The Topological Phases of One-Dimensional Non-Hermitian Systems with Spin-Orbit Coupling of the Generalized Brillouin Zone
Abstract
:1. Introduction
2. The Non-Hermitian SSH Models
3. Topological Phase Transition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 83, 1959–2007. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Bansil, A.; Lin, H. Tanmoy Das.Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef]
- Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J. Ashvin Vishwanath. Weyl and dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Lieu, S. Topological phases in the non-Hermitian su-Schrieffer-Heeger model. Phys. Rev. B 2018, 97, 045106. [Google Scholar] [CrossRef]
- Yin, C.; Jiang, H.; Li, L.; Lu, R.; Chen, S. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems. Phys. Rev. A 2018, 97, 052115. [Google Scholar] [CrossRef]
- Julia, M.Z.; Mikael, C.R.; Yonatan, P.; Yaakov, L.; Stefan, N.; Mark, S.R.; Mordechai, S.; Alexander, S. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 2015, 115, 040402. [Google Scholar]
- Kohei, K.; Takumi, B.; Masatoshi, S. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett. 2013, 123, 066405. [Google Scholar]
- Xiong, Y. Why does bulk Boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun. 2018, 2, 035043. [Google Scholar] [CrossRef]
- Song, F.; Yao, S.Y.; Wang, Z. Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett. 2019, 123, 170401. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Ronny, T. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 2019, 99, 201103. [Google Scholar] [CrossRef]
- Wu, H.; An, J.H. Floquet topological phases of non-hermitian systems. Phys. Rev. B 2020, 102, 041119. [Google Scholar] [CrossRef]
- Dan, S.B.; Alex, J.K.; Robert, S. Non-Hermitian Boundary modes and topology. Phys. Rev. Lett. 2020, 124, 056802. [Google Scholar]
- Zhang, K.; Yang, Z.S.; Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 2020, 125, 126402. [Google Scholar] [CrossRef]
- Zeng, Q.B.; Yang, Y.B.; Xu, Y. Topological phases in non-Hermitian aubry-Andre-Harper models. Phys. Rev. B 2020, 101, 020201. [Google Scholar] [CrossRef]
- Li, L.H.; Lee, C.H.; Gong, G.B. Geometric characterization of non-Hermitian topological systems through the singularity ring in pseudospin vector space. Phys. Rev. B 2019, 100, 075403. [Google Scholar] [CrossRef]
- Flore, K.K.; Vatsal, D. Non-Hermitian systems and topology: A transfer-matrix perspective. Phys. Rev. B 2019, 99, 245116. [Google Scholar]
- Yang, X.S.; Cao, Y.; Zhai, Y.J. Non-hermitian weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-Boundary correspondence. Chin. Phys. B 2022, 31, 010308. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, X.; Wan, T.; Wang, F.; Zhu, S.; Ruan, Z.; Yang, Z. Photonic Floquet Skin-Topological Effect. Phys. Rev. Lett. 2024, 132, 063804. [Google Scholar] [CrossRef] [PubMed]
- Heiss, W.D. The physics of exceptional points. J. Phys. A Math. Theor. 2012, 45, 444016. [Google Scholar] [CrossRef]
- Igor, Z.; Jaroslav, F.; Sarma, S.D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410. [Google Scholar]
- Sumanta, T.; Jay, D.S. Topological invariants for spin-orbit coupled superconductor nanowires. Phys. Rev. Lett. 2012, 109, 150408. [Google Scholar]
- Aurelien, M.; Koo, H.; Nitta, J.; Frolov, S.; Duine, R. New perspectives for rashba spin-orbit coupling. Nat. Mater. 2015, 14, 871882. [Google Scholar]
- Li, J.R.; Wang, Z.A.; Zhang, L.L. Band structure of the one-dimensional spin-orbit-coupled su-schrieffer-heeger lattice with pt-symmetric onsite imaginary potentials. Ann. Phys. 2023, 448, 169165. [Google Scholar] [CrossRef]
- Han, Y.Z.; Jiang, H.; Chen, S.; Liu, C.S. The nontrivial topological phases of a one-dimensional non-hermitian dimerized lattice with spin-orbit coupling and zeeman field. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 110, 68–73. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y.Z.; Liu, C.S. Topological phases of non-Hermitian SSH model with spin-orbit coupling. Optik 2022, 255, 168727. [Google Scholar] [CrossRef]
- Zhao, C.-H.; Li, J.-R.; Jiang, C.; Dai1, X.-F.; Gong, W.-J. Topological phase transition and bipolar skin effect in the Su-Schrieffer-Heeger chain with nonreciprocal spin-orbital coupling. Phys. Rev. B 2024, 110, 155432. [Google Scholar] [CrossRef]
- Lin, Y.J.; Jiménez-García, K.; Spielman, I.B. Spin–orbit-coupled Bose–Einstein condensates. Nature 2011, 471, 83–86. [Google Scholar] [CrossRef]
- Meier, E.J.; An, F.A.; Dauphin, A.; Maffei, M.; Massignan, P.; Hughes, T.L.; Gadway, B. Observation of the topological Anderson insulator in disordered atomic wires. Science 2018, 362, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Bergholtz, E.J.; Budich, J.C.; Kunst, F.K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 2021, 93, 015005. [Google Scholar] [CrossRef]
- Lee, T.E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 2016, 116, 133903. [Google Scholar] [CrossRef] [PubMed]
- Martinez Alvarez, V.M.; Barrios Vargas, J.E.; Foa Torres, L.E.F. Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B 2018, 97, 121401. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 2018, 121, 086803. [Google Scholar] [CrossRef]
- Yao, S.Y.; Song, F.; Wang, Z. Non-Hermitian chern bands. Phys. Rev. Lett. 2018, 121, 136802. [Google Scholar] [CrossRef]
- Song, F.; Yao, S.Y.; Wang, Z. Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 2019, 123, 246801. [Google Scholar] [CrossRef]
- Kazuki, Y.; Shuichi, M. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 2019, 123, 066404. [Google Scholar]
- Cai, X.M. Localization and topological phase transitions in non-Hermitian aubry-Andre-Harper models with p-wave pairing. Phys. Rev. B 2021, 103, 214202. [Google Scholar] [CrossRef]
- Liu, J.S.; Han, Y.Z.; Liu, C.S. A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect. Chin. Phys. B 2020, 29, 010302. [Google Scholar] [CrossRef]
- Ye, R.; He, Y.; Li, G.; Wang, L.; Wu, X.; Qiao, X.; Zheng, Y.; Jin, L.; Wang, D.W.; Yuan, L.; et al. Observing non-Hermiticity induced chirality breaking in a synthetic Hall ladder. Light Sci. Appl. 2025, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.F.; Yang, Z.S. Non-Hermitian skin modes induced by on-Site dissipations and chiral tunneling effect. Phys. Rev. Lett. 2020, 125, 186802. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.S.; Zhang, K.; Chen, F.; Jiangping, H. Non-hermitian bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Phys. Rev. Lett. 2020, 125, 226402. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xie, J.; Zhou, Y.; An, J. Connections between the open-Boundary spectrum and the generalized brillouin zone in non-Hermitian systems. Phys. Rev. B 2022, 105, 045422. [Google Scholar] [CrossRef]
- Guo, G.-F.; Bao, X.-X.; Tan, L. Non-hermitian bulk-boundary correspondence and singular behaviors of generalized brillouin zone. New J. Phys. 2021, 23, 123007. [Google Scholar] [CrossRef]
- Sharma, M.M.; Sharma, P.; Karn, N.K.; Awana, V.P.S. Comprehensive review on topological superconducting materials and interfaces. Supercond. Sci. Technol. 2022, 35, 083003. [Google Scholar] [CrossRef]
- Karn, N.K.; Sharma, M.M.; Awana, V.P.S. Non-trivial band topology in the superconductor AuSn4: A first principle study. Supercond. Sci. Technol. 2022, 35, 114002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Liu, J.; Chong, S.; Du, J.; Meng, L.; Gao, Y. The Topological Phases of One-Dimensional Non-Hermitian Systems with Spin-Orbit Coupling of the Generalized Brillouin Zone. Materials 2025, 18, 1417. https://doi.org/10.3390/ma18071417
Han Y, Liu J, Chong S, Du J, Meng L, Gao Y. The Topological Phases of One-Dimensional Non-Hermitian Systems with Spin-Orbit Coupling of the Generalized Brillouin Zone. Materials. 2025; 18(7):1417. https://doi.org/10.3390/ma18071417
Chicago/Turabian StyleHan, Yanzhen, Jianxiao Liu, Shiyao Chong, Jingjing Du, Linghui Meng, and Yingjie Gao. 2025. "The Topological Phases of One-Dimensional Non-Hermitian Systems with Spin-Orbit Coupling of the Generalized Brillouin Zone" Materials 18, no. 7: 1417. https://doi.org/10.3390/ma18071417
APA StyleHan, Y., Liu, J., Chong, S., Du, J., Meng, L., & Gao, Y. (2025). The Topological Phases of One-Dimensional Non-Hermitian Systems with Spin-Orbit Coupling of the Generalized Brillouin Zone. Materials, 18(7), 1417. https://doi.org/10.3390/ma18071417