Lanthanum-Modified Sludge Biochar for Geothermal Water Fluoride Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Instruments
2.2. Experimental Methods
2.2.1. Determination of Fluoride Concentration
2.2.2. Production of Biochar
2.2.3. Characterization of Biochar Samples
2.2.4. Design of Batch Adsorption Experiments
Adsorption Experiments with Sludge-Derived Biochar
Adsorption Experiments with Lanthanum-Loaded Sludge Biochar
2.2.5. Coexisting Anion Interference Experiments
2.2.6. Data Processing
3. Results and Discussion
3.1. Preparation and Characterization of Sludge Biochar
3.1.1. Preparation of Biochar
3.1.2. Characterization of Biochar
Scanning Electron Microscopy and X-Ray Photoelectron Spectroscopy Analysis
Comparative Surface Area and Aperture Analysis
Infrared Spectroscopic Analysis
X-Ray Diffraction Spectroscopy
3.2. Optimization of Preparation Conditions and Characterization of Lanthanum-Loaded Biochar
3.2.1. Preparation of Lanthanum-Loaded Biochar
3.2.2. Characterization of Lanthanum-Loaded Biochar
Comparison of SEM-EDS Images
Specific Surface Area and Pore Size Analysis
Infrared Spectral Analysis
Comparison of XRD Patterns
3.3. Batch Adsorption Experiments
3.3.1. Effects of Initial Solution pH on Adsorption Performance
3.3.2. Effects of F− Concentration on Adsorption Performance
3.3.3. Effects of La-SBC-700 Dosage on Adsorption Performance
3.3.4. Effects of Coexisting Ions on Adsorption Performance
3.3.5. Adsorption Kinetics
3.3.6. Adsorption Isotherms
3.3.7. Adsorption Thermodynamics
3.3.8. Adsorption Experiments of Fluoride in Real Geothermal Water
3.4. Adsorption Mechanism
4. Conclusions
- (1)
- Utilizing sludge as the raw material, orthogonal experiments were employed to determine the optimal preparation conditions for La-SBC-700, which are a lanthanum nitrate concentration of 0.08 mol/L, a pH of 9 for the lanthanum nitrate solution, a solid-to-liquid ratio of SBC-700 to lanthanum nitrate solution of 1:20 (g:mL), and a modification temperature of 55 °C. These conditions result in an adsorption capacity approximately ten times higher than that of the original biochar (SBC).
- (2)
- The Quasi-secondary-order kinetics and the Langmuir isothermal adsorption model are more consistent with the adsorption process of F− onto La-SBC-700. Within the temperature range of 20 to 80 °C, the maximum adsorption capacity of La-SBC-700 ranges from 39.634 to 40.338 mg/g, indicating that the lanthanum-loaded biochar has good adsorption performance for fluorides. Thermodynamic studies indicate that the adsorption process of fluoride onto La-SBC-700 is a spontaneous endothermic reaction. Moreover, as the adsorption reaction proceeds, the degree of disorder at the solid/liquid interface of the adsorbent increases, affecting the surface structure of the adsorbent.
- (3)
- At a dosage of 2 g/L of La-SBC-700, this biochar material achieved a fluoride removal rate higher than 98% in geothermal water from various sampling sites, demonstrating excellent defluoridation performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, L.; Zietzschmann, F.; Rietveld, L.C.; van Halem, D. Fluoride removal from water by Ca-Al-CO3 layered double hydroxides and simultaneous acidification. J. Water Process Eng. 2021, 40, 101957. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Liu, W. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China. Environ. Geol. 2008, 56, 197–205. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H. Environmental fate and ecological impact of the potentially toxic elements from the geothermal springs. Environ. Geochem. Health 2023, 45, 6287–6303. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality (Second Edition) [R]; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Velazquez-Jimenez, L.H.; Vences-Alvarez, E.; Flores-Arciniega, J.L.; Flores-Zuniga, H.; Rangel-Mendez, J.R. Water defluoridation with special emphasis on adsorbents-containing metal oxides and/or hydroxides: A review. Sep. Purif. Technol. 2015, 150, 292–307. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- Pollard, A.J.; Reeves, R.D.; Baker, A.J. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 2014, 217, 8–17. [Google Scholar] [CrossRef]
- Rajkumar, S.; Murugesh, S.; Sivasankar, V.; Darchen, A.; Msagati, T.; Chaabane, T. Low-cost fluoride adsorbents prepared from a renewable biowaste: Syntheses, characterization and modeling studies. Arab. J. Chem. 2019, 12, 3004–3017. [Google Scholar] [CrossRef]
- Kalpana, S.; Dilip, H.L.; Kailas, L.W. Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. J. Fluor. Chem. 2017, 194, 23–32. [Google Scholar] [CrossRef]
- Dipyaman, M.; Ahmaruzzaman, M. Bio-inspired adsorption of arsenite and fluoride From aqueous solutions using activatedcarbon@SnO2 nanocomposites: Isotherms, kinetics, thermodynamics, cost estimation and regeneration studies. J. Environ. Chem. Eng. 2018, 6, 356–366. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Guo, X.; Chen, J.P. Modification of carbon derived from Sargassum sp. by lanthanum for enhanced adsorption of fluoride. J. Colloid Interface Sci. 2015, 441, 113–120. [Google Scholar] [CrossRef]
- Fan, S.; Sun, Y.; Yang, T.; Chen, Y.; Yan, B.; Li, R.; Chen, G. Biochar derived from corn stalk and polyethylene co-pyrolysis: Characterization and Pb(ii) removal potential. RSC Adv. 2020, 10, 6362–6376. [Google Scholar] [CrossRef]
- Wang, J.; Wu, L.; Li, J.; Tang, D.; Zhang, G. Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: Adsorption kinetics and mechanism. J. Alloys Compd. 2018, 753, 422–432. [Google Scholar] [CrossRef]
- Vences-Alvarez, E.; Velazquez-Jimenez, L.H.; Chazaro-Ruiz, L.F.; Díaz-Flores, P.E.; Rangel-Mendez, J.R. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon. J. Colloid Interface Sci. 2015, 455, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, N.; Feng, C.; Li, M. Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar. Environ. Sci. Pollut. Res. 2018, 25, 15326–15335. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Guo, X.; Ye, C.; Yan, L.; Gu, W.; Wu, X.; Zhou, Q.; Yang, Y.; Wang, X.; Cheng, Q. Enhanced fluoride removal from drinking water in wide pH range using La/Fe/Al oxides loaded rice straw biochar. Water Supply 2022, 22, 779–794. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Defluoridation of drinking water using adsorption processes. J. Hazard. Mater. 2013, 248–249, 1–19. [Google Scholar] [CrossRef]
- Seiple, T.E.; Coleman, A.M.; Skaggs, R.L. Municipal wastewater sludge as a sustainable bioresource in the United States. J. Environ. Manag. 2017, 197, 673–680. [Google Scholar] [CrossRef]
- Feng, J.; Bai, H.; Xue, Y.; Rui, Z.; Puli, Z.; Duo, B.; Zeng, D.; Wei, L.; Xuebin, L. Recycling of iron and aluminum from drinking water treatment sludge for synthesis of a magnetic composite material (ALCS-Fe-Al) to remove fluoride from drinking water. Groundw. Sustain. Dev. 2020, 11, 100456. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Lu, S.; Zong, Y. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environ. Sci. Pollut. Res. 2018, 25, 30401–30409. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 2023, 263, 126128. [Google Scholar] [CrossRef]
- Ma, Z.-W.; Zhang, K.-N.; Zou, Z.-J.; Lü, Q.-F. High specific area activated carbon derived from chitosan hydrogel coated tea saponin: One-step preparation and efficient removal of methylene blue. J. Environ. Chem. Eng. 2021, 9, 105251. [Google Scholar] [CrossRef]
- Chunhui, L.; Jin, T.; Puli, Z.; Bin, Z.; Duo, B.; Xuebin, L. Simultaneous removal of fluoride and arsenic in geothermal water in Tibet using modified yak dung biochar as an adsorbent. R. Soc. Open Sci. 2018, 5, 181266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiong, S.; Xiao, B.; Yu, D.; Jia, X. Mechanism of wet sewage sludge pyrolysis in a tubular furnace. Int. J. Hydrog. Energy 2011, 36, 355–363. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Kumar, A.; Li, J.; Chen, P.; Yu, Z.-G.; Sun, G.-X. The adsorption behavior and mechanism for arsenate by lanthanum-loaded biochar with different modification methods. Environ. Technol. Innov. 2023, 32, 103344. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, B.-S.; Jin, Z.; Sun, B.; Luo, T.; Yu, X.-Y.; Kong, L.-T.; Liu, J.-H. Fluoride removal mechanism of bayerite/boehmite nanocomposites: Roles of the surface hydroxyl groups and the nitrate anions. J. Colloid Interface Sci. 2015, 440, 60–67. [Google Scholar] [CrossRef]
- Qiu, H.; Liang, C.; Yu, J.; Zhang, Q.; Song, M.; Chen, F. Preferable phosphate sequestration by nano-La (III)(hydr) oxides modified wheat straw with excellent properties in regeneration. Chem. Eng. J. 2017, 315, 345–354. [Google Scholar] [CrossRef]
- Zhang, J.; Brutus, T.E.; Cheng, J.; Meng, X. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect. J. Environ. Sci. 2017, 57, 190–195. [Google Scholar] [CrossRef]
- Sroda, M.; Paluszkiwicz, C. Spectroscopic study of the influence of LaF3 admixture on the crystallization and structure of borosilicate glass. J. Mol. Struct. 2007, 834, 302–307. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, D.; Shen, F.; Li, T. Phosphate adsorption on lanthanum loaded biochar. Chemosphere 2016, 150, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Gorman, C.; Ford, E. Lanthanum carbonate nanofibers for phosphorus removal from water. J. Mater. Sci. 2020, 55, 5008–5020. [Google Scholar] [CrossRef]
- Prabhu, S.M.; Elanchezhiyan, S.S.; Lee, G.; Meenakshi, S. Defluoridation of water by Tea-bag model using La3+ modified synthetic resin@ chitosan biocomposite. Int. J. Biol. Macromol. 2016, 91, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sengupta, S.; Manna, S.; Das, P. Chemically reduced tea waste biochar and its application in treatment of fluoride containing wastewater: Batch and optimization using response surface methodology. Process Saf. Environ. Prot. 2018, 116, 553–563. [Google Scholar] [CrossRef]
- Wang, Z.; Su, J.; Hu, X.; Ali, A.; Wu, Z. Isolation of biosynthetic crystals by microbially induced calcium carbonate precipitation and their utilization for fluoride removal from groundwater. J. Hazard. Mater. 2021, 406, 124748. [Google Scholar] [CrossRef]
- Bansiwal, A.; Thakre, D.; Labhshetwar, N.; Meshram, S.; Rayalu, S. Fluoride removal using lanthanum incorporated chitosan beads. Colloids Surf. B Biointerfaces 2009, 74, 216–224. [Google Scholar] [CrossRef]
- Han, M.; Zhang, J.; Hu, Y.; Han, R. Preparation of novel magnetic microspheres with the La and Ce-bimetal oxide shell for excellent adsorption of fluoride and phosphate from solution. J. Chem. Eng. Data 2019, 64, 3641–3651. [Google Scholar] [CrossRef]
- Jha, R.; Jha, U.; Dey, R.; Mishra, S.; Swain, S. Fluoride sorption by zirconium (IV) loaded carboxylated orange peel. Desalination Water Treat. 2015, 53, 2144–2157. [Google Scholar] [CrossRef]
- Ku, Y.; Chiou, H.M. The Adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut. 2002, 133, 349–361. [Google Scholar] [CrossRef]
- Jiang, H.; Li, X.; Tian, L.; Wang, T.; Wang, Q.; Niu, P.; Chen, P.; Luo, X. Defluoridation investigation of Yttrium by laminated Y-Zr-Al tri-metal nanocomposite and analysis of the fluoride sorption mechanism. Sci. Total Environ. 2019, 648, 1342–1353. [Google Scholar] [CrossRef]
- Wang, A.; Zhou, K.; Liu, X.; Liu, F.; Zhang, C.; Chen, Q. Granular tri-metal oxide adsorbent for fluoride uptake: Adsorption kinetic and equilibrium studies. J. Colloid Interface Sci. 2017, 505, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.-M.; Chen, G.-J.; Peng, C.-Y.; Zhang, Z.-Z.; Dong, Y.-Y.; Shang, G.-Z.; Zhu, X.-H.; Gao, H.-J.; Wan, X.-C. Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent. Appl. Surf. Sci. 2015, 328, 34–44. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; An, X.; Wan, G.; Zhu, W.; Luo, Y. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Sci. Total Environ. 2019, 688, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Raghav, S.; Kumar, D. Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. J. Chem. Eng. Data 2018, 63, 1682–1697. [Google Scholar] [CrossRef]
- Gong, W.; Qi, C.; Huang, L.; Tian, Z.; Huang, Z.; Tao, C.; Lin, H.; Guo, L.; Yu, Z. Adsorption of phosphorus in wastewater by lanthanum-modified magnetic sewage sludge biochar. Desalination Water Treat. 2024, 320, 100603. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Xu, J.; Fan, S.; Xu, H. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Chemosphere 2021, 291, 132713. [Google Scholar] [CrossRef]
Biochar Type | Specific Surface Area (m2/g) | Micropore Area (m2/g) | External Surface Area (m2/g) | Average Pore Diameter (nm) | Total Pore Volume (cm3/g) | Micropore Volume (cm3/g) |
---|---|---|---|---|---|---|
SBC-300 | 1.184 | 0.250 | 0.934 | 18.493 | 0.005 | 0.00009 |
SBC-500 | 7.384 | 7.350 | 0.034 | 4.851 | 0.009 | 0.00414 |
SBC-700 | 39.632 | 36.143 | 3.489 | 3.158 | 0.031 | 0.01869 |
SBC-750 | 10.254 | 9.428 | 0.826 | 6.028 | 0.013 | 0.00484 |
Serial No. | Temperature (°C) | Solution pH | Solid–Liquid Ratio (g:mL) | Lanthanum Nitrate Concentration (mol/L) | Fluoride Adsorption (mg/g) |
---|---|---|---|---|---|
A | B | C | D | ||
1 | 35 | 7 | 1:15 | 0.04 | 6.10 |
2 | 35 | 9 | 1:20 | 0.06 | 7.56 |
3 | 35 | 11 | 1:25 | 0.08 | 6.27 |
4 | 45 | 7 | 1:20 | 0.08 | 6.58 |
5 | 45 | 9 | 1:25 | 0.04 | 6.65 |
6 | 45 | 11 | 1:15 | 0.06 | 5.96 |
7 | 55 | 7 | 1:25 | 0.06 | 6.26 |
8 | 55 | 9 | 1:15 | 0.08 | 7.52 |
9 | 55 | 11 | 1:20 | 0.04 | 6.20 |
k1 | 6.643 | 6.313 | 6.527 | 6.320 | |
k2 | 6.400 | 7.247 | 6.780 | 6.593 | |
k3 | 6.660 | 6.143 | 6.397 | 6.790 | |
R | 0.260 | 1.104 | 0.383 | 0.470 |
Biochar Name | Specific Surface Area (m2/g) | Micropore Area (m2/g) | External Surface Area (m2/g) | Average Pore Diameter (nm) | Total Pore Volume (cm3/g) | Micropore Volume (cm3/g) |
---|---|---|---|---|---|---|
SBC-700 | 39.632 | 36.143 | 3.489 | 3.158 | 0.031 | 0.01869 |
La-SBC-700 | 14.21 | 5.198 | 9.012 | 21.737 | 0.077 | 0.00213 |
La-SBC-700-F | 20.462 | 1.189 | 19.273 | 22.586 | 0.116 | 0.00042 |
Material | qe,exp /(mg/g) | Quasi-Primary-Order Kinetics | Quasi-Secondary-Order Kinetics | ||||
---|---|---|---|---|---|---|---|
k1 /(min−1) | qe,cal /(mg/g) | R2 | k2 /(g·(mg·min)−1) | qe,cal /(mg/g) | R2 | ||
La-SBC-700 | 18.818 | 17.039 | 18.731 | 0.6159 | 4.977 | 18.817 | 0.9775 |
Material | Temperature (°C) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g) | n | R2 | ||
La-SBC-700 | 20 | 39.635 | 1.327 | 0.9676 | 25.354 | 9.046 | 0.6788 |
40 | 39.881 | 1.481 | 0.9754 | 25.682 | 9.059 | 0.6998 | |
60 | 40.071 | 1.567 | 0.9749 | 25.975 | 9.211 | 0.6957 | |
80 | 40.369 | 1.626 | 0.9727 | 26.233 | 9.262 | 0.6932 |
Material | qm (mg/g) | References |
---|---|---|
Aluminum Oxide Material | 16.300 | [41] |
Y-Zr-Al Composite Material | 31.000 | [42] |
Mg-Al-La Metal Oxide | 31.720 | [43] |
Al-Fe Loaded Tea Residue Biochar | 18.520 | [44] |
La Modified Pomelo Peel Biochar | 19.860 | [15] |
ALCS-Fe-Al Composite Material | 30.490 | [19] |
La-SBC-700 Biochar | 40.338 | this article |
Item | Temperature (K) | K0 | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 kJ/(mol·k) |
---|---|---|---|---|---|
La-SBC-700 | 293.15 | 24.2302 | −7.769 | 3.483 | 0.0386 |
313.15 | 27.8892 | −8.665 | |||
333.15 | 29.6701 | −9.39 | |||
353.15 | 30.9795 | −10.081 |
Water Type | Code | Fluoride Concentration (mg/L) | pH | Removal Rate |
---|---|---|---|---|
Hot Spring Water | S1 | 5.44 | 7.48 | 99.41% |
Hot Spring Water | S2 | 8.76 | 8.69 | 99.06% |
Geothermal Water Outlet | G1 | 11.49 | 9.17 | 98.11% |
Geothermal Water Outlet | G2 | 10.32 | 9.08 | 99.12% |
Geothermal Water Outlet | G3 | 11.45 | 8.76 | 98.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, Y.; Huang, R.; Yang, C.; Zhang, M.; Xie, P.; Xiong, J.; Lu, X. Lanthanum-Modified Sludge Biochar for Geothermal Water Fluoride Removal. Materials 2025, 18, 1421. https://doi.org/10.3390/ma18071421
Li W, Wu Y, Huang R, Yang C, Zhang M, Xie P, Xiong J, Lu X. Lanthanum-Modified Sludge Biochar for Geothermal Water Fluoride Removal. Materials. 2025; 18(7):1421. https://doi.org/10.3390/ma18071421
Chicago/Turabian StyleLi, Wei, Yi Wu, Ruiqing Huang, Chen Yang, Mei Zhang, Pengchen Xie, Jian Xiong, and Xuebin Lu. 2025. "Lanthanum-Modified Sludge Biochar for Geothermal Water Fluoride Removal" Materials 18, no. 7: 1421. https://doi.org/10.3390/ma18071421
APA StyleLi, W., Wu, Y., Huang, R., Yang, C., Zhang, M., Xie, P., Xiong, J., & Lu, X. (2025). Lanthanum-Modified Sludge Biochar for Geothermal Water Fluoride Removal. Materials, 18(7), 1421. https://doi.org/10.3390/ma18071421