] [CrossRef]
- Panchagnula, K.K.; Kuppan, P. Improvement in the mechanical properties of neat GFRPs with multi-walled CNTs. J. Mater. Res. Technol. 2019, 8, 366–376. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Avouris, P. Mechanical properties of carbon nanotubes. In Carbon Nanotubes; Springer: Berlin/Heidelberg, China, 2002; pp. 287–327. [Google Scholar]
- Sorna Gowri, V.; Almeida, L.; De Amorim MT, P.; Pacheco, N.C.; Souto, A.P.; Esteves, M.F.; Sanghi, S.K. Functional finishing of polyamide fabrics using ZnO–PMMA nanocomposites. J. Mater. Sci. 2010, 45, 2427–2435. [Google Scholar] [CrossRef]
- Xia, X.; Hao, J.; Wang, Y.; Zhong, Z.; Weng, G.J. Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. J. Phys. Condens. Matter 2017, 29, 205702. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.; Li, L.; Wang, F.; Meng, W.; Hu, Y.; Wang, X. Importance of Interface in the Coarse-Grained Model of CNT/Epoxy Nanocomposites. Nanomaterials 2019, 9, 1479. [Google Scholar] [CrossRef]
- Palacios, J.A.; Ganesan, R. Dynamic response of Carbon-Nanotube-Reinforced-Polymer materials based on multiscale finite element analysis. Composites 2019, 166, 497–508. [Google Scholar] [CrossRef]
- Rahmat, M.; Hubert, P. Carbon nanotube–polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 2012, 72, 72–84. [Google Scholar] [CrossRef]
- Sáenz Ezquerro, C.; Laspalas, M.; Chiminelli, A.; Serrano, F.; Valero, C. Interface Characterization of Epoxy Resin Nanocomposites: A Molecular Dynamics Approach. Fibers 2018, 6, 54. [Google Scholar] [CrossRef]
- Tharu, S.A.; Panchal, M.B. Effect of interphase on elastic and shear moduli of metal matrix nanocomposites. Eur. Phys. J. Plus 2020, 135, 121. [Google Scholar]
- Arash, B.; Wang, Q.; Varadan, V.K. Mechanical properties of carbon nanotube/polymer composites. Polym. Mater. Sci. Eng. 2014, 4, 6479. [Google Scholar]
- Guadagno, L.; Naddeo, C.; Sorrentino, A.; Raimondo, M. Thermo-Mechanical Performance of Epoxy Hybrid System Based on Carbon Nanotubes and Graphene Nanoparticles. Nanomaterials 2023, 13, 2427. [Google Scholar] [CrossRef] [PubMed]
- Li, M. Multiscale modeling of thermal properties for graphene–polymer nanocomposites. In Proceedings of the 8th International Conference on Physical and Numerical Simulation of Materials Processing (ICPNS), Seattle, WA, USA, 14–17 October 2016. [Google Scholar]
- Singh, P.P.; Ranganathan, R. Mechanical and Viscoelastic Properties of Stacked and Grafted Graphene/Graphene Oxide–Polyethylene Nanocomposites: A Coarse-Grained Molecular Dynamics Study. ACS Omega 2024, 9, 9063–9075. [Google Scholar] [CrossRef]
- Talapatra, A.; Datta, D. A review of the mechanical, thermal and tribological properties of graphene reinforced polymer nanocomposites: A molecular dynamics simulations methods. Polym. Bull. 2022, 80, 2299–2328. [Google Scholar]
- Giannopoulos, G.I.; Kallivokas, I.G. Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase. Finite Elem. Anal. Des. 2014, 90, 31–40. [Google Scholar]
- Herasati, S.; Zhang, L.C.; Ruan, H.H. A new method for characterizing the interphase regions of carbon nanotube composites. Int. J. Solids Struct. 2014, 51, 1781–1791. [Google Scholar]
- Huang, J.; Wu, Y.; Huang, L. Evaluation of the mechanical properties of graphene-based nanocomposites incorporating a graded interphase based on isoparametric graded finite element model. Compos. Interfaces 2021, 28, 543–575. [Google Scholar]
- Papanicolaou, G.C.; Drakopoulos, E.D.; Anifantis, N.K.; Papaefthymiou, K.P.; Portan, D.V. Experimental, analytical, and numerical investigation of interphasial stress and strain fields in MWCNT polymer composites. J. Appl. Polym. Sci. 2012, 123, 699–706. [Google Scholar]
- Spanos, K.N.; Georgantzinos, S.K.; Anifantis, N.K. Mechanical properties of graphene nanocomposites: A multiscale finite element prediction. Compos. Struct. 2015, 132, 536–544. [Google Scholar] [CrossRef]
- Bagheri, M.R.; Kordani, N.; Vanini, S.A.S. Multi-scale Simulation of Double-Walled Carbon Nanotube-Reinforced Composites. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1177–1184. [Google Scholar] [CrossRef]
- Javadinejad, M.; Mashayekhi, M.; Karevan, M.; Hadavinia, H. Using the Equivalent Fiber Approach in Two-Scale Modeling of the Elastic Behavior of Carbon Nanotube/Epoxy Nanocomposite. Nanomaterials 2018, 8, 696. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Mondali, M. A modified shear-lag model for prediction of stress distribution in unidirectional fibrous composites considering interphase. J. Mech. Mater. Struct. 2019, 14, 97–117. [Google Scholar] [CrossRef]
- Chandra, Y.; Scarpa, F.; Chowdhury, R.; Adhikari, S.; Sienz, J. Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites. Compos. Part A Appl. Sci. 2013, 46, 147–153. [Google Scholar] [CrossRef]
- Chandra, Y.; Chowdhury, R.; Scarpa, F.; Adhikari, S.; Sienz, J.; Arnold, C.; Murmu, T.; Bould, D. Vibration frequency of graphene based composites: A multiscale approach—ScienceDirect. Mater. Sci. Eng. B 2012, 177, 303–310. [Google Scholar] [CrossRef]
- Montazeri, A.; Rafii-Tabar, H. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 2011, 375, 4034–4040. [Google Scholar] [CrossRef]
- Odegard, G.M.; Gates, T.S.; Wise, K.E.; Park, C.; Siochi, E.J. Constitutive modeling of nanotube–reinforced polymer composites. Compos. Sci. Technol. 2003, 63, 1671–1687. [Google Scholar] [CrossRef]
- Guo, Z.; Song, L.; Boay, C.G.; Li, Z.; Li, Y.; Wang, Z. A new multiscale numerical characterization of mechanical properties of graphene-reinforced polymer-matrix composites—ScienceDirect. Compos. Struct. 2018, 199, 1–9. [Google Scholar] [CrossRef]
- Chen, X.L.; Liu, Y.J. Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput. Mater. Sci. 2004, 29, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chen, X.L. Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 2003, 35, 69–81. [Google Scholar] [CrossRef]
- Golestanian, H.; Gahruei, M.H. Effective mechanical properties of nanocomposites reinforced with wavy carbon nanotubes. Mater. Sci. Technol. 2013, 29, 913–920. [Google Scholar] [CrossRef]
- Le, M.T.; Huang, S.C. Modeling and Analysis the Effect of Helical Carbon Nanotube Morphology on the Mechanical Properties of Nanocomposites Using Hexagonal Representative Volume Element. Appl. Mech. 2014, 577, 3–6. [Google Scholar] [CrossRef]
- Lin, F.; Yang, C.; Zeng, Q.H.; Xiang, Y. Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis. Comput. Mater. Sci. 2018, 150, 107–120. [Google Scholar] [CrossRef]
- Mohammadpour, E.; Awang, M. Nonlinear Multi-Scale Finite Element Method to Predict Tensile Behavior of Carbon Nanotube-Reinforced Polymer Composites. J. Nano Res. 2013, 26, 169–176. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Gupta, A.; Arora, G.; Pathak, H.; Burela, R.G.; Bhatnagar, A.S. Meso–macro-scale computational analysis of boron nitride nanotube-reinforced aluminium and epoxy nanocomposites: A case study on crack propagation. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 293–308. [Google Scholar] [CrossRef]
- Ardeshana, B.A.; Jani, U.B.; Patel, A.M.; Joshi, A.Y. Investigating the elastic behavior of carbon nanocone reinforced nanocomposites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 2908–2922. [Google Scholar] [CrossRef]
- Joshi, P.; Upadhyay, S.H. Evaluation of elastic properties of multi walled carbon nanotube reinforced composite. Comput. Mater. Sci. 2014, 81, 332–338. [Google Scholar] [CrossRef]
- Trivedi, S.; Sharma, S.C.; Harsha, S.P. Evaluations of young’s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 2014, 6, 1899–1905. [Google Scholar] [CrossRef]
- Gljušćić, M.; Franulović, M.; Lanc, D.; Božić, Ž. Application of digital image correlation in behavior modelling of AM CFRTP composites. Eng. Fail. Anal. 2022, 136, 106133. [Google Scholar] [CrossRef]
- Patil, R.; Joladarashi, S.; Kadoli, R. Finite Element Formulation for Static and Time Dependent Transverse Deflection of Functionally Graded Sandwich Beams with Viscoelastic Core. In Recent Advances in Mechanical Engineering; Manik, G., Kalia, S., Verma, O.P., Sharma, T.K., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2023. [Google Scholar]
- Jasti, A.; Chandra, B.A.; Biswas, S. Modified Halpin–Tsai model for predicting the mechanical properties of polymer composites reinforced with different cross-sectional fibers. Mater. Today Proc. 2023, 91, 14–18. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, Y.; Song, K.; Minus, M.L. Forming Crystalline Polymer-Nano Interphase Structures for High-Modulus and High-Tensile/Strength Composite Fibers. Macromol. Mater. Eng. 2014, 299, 144–153. [Google Scholar] [CrossRef]
- Song, K.; Polak, R.; Chen, D.; Rubner, M.F.; Cohen, R.E.; Askar, K.A. Spray-Coated Halloysite–Epoxy Composites: A Means To Create Mechanically Robust, Vertically Aligned Nanotube Composites. ACS Appl. Mater. Interfaces 2016, 8, 20396–20406. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, J.; Kumar, R.; Jain, S.C. Using modified Halpin Tsai based approach for electromechanical analysis of functionally graded graphene reinforced piezoelectric tile. Int. J. Mech. Mater. Des. 2023, 19, 299–318. [Google Scholar] [CrossRef]
- Affdl, J.C.H.; Kardos, J. The Halpin-Tsai Equations: A Review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar] [CrossRef]
- Fuchs, C.; Bhattacharyya, D.; Friedrich, K.; Fakirov, S. Application of Halpin–Tsai equation to microfibril reinforced polypropylene/poly(ethylene terephthalate) composites. Instrum. Sci. Technol. 2006, 13, 331–344. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Lim, T.C.; Inai, R.; Fujihara, K. Modified Halpin-Tsai Equation for Clay-Reinforced Polymer Nanofiber. Mech. Adv. Mater. Struct. 2006, 13, 77–81. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules 2010, 43, 2357–2363. [Google Scholar] [CrossRef]
- Wei, Q.; Huang, J.; Huang, L. Molecular dynamics simulation of density variation in dense interval of graphene/polyethylene composites. Funct. Mater. 2020, 51, 8. [Google Scholar]
- Yuan, Z.; Lu, Z.; Chen, M.; Yang, Z.; Xie, F. Interfacial properties of carboxylic acid functionalized CNT/polyethylene composites: A molecular dynamics simulation study. Appl. Surf. Sci. 2015, 351, 1043–1052. [Google Scholar] [CrossRef]
- Cho, J.; Luo, J.J.; Daniel, I.M. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Compos. Sci. Technol. 2007, 67, 2399–2407. [Google Scholar] [CrossRef]
- King, J.A.; Klimek, D.R.; Miskioglu, I.; Odegard, G.M. Mechanical properties of graphene nanoplatelet/epoxy composites. J. Compos. Mater. 2014, 49, 659–668. [Google Scholar] [CrossRef]
- Xue, Z.; Qian, J.; Zhao, Z. Mechanical Properties of Graphene/Polypropylene Composites. J. Liaoning Petrochem. Univ. 2025, 45, 27–32. [Google Scholar]
Lg = Wg /nm | Vg /% | Ecx/GPa | Deviation | |
---|---|---|---|---|
Presented (1) | ROM (2) | |||
1 | 1 | 11.26 | 11.26 | 0.01% |
5 | 44.3 | 44.3 | 0.0% | |
10 | 85.6 | 85.6 | 0.0% | |
5 | 1 | 12.49 | 12.49 | 0.0% |
5 | 50.45 | 50.45 | 0.0% | |
10 | 97.9 | 97.9 | 0.0% | |
10 | 1 | 12.64 | 12.64 | 0.0% |
5 | 51.2 | 51.2 | 0.0% | |
10 | 99.4 | 99.4 | 0.0% |
Lg = Wg (nm) | Vg (%) | Ecx(GPa) | ||
---|---|---|---|---|
Presented (1) | Halpin–Tsai (2) | |||
1 | 1 | 3.096 | 3.089 | 0.2% |
5 | 3.478 | 3.462 | 0.5% | |
10 | 3.955 | 3.975 | −0.5% | |
5 | 1 | 3.350 | 3.316 | 1.0% |
5 | 4.750 | 4.647 | 2.2% | |
10 | 6.499 | 6.470 | 0.4% | |
10 | 1 | 3.650 | 3.586 | 1.8% |
5 | 6.249 | 6.048 | 3.3% | |
10 | 9.497 | 9.412 | 0.9% |
Vg/% | Lm × Wg × tm/(nm) |
---|---|
1.0 | 3.24 × 3.24 × 3.24 |
3.0 | 2.25 × 2.25 × 2.24 |
5.0 | 1.89 × 1.89 × 1.90 |
Vg/% | Non- | Linear | Exponential | ||
---|---|---|---|---|---|
Ecx/GPa (1) | Ecx/GPa (2) | Deviation/% | Ecx/GPa (3) | Deviation/% | |
1.0 | 11.26 | 16.49 | 46.45 | 14.20 | 26.11 |
3.0 | 27.78 | 43.48 | 56.52 | 36.60 | 31.75 |
5.0 | 44.30 | 70.46 | 59.05 | 59.00 | 33.18 |
Vg/% | Non- | Linear | Exponential | ||
---|---|---|---|---|---|
Ecx/GPa (1) | Ecx/GPa (2) | Deviation/% | Ecx/GPa (3) | Deviation/% | |
1.0 | 3.04 | 3.09 | 1.64 | 3.09 | 1.64 |
3.0 | 3.16 | 3.32 | 5.06 | 3.32 | 5.06 |
5.0 | 3.32 | 3.63 | 9.34 | 3.63 | 9.34 |
Vg/% | Lg × Wg/(nm) | Lm × Wm/(nm) | Ecx/GPa |
---|---|---|---|
1 | 1 × 1 | 10× 10 | 3.033 |
5 × 5 | 50 × 50 | 3.033 | |
10 × 10 | 100 × 100 | 3.033 | |
100 × 100 | 1000 × 1000 | 3.033 | |
5 | 1 × 1 | 4.5 × 4.5 | 3.192 |
5× 5 | 22.5 × 22.5 | 3.192 | |
10 × 10 | 45 × 45 | 3.192 | |
100 × 100 | 450 × 450 | 3.192 | |
10 | 1 × 1 | 3.15 × 3.15 | 3.437 |
5 × 5 | 10.75 × 10.75 | 3.438 | |
10 × 10 | 31.5 × 31.5 | 3.438 | |
100 × 100 | 315 × 315 | 3.438 |
Test Data No. | Vg/% | Graphene Size | Em/GPa | Eg/GPa | |
---|---|---|---|---|---|
Lg = Wg/(nm) | tg/nm | ||||
1 [52] | 0.3 | 1000 | 0.8 | 0.1 | 1000 |
2 [52] | 0.6 | 1000 | 0.8 | 0.1 | 1000 |
3 [52] | 1.8 | 1000 | 0.8 | 0.1 | 1000 |
4 [55] | 0.523 | 1000 | 200 | 3.27 | 1153 |
5 [55] | 0.523 | 1000 | 14.3 | 3.27 | 1153 |
6 [56] | 0.6 | 15,000 | 7 | 2.72 | 1000 |
7 [56] | 1.21 | 15,000 | 7 | 2.72 | 1000 |
8 [56] | 1.82 | 15,000 | 7 | 2.72 | 1000 |
9 [56] | 2.44 | 15,000 | 7 | 2.72 | 1000 |
10 [56] | 3.06 | 15,000 | 7 | 2.72 | 1000 |
11 [56] | 3.69 | 15,000 | 7 | 2.72 | 1000 |
12 [57] | 05 | 10,000 | 1.7 | 1.0182 | 1000 |
13 [57] | 1 | 10,000 | 1.7 | 1.0182 | 1000 |
14 [57] | 2 | 10,000 | 1.7 | 1.0182 | 1000 |
15 [57] | 4 | 10,000 | 1.7 | 1.0182 | 1000 |
Test Data No. | Ecx/GPa | In the Predicted Range (Y/N) | ||
---|---|---|---|---|
Test Result | Formula Prediction | |||
Max | Min | |||
1 | 0.2 | 3.13 | 0.1 | Y |
2 | 0.25 | 6.17 | 0.101 | Y |
3 | 1.04 | 18.30 | 0.104 | Y |
4 | 3.3 | 8.50 | 3.289 | Y |
5 | 3.65 | 8.46 | 3.289 | Y |
6 | 2.8 | 8.70 | 2.738 | Y |
7 | 2.94 | 14.79 | 2.757 | Y |
8 | 3.03 | 20.87 | 2.777 | Y |
9 | 3.11 | 27.05 | 2.798 | Y |
10 | 3.24 | 33.24 | 2.821 | Y |
11 | 3.35 | 39.52 | 2.844 | Y |
12 | 1.2111 | 6.013 | 1.024 | Y |
13 | 1.3392 | 11.008 | 1.03 | Y |
14 | 1.4800 | 20.998 | 1.042 | Y |
15 | 1.8034 | 40.977 | 1.069 | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, X.; Hashim, H.B.; Huang, J.; Soo, E.Z.X. The Prediction of Elastic Modulus in Sheet-Reinforced Composites Using a Homogenization Approach. Materials 2025, 18, 1698. https://doi.org/10.3390/ma18081698
Zhai X, Hashim HB, Huang J, Soo EZX. The Prediction of Elastic Modulus in Sheet-Reinforced Composites Using a Homogenization Approach. Materials. 2025; 18(8):1698. https://doi.org/10.3390/ma18081698
Chicago/Turabian StyleZhai, Xiaoxia, Huzaifa Bin Hashim, Jun Huang, and Eugene Zhen Xiang Soo. 2025. "The Prediction of Elastic Modulus in Sheet-Reinforced Composites Using a Homogenization Approach" Materials 18, no. 8: 1698. https://doi.org/10.3390/ma18081698
APA StyleZhai, X., Hashim, H. B., Huang, J., & Soo, E. Z. X. (2025). The Prediction of Elastic Modulus in Sheet-Reinforced Composites Using a Homogenization Approach. Materials, 18(8), 1698. https://doi.org/10.3390/ma18081698