Enhanced Electro-Optical Properties and Peel Strength of Epoxy-Based Polymer-Stabilized Liquid Crystal Films Enabled by Rapid Cationic Polymerization and Polymer-Network Morphology Regulation
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation and Working Mechanism
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezaei, S.D.; Shannigrahi, S.; Ramakrishna, S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 2017, 159, 26–51. [Google Scholar]
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 C. Nature 2015, 517, 187–190. [Google Scholar]
- Nundy, S.; Mesloub, A.; Alsolami, B.M.; Ghosh, A. Electrically actuated visible and near-infrared regulating switchable smart window for energy positive building: A review. J. Clean. Prod. 2021, 301, 126854. [Google Scholar]
- Shao, Z.; Huang, A.; Cao, C.; Ji, X.; Hu, W.; Luo, H.; Bell, J.; Jin, P.; Yang, R.; Cao, X. Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 2024, 7, 796–803. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, J.; Zhou, Y.; Xie, J.; Zhang, X.; Guan, M.; Pan, B.; Xie, Y. High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci. Rep. 2013, 3, 1936. [Google Scholar] [CrossRef]
- Xiao, L.; Lv, Y.; Dong, W.; Zhang, N.; Liu, X. Dual-Functional WO3 Nanocolumns with Broadband Antireflective and High-Performance Flexible Electrochromic Properties. ACS Appl. Mater. Interfaces 2016, 8, 27107–27114. [Google Scholar] [CrossRef]
- Besnardiere, J.; Ma, B.; Torres-Pardo, A.; Wallez, G.; Kabbour, H.; González-Calbet, J.M.; Von Bardeleben, H.J.; Fleury, B.; Buissette, V.; Sanchez, C.; et al. Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3. Nat. Commun. 2019, 10, 327. [Google Scholar] [CrossRef]
- Vergaz, R.; Sánchez-Pena, J.-M.; Barrios, D.; Vázquez, C.; Contreras-Lallana, P. Modelling and electro-optical testing of suspended particle devices. Sol. Energy Mater. Sol. Cells 2008, 92, 1483–1487. [Google Scholar] [CrossRef]
- Vergaz, R.; Pena, J.M.S.; Barrios, D.; Pérez, I.; Torres, J.C. Electrooptical behaviour and control of a suspended particle device. Opto-Electron. Rev. 2007, 15, 154–158. [Google Scholar] [CrossRef]
- Ye, Y.; Guo, L.; Zhong, T. A Review of Developments in Polymer Stabilized Liquid Crystals. Polymers 2023, 15, 2962. [Google Scholar] [CrossRef]
- Li, X.; Du, X.; Guo, P.; Zhu, J.; Ye, W.; Xu, Q.; Sun, Y. Fast Switchable Dual-Model Grating by Using Polymer-Stabilized Sphere Phase Liquid Crystal. Polymers 2018, 10, 884. [Google Scholar] [CrossRef]
- Malik, P.; Raina, K.K. Droplet orientation and optical properties of polymer dispersed liquid crystal composite films. Opt. Mater. 2004, 27, 613–617. [Google Scholar] [CrossRef]
- Pan, G.; Cao, H.; Guo, R.; Li, W.; Guo, J.; Yang, Z.; Huang, W.; He, W.; Liang, X.; Zhang, D.; et al. A polymer stabilized liquid crystal film with thermal switching characteristics between light transmission and adjustable light scattering. Opt. Mater. 2009, 31, 1163–1166. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; He, L.; Shi, Y.; Gao, Y.; Yu, M.; Yang, H. Liquid crystal/polymer composites for energy-efficient smart windows with a wide working temperature range and low off-axis haze. Compos. Part A Appl. Sci. Manuf. 2024, 178, 107976. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P.; Raina, K.K. Simultaneous effects of external stimuli on preparation and performance parameters of normally transparent reverse mode polymer-dispersed liquid crystals—A review. J. Mater. Sci. 2021, 56, 18795–18836. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zhao, Y.; He, Z.; Miao, Z.; Shen, W. Simultaneous Light-Triggered Formation of Polymer Networks and Enhancement of Electrohydrodynamic Instabilities in Liquid Crystals for Versatile Energy-Saving Smart Windows. Adv. Funct. Mater. 2025, 35, 2414618. [Google Scholar] [CrossRef]
- Li, X.; Guo, Y.; Zhang, M.; Zhang, C.; Niu, R.; Ma, H.; Sun, Y. Colorable Light-Scattering Device Based on Polymer-Stabilized Ion-Doped Cholesteric Liquid Crystal and an Electrochromatic Layer. ACS Appl. Mater. Interfaces 2023, 15, 7184–7195. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, J.; Liu, W.; Li, Y.; Yang, Y. Preparation of the colorful retroreflective film based on the polymer-stabilized cholesteric liquid crystal. Mol. Cryst. Liq. Cryst. 2024, 768, 89–98. [Google Scholar] [CrossRef]
- Wu, P.-C.; Chen, H.-L.; Rudakova, N.V.; Timofeev, I.V.; Zyryanov, V.Y.; Lee, W. Electro-optical and dielectric properties of polymer-stabilized blue phase liquid crystal impregnated with a fluorine-containing compound. J. Mol. Liq. 2018, 267, 138–143. [Google Scholar] [CrossRef]
- Fujikake, H.; Sato, H.; Murashige, T. Polymer-stabilized ferroelectric liquid crystal for flexible displays. Displays 2004, 25, 3–8. [Google Scholar] [CrossRef]
- Yi, J.; Pei, K.; Li, Z.; Zhou, W.; Deng, H. Numerical and experimental investigation on temperature field during small-module gear creep feed deep profile grinding. Int. J. Adv. Manuf. Technol. 2024, 132, 4965–4977. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, X.; Ruan, K.; Zhang, J.; Zhang, H.; Gu, J. Discotic Liquid Crystal Epoxy Resins Integrating Intrinsic High Thermal Conductivity and Intrinsic Flame Retardancy. Macromol. Rapid Commun. 2022, 43, 2100580. [Google Scholar] [CrossRef]
- Atta, A.M.; El-Newehy, M.H.; Abdulhameed, M.M.; Wahby, M.H.; Hashem, A.I. Seawater Absorption and Adhesion Properties of Hydrophobic and Superhydrophobic Thermoset Epoxy Nanocomposite Coatings. Nanomaterials 2021, 11, 272. [Google Scholar] [CrossRef]
- Choong, L.F.; Cheong, K.Y.; Ramakrishnan, S.; Roslan, A.F. The adhesion of epoxy treated by microwave oxygen plasma. Appl. Surf. Sci. 2021, 563, 150224. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T.; Hassan, A. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J. Reinf. Plast. Compos. 2015, 35, 447–470. [Google Scholar] [CrossRef]
- Vidil, T.; Tournilhac, F.; Musso, S.; Robisson, A.; Leibler, L. Control of reactions and network structures of epoxy thermosets. Prog. Polym. Sci. 2016, 62, 126–179. [Google Scholar] [CrossRef]
- Shen, W.; Cao, Y.; Zhang, C.; Yuan, X.; Yang, Z.; Zhang, L. Network morphology and electro-optical characterisations of epoxy-based polymer stabilised liquid crystals. Liq. Cryst. 2020, 47, 481–488. [Google Scholar] [CrossRef]
- Chen, G.; Hu, J.; Xu, J.; Sun, J.; Xiao, J.; Zhang, L.; Wang, X.; Hu, W.; Yang, H. Liquid Crystalline Composite Stabilized by Epoxy Polymer with Boscage-Like Morphology for Energy-Efficient Smart Windows with High Stability. Macromol. Mater. Eng. 2022, 307, 2100991. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, C.; Shang, G.; Wang, P.; Shi, Y.; Song, Z.; Yu, M.; Gao, Y.; Wang, Q.; Zou, C.; et al. Epoxy resin-based polymer-wall stabilized liquid crystal films with low driving voltages and improved mechanical performance for smart window applications. Compos. Part A Appl. Sci. Manuf. 2024, 187, 108501. [Google Scholar] [CrossRef]
- Shi, Y.; Song, Z.; Wu, Y.; Gao, Y.; Yu, M.; Yang, H.; Zou, C. A Multi-Functional Molecule for Highly Durable, Bending-Resistant, Low-Voltage Driving PSLC Films toward Smart Windows with Radiative Cooling. Small 2025, 21, 2407707. [Google Scholar] [CrossRef]
- Dierking, I. Polymer Network–Stabilized Liquid Crystals. Adv. Mater. 2000, 12, 167–181. [Google Scholar]
- Ma, C.; Wu, Y.; Song, Z.; Shi, Y.; Xiong, G.; Yu, M.; Gao, Y.; Wang, Q.; Zou, C.; Xiao, J. Study on the Effect of Monoacrylic Monomers on the Polymer Network Morphology and Electro-Optical Performance of Reverse-Mode Polymer Stabilized Liquid Crystal Devices. Crystals 2023, 13, 1616. [Google Scholar] [CrossRef]
- Yan, J.; Rao, L.; Jiao, M.; Li, Y.; Cheng, H.-C.; Wu, S.-T. Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J. Mater. Chem. 2011, 21, 7870–7877. [Google Scholar] [CrossRef]
- Park, B.; Lee, W.; Lee, E.; Min, S.H.; Kim, B.-S. Highly Tunable Interfacial Adhesion of Glass Fiber by Hybrid Multilayers of Graphene Oxide and Aramid Nanofiber. ACS Appl. Mater. Interfaces 2015, 7, 3329–3334. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Cech, V.; Prikryl, R.; Balkova, R.; Vanek, J.; Grycova, A. The influence of surface modifications of glass on glass fiber/polyester interphase properties. J. Adhes. Sci. Technol. 2003, 17, 1299–1320. [Google Scholar] [CrossRef]
- Wu, Y.; Zou, C.; Shi, Y.; Song, Z.; Xiao, J.; Yu, M.; Gao, Y.; Wang, Q.; Yang, H. Reverse-Mode Polymer-Stabilized Liquid Crystal Films with Enhanced Peel Strength and Electro-Optical Performance Based on Photoreactive Self-Assembly Alignment Layers and Patterned Polymer Walls. ACS Appl. Mater. Interfaces 2024, 16, 40046–40055. [Google Scholar] [CrossRef]
Sample No. | Component Content (wt%) and Polymerization Conditions | ||||||
---|---|---|---|---|---|---|---|
E6M | E6PM | GXV-7822-180 | Photoinitiator 1173 | Photoinitiator 1176 | UV Intensity (mW/cm2) | Time (s) | |
A1 | 15 | 0 | 81 | 2 | 2 | 180 | 300 |
A2 | 12 | 3 | 81 | 2 | 2 | 180 | 300 |
A3 | 9 | 6 | 81 | 2 | 2 | 180 | 300 |
A4 | 6 | 9 | 81 | 2 | 2 | 180 | 300 |
A5 | 3 | 12 | 81 | 2 | 2 | 180 | 300 |
Sample No. | Component Content (wt%) and Polymerization Conditions | ||||||
---|---|---|---|---|---|---|---|
E6M | E6PM | GXV-7822-180 | Photoinitiator 1173 | Photoinitiator 1176 | UV Intensity (mW/cm2) | Time (s) | |
B1 | 10 | 0 | 86 | 2 | 2 | 140 | 300 |
B2 | 8 | 2 | 86 | 2 | 2 | 140 | 300 |
B3 | 6 | 4 | 86 | 2 | 2 | 140 | 300 |
B4 | 4 | 6 | 86 | 2 | 2 | 140 | 300 |
B5 | 2 | 8 | 86 | 2 | 2 | 140 | 300 |
Sample No. | Component Content (wt%) and Polymerization Conditions | ||||||
---|---|---|---|---|---|---|---|
E6M | E6PM | GXV-7822-180 | Photoinitiator 1173 | Photoinitiator 1176 | UV Intensity (mW/cm2) | Time (s) | |
C1 | 20 | 0 | 76 | 2 | 2 | 240 | 300 |
C2 | 16 | 4 | 76 | 2 | 2 | 240 | 300 |
C3 | 12 | 8 | 76 | 2 | 2 | 240 | 300 |
C4 | 8 | 12 | 76 | 2 | 2 | 240 | 300 |
C5 | 4 | 16 | 76 | 2 | 2 | 240 | 300 |
Reference | Sample Type | Monomer Content (wt%) | Peel Strength (KPa) | Vsat (V) |
---|---|---|---|---|
This Work | PSLC | 15 | 136.37 | 30.56 |
Ref. [16] | PSLC | 16 | Not mentioned | >30 |
Ref. [28] | PSLC | 10 | Not mentioned | >60 |
Ref. [29] | PSLC | 10 | 7.5 | 40.2 |
Ref. [30] | PSLC | 20 | 71.16 | <25 |
Ref. [37] | PSLC | 4 | 1.6 | Not mentioned |
Ref. [37] | PSLC | 20 | 49.7 | 39.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Shang, G.; Shi, Y.; Yang, M.; Zhou, T.; Yu, M.; Gao, Y.; Zou, C. Enhanced Electro-Optical Properties and Peel Strength of Epoxy-Based Polymer-Stabilized Liquid Crystal Films Enabled by Rapid Cationic Polymerization and Polymer-Network Morphology Regulation. Materials 2025, 18, 1505. https://doi.org/10.3390/ma18071505
Song Z, Shang G, Shi Y, Yang M, Zhou T, Yu M, Gao Y, Zou C. Enhanced Electro-Optical Properties and Peel Strength of Epoxy-Based Polymer-Stabilized Liquid Crystal Films Enabled by Rapid Cationic Polymerization and Polymer-Network Morphology Regulation. Materials. 2025; 18(7):1505. https://doi.org/10.3390/ma18071505
Chicago/Turabian StyleSong, Zhexu, Guangyang Shang, Yingjie Shi, Meiqi Yang, Tianfu Zhou, Meina Yu, Yanzi Gao, and Cheng Zou. 2025. "Enhanced Electro-Optical Properties and Peel Strength of Epoxy-Based Polymer-Stabilized Liquid Crystal Films Enabled by Rapid Cationic Polymerization and Polymer-Network Morphology Regulation" Materials 18, no. 7: 1505. https://doi.org/10.3390/ma18071505
APA StyleSong, Z., Shang, G., Shi, Y., Yang, M., Zhou, T., Yu, M., Gao, Y., & Zou, C. (2025). Enhanced Electro-Optical Properties and Peel Strength of Epoxy-Based Polymer-Stabilized Liquid Crystal Films Enabled by Rapid Cationic Polymerization and Polymer-Network Morphology Regulation. Materials, 18(7), 1505. https://doi.org/10.3390/ma18071505