Assessment of the Hazards Occurring During the Thermal Decomposition and Combustion Process in a Toothed Belt Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- -
- The toxicometric indicator (WLC50) represents the amount of material that, when subjected to thermal decomposition or combustion, generates toxic concentrations of specific decomposition products. It is calculated using Equation (1).
- -
- The toxicometric indicator (WLC50M) is derived from the WLC50 values for individual thermal decomposition and combustion products at a given temperature, as expressed in Equation (2).
- -
- The toxicometric indicator (WLC50SM) represents the arithmetic mean of the WLC50M values determined at different temperatures (450 °C, 550 °C, and 750 °C), as shown in Equation (3).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Val-Aguasca, J.P.; Videgain-Marco, M.; Martín-Ramos, P.; Vidal-Cortés, M.; Boné-Garasa, A.; García-Ramos, F.J. Fire Risks Associated with Combine Harvesters: Analysis of Machinery Critical Points. Agronomy 2019, 9, 877. [Google Scholar] [CrossRef]
- Tomašková, M.; Matisková, D.; Balážiková, M. Case Study to Determine the Causes of Fire in Agriculture. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 11–15. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, T.N. The Research of Distribute Temperature Monitoring System Early Warning Fire in Coal Belt Conveyor. Adv. Mater. Res. 2012, 548, 890–892. [Google Scholar] [CrossRef]
- Hoff, H. Using Distributed Fibre Optic Sensors for Detecting Fires and Hot Rollers on Conveyor Belts. In Proceedings of the 2017 2nd International Conference for Fibre-Optic and Photonic Sensors for Industrial and Safety Applications (OFSIS), Brisbane, Australia, 8–10 January 2017; pp. 70–76. [Google Scholar]
- Hansen, R. Design Fire Scenarios Involving Non-Fire Resistant Conveyor Belts—Numerical Study. Int. J. Min. Mater. Metall. Eng. (IJMMME) 2021, 7, 1–15. [Google Scholar]
- Ray, S.K.; Khan, A.M.; Mohalik, N.K.; Mishra, D.; Varma, N.K.; Pandey, J.K.; Singh, P.K. Methodology in Early Detection of Conveyor Belt Fire in Coal Transportation. Energy Sources Part A Recovery Util. Environ. Eff. 2025, 47, 212–230. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, S.; Ma, X.; Wu, Z.; Shao, H.; Zhang, W.; Cui, C. Numerical Simulation and Application Study on a Remote Emergency Rescue System during a Belt Fire in Coal Mines. Nat. Hazards 2016, 84, 1463–1485. [Google Scholar] [CrossRef]
- Swinderman, R.T. Using automation to correct conveyor belt mis-tracking. Can. Min. J. 2024, 145, 46–48. [Google Scholar]
- Lupu, L.A.; Pǎrǎian, M.; Jurca, A. Maximum Surface Temperature as a Safety Parameter for Belt Conveyors Used Underground. Environ. Eng. Manag. J. 2012, 11, 1305–1310. [Google Scholar] [CrossRef]
- Malashkina, V.A.; Shaportov, A.V. Modeling heating of faulty roller of belt conveyor in the presence of coal dust. Eurasian Min. 2023, 39, 63–68. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, M.; Wang, L.; Wang, Y. Review of Fire Smoke Flow Characteristics and Early Warning Prevention and Control of Mine Belt Conveyor. China Saf. Sci. J. 2024, 34, 117–128. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, F.; Li, L.; Zheng, J. Simulation Analysis and Diagnosis Method of Series Fault Arc in Mine Power Supply System. Meitan Xuebao/J. China Coal Soc. 2019, 44, 1265–1273. [Google Scholar] [CrossRef]
- Pulbere, A.M. Laboratory Test Results Fire Safety Conveyor Belts. Mater. Plast. 2017, 54, 281–285. [Google Scholar] [CrossRef]
- Wojtkowiak, D.; Talaśka, K.; Malujda, I.; Domek, G. Estimation of the Perforation Force for Polymer Composite Conveyor Belts Taking into Consideration the Shape of the Piercing Punch. Int. J. Adv. Manuf. Technol. 2018, 98, 2539–2561. [Google Scholar] [CrossRef]
- Wojtkowiak, D.; Talaśka, K.; Malujda, I.; Domek, G. Vacuum Conveyor Belts Perforation—Methods, Materials and Problems. Mechanik 2017, 12, 1138–1142. [Google Scholar] [CrossRef]
- Wojtkowiak, D.; Talaśka, K. Determination of the Effective Geometrical Features of the Piercing Punch for Polymer Composite Belts. Int. J. Adv. Manuf. Technol. 2019, 104, 315–332. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Dziechciarz, A.; Małozięć, D.; Ondrušová, D. Evaluation of chemical compound emissions during thermal decomposition and combustion of V-belts (original text in Polish: Ocena emisji związków chemicznych podczas rozkładu termicznego i spalania pasów klinowych). Przemysł Chem. 2020, 99, 92–98. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Małozięć, D.; Kaczmarzyk, P.; Dziechciarz, A.; Czarnecka-Komorowska, D. The Toxicological Testing and Thermal Decomposition of Drive and Transport Belts Made of Thermoplastic Multilayer Polymer Materials. Polymers 2020, 12, 2232. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Czarnecka-Komorowska, D.; Janik, P.; Dziechciarz, A.; Kaczmarzyk, P. Chemical Compounds Released by Combustion of Polymer Composites Flat Belts. Sci. Rep. 2021, 11, 8269. [Google Scholar] [CrossRef]
- Kirubakaran, V.; Sivaramakrishnan, V.; Nalini, R.; Sekar, T.; Premalatha, M.; Subramanian, P. A Review on Gasification of Biomass. Renew. Sustain. Energy Rev. 2009, 13, 179–186. [Google Scholar] [CrossRef]
- Irfan, M.F.; Usman, M.R.; Kusakabe, K. Coal Gasification in CO2 Atmosphere and Its Kinetics since 1948: A Brief Review. Energy 2011, 36, 12–40. [Google Scholar] [CrossRef]
- Mendham, F.; Cliff, D.; Horberry, T. Field Testing and Reliability Assessment of Video Based Fire Detection in Coal Mining and Coal Handling Environments. In Proceedings of the 2016 Coal Operators’ Conference, Mining Engineering; Aziz, N., Kininmonth, B., Eds.; University of Wollongong, 2019; pp. 443–450. Available online: https://ro.uow.edu.au/coal/630 (accessed on 30 March 2025).
- Liu, X.; Pang, Y.; Lodewijks, G.; He, D. Experimental Research on Condition Monitoring of Belt Conveyor Idlers. Measurement 2018, 127, 277–282. [Google Scholar] [CrossRef]
- Kohl, D.; Kelleter, J.; Petig, H. Detection of Fires by Gas Sensors. Sens. Update 2001, 9, 161–223. [Google Scholar] [CrossRef]
- Krawiec, P.; Warguła, Ł.; Różański, L. Diagnostics of the Thermal Condition of the Cable Gear Used in the Drive of a Wood Chipper. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1016, 012013. [Google Scholar] [CrossRef]
- Domek, G.; Krawiec, P.; Wilczyński, M. Timing Belt in Power Transmission and Conveying System. MATEC Web Conf. 2018, 157, 04001. [Google Scholar] [CrossRef]
- Richter, S.; Nagel, T.; Fraulob, S.; Schirmer, J. Drive Engineering. Toothed Belt Drives. Small Parts to Allow New Designs. Miniature Gears in the Engineering of Devices. Mechatronik 2010, 118, 18–20. [Google Scholar]
- Morefield, T. Four Ways Polyketone Polymers Can Improve Gear Performance. GEAR Solutions, January 2017; Volume 2017, 278–286. [Google Scholar]
- Krawiec, P.; Marlewski, A. Profile Design of Noncircular Belt Pulleys. J. Theor. Appl. Mech. 2016, 54, 561–570. [Google Scholar]
- Polish Standard PN-B-02855; Study of the Release of Toxic Products Used and the Combustion of Materials (In Polish: Badanie Wydzielania Toksycznych Produktów Rozkładu i Spalania Materiałów). Polish Standardization Committee: Warsaw, Poland, 1988.
- France Standard NFx70-100 89; Fire Behaviour Tests—Analysis of Pyrolysis and Combustion Gases-Pipe Still Method. AFNOR: La Plaine Saint-Denis, France, 2015.
- German Standard DIN 53436; Generation of Thermal Decomposition Products from Materials for Their Analytic-Toxicological Testing. German Institute for Standardisation: Berlin, Germany, 2015.
- Russian Standard GOST 12.1.044-89; Occupational Safety Standards System. Fire and Explosion Hazard of Substances and Materials. In Nomenclature of Indices and Methods of Their Determination. GOST: Moscow, Russia, 1991.
- Sheikh-Ahmad, J. Machining of Polymer Composites; Springer: Boston, MA, USA, 2009; ISBN 978-0-387-35539-9. [Google Scholar]
- Deng, Y.; Dewil, R.; Appels, L.; Ansart, R.; Baeyens, J.; Kang, Q. Reviewing the Thermo-Chemical Recycling of Waste Polyurethane Foam. J. Environ. Manag. 2021, 278, 111527. [Google Scholar] [CrossRef]
- Blais, M.; Carpenter, K. Flexible Polyurethane Foams: A Comparative Measurement of Toxic Vapors and Other Toxic Emissions in Controlled Combustion Environments of Foams with and Without Fire Retardants. Fire Technol. 2015, 51, 3–18. [Google Scholar] [CrossRef]
- Kim, H.; Minami, W.; Li, T. Combustion Characteristics and Pollutant Control by Eco-Fuel from Polyurethane Foam. Energy Fuels 2006, 20, 575–578. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Zhang, L.; Li, S.; Hao, J. Nitrogenous Emissions from the Catalytic Pyrolysis of Waste Rigid Polyurethane Foam. J. Anal. Appl. Pyrolysis 2014, 108, 143–150. [Google Scholar] [CrossRef]
- Grzywacz, P.; Czerski, G.; Gańczarczyk, W. Effect of Pyrolysis Atmosphere on the Gasification of Waste Tire Char. Energies 2022, 15, 34. [Google Scholar] [CrossRef]
- Lemieux, P.M.; Lutes, C.C.; Santoianni, D.A. Emissions of Organic Air Toxics from Open Burning: A Comprehensive Review. Prog. Energy Combust. Sci. 2004, 30, 1–32. [Google Scholar] [CrossRef]
- Courtemanche, B.; Levendis, Y.A. A Laboratory Study on the NO, NO2, SO2, CO and CO2 Emissions from the Combustion of Pulverized Coal, Municipal Waste Plastics and Tires. Fuel 1998, 77, 183–196. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X.; Jiao, C.; Ma, M. Research on the Fire Safety Effect of Thermoplastic Polyurethane Elastomer Based on Sodium Fumarate. Polym. Adv. Technol. 2021, 32, 3795–3803. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Gomez-Rico, M.F. Inhibition Effect of Polyurethane Foam Waste in Dioxin Formation. Waste Manag. 2019, 97, 19–26. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R. Pyrolysis and Combustion Study of Flexible Polyurethane Foam. J. Anal. Appl. Pyrolysis 2015, 113, 202–215. [Google Scholar] [CrossRef]
- Wałęsa, K.; Malujda, I.; Górecki, J. Experimental Research of the Mechanical Properties of the Round Drive Belts Made of Thermoplastic Elastomer. IOP Conf. Ser. Mater. Sci. Eng. 2020, 776, 012107. [Google Scholar] [CrossRef]
- Amanov, A.; Sembiring, J.P.B.A.; Amanov, T. Experimental Investigation on Friction and Wear Behavior of the Vertical Spindle and V-Belt of a Cotton Picker. Materials 2019, 12, 773. [Google Scholar] [CrossRef]
- Arango, I.; Muñoz Alzate, S. Numerical Design Method for CVT Supported in Standard Variable Speed Rubber V-Belts. Appl. Sci. 2020, 10, 6238. [Google Scholar] [CrossRef]
- Li, W.; Xin, Z. Flexural Fatigue Life Prediction of a Tooth V-Belt Made of Fiber Reinforced Rubber. Int. J. Fatigue 2018, 111, 269–277. [Google Scholar] [CrossRef]
- Wilczyński, M.; Domek, G. Influence of Tension Layer Quality on Mechanical Properties of Timing Belts. MATEC Web Conf. 2019, 254, 05010. [Google Scholar] [CrossRef]
- Wilczyński, D.; Malujda, I.; Górecki, J.; Domek, G. Experimental Research on the Process of Cutting Transport Belts. MATEC Web Conf. 2019, 254, 05014. [Google Scholar] [CrossRef]
- Domek, G.; Krawiec, P.; Kołodziej, A. Selecting a Flat Belts for the Model of Coupling with Flat Belts. MATEC Web Conf. 2022, 357, 04003. [Google Scholar] [CrossRef]
- Talaśka, K.; Wojtkowiak, D. Modelling Mechanical Properties of the Multilayer Composite Materials with the Polyamide Core. MATEC Web Conf. 2018, 157, 02052. [Google Scholar] [CrossRef]
- Kale, A.; Biszczanik, A.; Wałęsa, K.; Kukla, M.; Berdychowski, M.; Wilczyński, D. Designing of the Machine for Cutting Transport Belts: Conceptual Works. Acta Mech. Autom. 2020, 14, 144–153. [Google Scholar] [CrossRef]
- Herrera, M.; Matuschek, G.; Kettrup, A. Thermal Degradation of Thermoplastic Polyurethane Elastomers (TPU) Based on MDI. Polym. Degrad. Stab. 2002, 78, 323–331. [Google Scholar] [CrossRef]
- Ślusarski, L.; Janowska, G.; Schulz, P. Thermal Stability and Combustibility of Rubbers and Sealing Plates. J. Therm. Anal. Calorim. 2013, 111, 1577–1583. [Google Scholar] [CrossRef]
- Brown, J.R.; Ennis, B.C. Thermal Analysis of Nomex® and Kevlar® Fibers. Text. Res. J. 1977, 47, 62–66. [Google Scholar] [CrossRef]
- Li, X.-G.; Huang, M.-R. Thermal Degradation of Kevlar Fiber by High-Resolution Thermogravimetry. J. Appl. Polym. Sci. 1999, 71, 565–571. [Google Scholar] [CrossRef]
- Kevlar® Ropes and Cables. Available online: https://www.dupont.com/fabrics-fibers-and-nonwovens/ropes-cables.html (accessed on 16 February 2025).
- Rybiński, P. Stabilność Termiczna i Palność Elastomerów Oraz Materiałów Elastomerowych. Ph.D. Thesis, Politechnika Łódzka, Łódź, Poland, 2014. [Google Scholar]
- Milczarek, D.; Tarka, I. Emissions of substances released during combustion of materials in rail vehicles (original text in Polish: Emisja gazów toksycznych wydzielanych w trakcie spalania materiałów stosowanych w pojazdach szynowych). Pr. Inst. Kolejnictwa–Zesz. 2020, 163, 19–31. [Google Scholar]
- Półka, M. Toxicity Analysis of Thermal Decomposition and Combustion Products Obtained in Selected Epoxy Materials (Orginal Title in Polish: Analiza Toksyczności Produktów Rozkładu Termicznego i Spalania Uzyskanych w Wybranych Materiałów Epoksydowych). Bezpieczeństwo Tech. Pożarnicza 2010, 3, 73–81. [Google Scholar]
- Dobrzyńska, R. Influence of Toxicity of Thermal Decomposition Products and Combustion of Home Furnishings Materials on Safe Evacuation Conditions (Orginal Title in Polish: Wpływ Toksyczności Produktów Rozkładu Termicznego i Spalania Materiałów Wyposażenia Wnętrz Na Warunki Bezpiecznej Ewakuacji). Pract. Nauk. Akad. Jana Długosza Częstochowie Tech. Inform. Inżynieria Bezpieczeństwa 2014, 2, 13–21. [Google Scholar]
- Dobrzyńska, R. Toxic Risk During Fire of Upholstered Furniture (Orginal Title in Polish: Zagrożenie Toksyczne Podczas Pożaru Mebli Tapicerowanych). Available online: http://rdobrzynska.zut.edu.pl/fileadmin/publikacje/Zagrozenie_toksyczne_podczas_pozaru_mebli_tapicerowanych.pdf (accessed on 21 January 2020).
- Regulation of the Minister of Infrastructure on the Technical Conditions to Be Met by Buildings and Their Location. (Orginal Title in Polish: Rozporządzenie Ministra Infrastruktury w Sprawie Warunków Technicznych Jakim Powinny Odpowiadać Budynki i Ich Usytuowanie). Available online: https://dziennikustaw.gov.pl/D2022000122501.pdf?utm_source=chatgpt.com (accessed on 30 March 2025).
- Irvine, D.J.; McCluskey, J.A.; Robinson, I.M. Fire Hazards and Some Common Polymers. Polym. Degrad. Stab. 2000, 67, 383–396. [Google Scholar]
- Półka, M.; Piechocka, E. What Is inside? (Original Text in Polish: Co Czyha We Wnętrzu?). Przegląd Pożarniczy 2008, 8, 28–31. [Google Scholar]
- Brennan, P. Victims and Survivours in Fatal Residential Building Fires. Fire Mater. 1999, 23, 305–310. [Google Scholar]
- Guzewski, P.; Wróblewski, D.; Małozięć, D. Selected Problems of Fires and Their Effects (Original Text in Polish: Czerwona Księga Pożarów. Wybrane Problemy Pożarów Oraz Ich Skutków); CNBOP-PIB: Józefów, Poland, 2016; Volume 1. [Google Scholar]
Chemical Substances | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
SO2 | NO2 | NO | HCN | CO2 | CO | HCl | HBr | HF | ||
Toothed belt | P1 | − | − | + | + | + | + | − | − | − |
P2 | − | − | + | + | + | + | − | − | − | |
P3 | − | + | + | + | + | + | − | − | − | |
P4 | + | − | + | + | + | + | + | − | + | |
P5 | − | − | + | + | + | + | − | − | − | |
P6 | + | − | − | − | + | + | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Kaczmarzyk, P.; Wieczorek, B.; Małozięć, D.; Dziechciarz, A. Assessment of the Hazards Occurring During the Thermal Decomposition and Combustion Process in a Toothed Belt Transmission. Materials 2025, 18, 1637. https://doi.org/10.3390/ma18071637
Warguła Ł, Kaczmarzyk P, Wieczorek B, Małozięć D, Dziechciarz A. Assessment of the Hazards Occurring During the Thermal Decomposition and Combustion Process in a Toothed Belt Transmission. Materials. 2025; 18(7):1637. https://doi.org/10.3390/ma18071637
Chicago/Turabian StyleWarguła, Łukasz, Piotr Kaczmarzyk, Bartosz Wieczorek, Daniel Małozięć, and Anna Dziechciarz. 2025. "Assessment of the Hazards Occurring During the Thermal Decomposition and Combustion Process in a Toothed Belt Transmission" Materials 18, no. 7: 1637. https://doi.org/10.3390/ma18071637
APA StyleWarguła, Ł., Kaczmarzyk, P., Wieczorek, B., Małozięć, D., & Dziechciarz, A. (2025). Assessment of the Hazards Occurring During the Thermal Decomposition and Combustion Process in a Toothed Belt Transmission. Materials, 18(7), 1637. https://doi.org/10.3390/ma18071637