Recent Advances in Soft Matter
Conflicts of Interest
References
- Sidney, R. Nagel, Experimental soft-matter science. Rev. Mod. Phys. 2017, 89, 025002. [Google Scholar]
- van der Gucht, J. Grand Challenges in Soft Matter Physics. Front. Phys. 2018, 6, 87. [Google Scholar]
- Barrat, J.-L.; Del Gado, E.; Egelhaaf, S.U.; Mao, X.; Dijkstra, M.; Pine, D.J.; Kumar, S.K.; Bishop, K.; Gang, O.; Obermeyer, A.; et al. Soft matter roadmap. J. Phys. Mater. 2024, 7, 012501. [Google Scholar]
- Guo, Q.; Zhang, X. A review of mechanochromic polymers and composites: From material design strategy to advanced electronics application. Compos. Part B 2021, 227, 109434. [Google Scholar] [CrossRef]
- Pang, X.; Lv, J.-A.; Zhu, C.; Qin, L.; Yu, Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. Adv. Mater. 2019, 31, 1904224. [Google Scholar]
- Chen, M.; Gao, M.; Bai, L.; Zheng, H.; Qi, H.J.; Zhou, K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. Adv. Mater. 2023, 35, 2209566. [Google Scholar]
- Xiong, J.; Chen, J.; Lee, P.S. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Adv. Mater. 2021, 33, 2002640. [Google Scholar]
- George, M. Whitesides, Soft Robotics. Angew. Chem. Int. Ed. 2018, 57, 4258–4273. [Google Scholar]
- da Cunha, M.P.; Debije, M.G.; Schenning, A.P.H.J. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 2020, 49, 6568–6578. [Google Scholar]
- Lee, Y.; Song, W.J.; Sun, J.-Y. Hydrogel soft robotics. Mater. Today Phys. 2020, 15, 100258. [Google Scholar] [CrossRef]
- Hegde, C.; Su, J.; Tan, J.M.R.; He, K.; Chen, X.; Magdassi, S. Sensing in Soft Robotics. ACS Nano 2023, 17, 15277–15307. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef] [PubMed]
- Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 145. [Google Scholar] [CrossRef]
- Witting, M.; Obst, K.; Friess, W.; Hedtrich, S. Recent advances in topical delivery of proteins and peptides mediated by soft matter nanocarriers. Biotechnol. Adv. 2015, 33, 1355–1369. [Google Scholar] [CrossRef]
- Arif, Z.U. The role of polysaccharide-based biodegradable soft polymers in the healthcare sector. Adv. Ind. Eng. Polym. Res. 2025, 8, 132–156. [Google Scholar] [CrossRef]
- Dogic, Z. Filamentous Phages As a Model System in Soft Matter Physics. Front. Microbiol. 2016, 7, 1013. [Google Scholar] [CrossRef]
- Thedford, R.P.; Yu, F.; Tait, W.R.T.; Shastri, K.; Monticone, F.; Wiesner, U. The Promise of Soft-Matter-Enabled Quantum Materials. Adv. Mater. 2023, 35, 2203908. [Google Scholar] [CrossRef]
- Chelazzi, D.; Giorgi, R.; Baglioni, P. Microemulsions, Micelles, and Functional Gels: How Colloids and Soft Matter Preserve Works of Art. Angew. Chem. Int. Ed. 2018, 57, 7296–7303. [Google Scholar] [CrossRef]
- Menzel, A.M. Tuned, driven, and active soft matter. Phys. Rep. 2015, 554, 1–45. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Ferraro, A.; Zografopoulos, D.C.; Caputo, R. Soft-Matter-Based Hybrid and Active Metamaterials. Adv. Opt. Mater. 2022, 10, 2200750. [Google Scholar] [CrossRef]
- Qi, S.; Guo, H.; Fu, J.; Xie, Y.; Zhu, M.; Yu, M. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos. Sci. Technol. 2020, 188, 107973. [Google Scholar]
- Boymelgreen, A.; Schiffbauer, J.; Khusid, B.; Yossifon, G. Synthetic electrically driven colloids: A platform for understanding collective behavior in soft matter. Curr. Opin. Colloid Interface Sci. 2022, 60, 101603. [Google Scholar]
- Vrugt, M.T.; Wittkowski, R. Metareview: A survey of active matter reviews. Eur. Phys. J. E 2025, 48, 12. [Google Scholar]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1088. [Google Scholar]
- Wang, Y.; Liu, J.; Yang, S. Multi-functional liquid crystal elastomer Composites. Appl. Phys. Rev. 2022, 9, 011301. [Google Scholar] [CrossRef]
- Kularatne, R.S.; Kim, H.; Boothby, J.M.; Ware, T.H. Liquid Crystal Elastomer Actuators: Synthesis, Alignment, and Applications. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 395–411. [Google Scholar]
- Lugger, S.J.D.; Houben, S.J.A.; Foelen, Y.; Debije, M.G.; Schenning, A.P.H.J.; Mulder, D.J. Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem. Rev. 2022, 122, 4946–4975. [Google Scholar] [CrossRef]
- Wang, L.; Urbas, A.M.; Li, Q. Nature-Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Self-Assembly to DNA Mesophase and Nanocolloids. Adv. Mater. 2020, 32, 1801335. [Google Scholar] [CrossRef]
- Ma, L.-L.; Li, C.-Y.; Pan, J.-T.; Ji, Y.-E.; Jiang, C.; Zheng, R.; Wang, Z.-Y.; Wang, Y.; Li, B.-X.; Lu, Y.-Q. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 2022, 11, 270. [Google Scholar]
- Luan, C.; Luan, H.; Luo, D. Application and Technique of Liquid Crystal-Based Biosensors. Micromachines 2020, 11, 176. [Google Scholar] [CrossRef]
- Popov, N.; Honaker, L.W.; Popova, M.; Usol’tseva, N.; Mann, E.K.; Jákli, A.; Popov, P. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors. Materials 2018, 11, 20. [Google Scholar]
- Nundy, S.; Mesloub, A.; Alsolami, B.M.; Ghosh, A. Electrically actuated visible and near-infrared regulating switchable smart window for energy positive building: A review. J. Clean. Prod. 2021, 301, 126854. [Google Scholar] [CrossRef]
- Ke, Y.; Zhou, C.; Zhou, Y.; Wang, S.; Chan, S.H.; Long, Y. Emerging Thermal-Responsive Materials and Integrated Techniques Targeting the Energy-Efficient Smart Window Application. Adv. Funct. Mater. 2018, 28, 1800113. [Google Scholar] [CrossRef]
- Khandelwal, H.; Schenning, A.P.H.J.; Debije, M.G. Infrared Regulating Smart Window Based on Organic Materials. Adv. Energy Mater. 2017, 7, 1602209. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Yang, W.; Jiang, X.-F.; Jiang, X.; de Haan, T.L.; Yuan, D.; Zhao, W.; Zheng, N.; Jin, M.; et al. Stable and scalable smart window based on polymer stabilized liquid crystals. J. Appl. Polym. Sci. 2020, 137, 48917. [Google Scholar] [CrossRef]
- Schiller, U.D.; Krüger, T.; Henrich, O. Mesoscopic modelling and simulation of soft matter. Soft Matter 2018, 14, 9–26. [Google Scholar] [CrossRef]
- Angioletti-Uberti, S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. npj Comput. Mater. 2017, 3, 48. [Google Scholar] [CrossRef]
- Clegg, P.S. Characterising soft matter using machine learning. Soft Matter 2021, 17, 3991–4005. [Google Scholar] [CrossRef]
- Zhang, K.; Gong, X.; Jiang, Y. Machine Learning in Soft Matter: From Simulations to Experiments. Adv. Funct. Mater. 2024, 34, 2315177. [Google Scholar] [CrossRef]
- Tubiana, L.; Alexander, G.P.; Barbensi, A.; Buck, D.; Cartwright, J.H.; Chwastyk, M.; Cieplak, M.; Coluzza, I.; Čopar, S.; Craik, D.J.; et al. Topology in soft and biological matter. Phys. Rep. 2024, 1075, 1–137. [Google Scholar]
- Jangizehi, A.; Schmid, F.; Besenius, P.; Kremer, K.; Seiffert, S. Defects and defect engineering in Soft Matter. Soft Matter 2020, 16, 10809–10859. [Google Scholar] [PubMed]
- Vader, P.; Mol, E.A.; Pasterkampa, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148. [Google Scholar] [PubMed]
- Lea, Q.-V.; Leea, J.; Leea, H.; Shimb, G.; Oh, Y.-K. Cell membrane-derived vesicles for delivery of therapeutic agents. Acta Pharm. Sin. B 2021, 11, 2096e2113. [Google Scholar]
- Imai, M.; Sakuma, Y.; Kurisu, M.; Walde, P. From vesicles toward protocells and minimal cells. Soft Matter 2022, 18, 4823. [Google Scholar]
- Paolicelli, R.C.; Bergamini, G.; Rajendran, L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience 2019, 405, 148. [Google Scholar] [CrossRef]
- Miccio, L.; Memmolo, P.; Merola, F.; Mugnano, M.; Ferraro, P. Optobiology: Live cells in optics and photonics. J. Phys. Photonics 2021, 3, 012003. [Google Scholar]
- Wang, K.; Hu, W.; He, W.; Yang, Z.; Cao, H.; Wang, D.; Li, Y. Research Progress of Electrically Driven Multi-Stable Cholesteric Liquid Crystals. Materials 2024, 17, 136. [Google Scholar]
- Santos, A.F.M.; Figueirinhas, J.L.; Dionísio, M.; Godinho, M.H.; Branco, L.C. Ionic Liquid Crystals as Chromogenic Materials. Materials 2024, 17, 4563. [Google Scholar] [CrossRef]
- Woolhouse, F.; Dierking, I. Thin Cells of Polymer-Modified Liquid Crystals Described by Voronoi Diagrams. Materials 2025, 18, 1106. [Google Scholar] [CrossRef]
- Balcerak-Woźniak, A.; Dzwonkowska-Zarzycka, M.; Kabatc-Borcz, J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials—Recent Advances and Future Perspectives. Materials 2024, 17, 4255. [Google Scholar] [CrossRef]
- Argatov, I.I.; Lyashenko, I.A.; Popov, V.L. Ad Hoc Modeling of Rate-Dependent Adhesion in Indentation Relaxation Testing. Materials 2024, 17, 3944. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tan, G.; Xie, H.; Lu, S. The Application of Regenerated Silk Fibroin in Tissue Repair. Materials 2024, 17, 3924. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Hine, P.J.; Baker, D.L.; Ries, M.E. Understanding the Dissolution of Cellulose and Silk Fibroin in 1-ethyl-3-methylimidazolium Acetate and Dimethyl Sulphoxide for Application in Hybrid Films. Materials 2024, 17, 5262. [Google Scholar] [CrossRef]
- Yu, T.-T.; Yang, F.-R.; Su, Y.; Qi, Y.-H.; Liu, Y.; Hu, N. Reverse Micelles Extraction of Prolamin from Baijiu Jiuzao: Impact of Isolation Process on Protein Structure and Morphology. Materials 2024, 17, 2901. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y. Enhanced Diffusion and Non-Gaussian Displacements of Colloids in Quasi-2D Suspensions of Motile Bacteria. Materials 2024, 17, 5013. [Google Scholar] [CrossRef]
- Vohl, S.; Ban, I.; Drofenik, M.; Buksek, H.; Gyergyek, S.; Petrinic, I.; Hélix-Nielsen, C.; Stergar, J. Microwave Synthesis of Poly(Acrylic) Acid-Coated Magnetic Nanoparticles as Draw Solutes in Forward Osmosis. Materials 2023, 16, 4138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dierking, I. Recent Advances in Soft Matter. Materials 2025, 18, 1440. https://doi.org/10.3390/ma18071440
Dierking I. Recent Advances in Soft Matter. Materials. 2025; 18(7):1440. https://doi.org/10.3390/ma18071440
Chicago/Turabian StyleDierking, Ingo. 2025. "Recent Advances in Soft Matter" Materials 18, no. 7: 1440. https://doi.org/10.3390/ma18071440
APA StyleDierking, I. (2025). Recent Advances in Soft Matter. Materials, 18(7), 1440. https://doi.org/10.3390/ma18071440