Sodium and Potassium Mixed Effects on the Viscoelastic Behavior of Silicate Glasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Silicate Glass
2.2. Sample Characterization and Testing
3. Results and Discussion
3.1. Viscoelastic Analysis
3.1.1. Thermodynamic Analysis
3.1.2. Creep and Stress Relaxation Analysis
3.2. Structural Origins of Viscoelastic Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shu, C.; Yin, S.; Li, Y.; Mao, Z.; Guo, X.; Huang, S. High-precision molding simulation prediction of glass lens profile for a new lanthanide optical glass. Ceram. Int. 2022, 48, 15800–15810. [Google Scholar] [CrossRef]
- Riande, E.; Diaz-Calleja, R.; Prolongo, M.; Masegosa, R.; Salom, C. Polymer Viscoelasticity: Stress and Strain in Practice; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Jiao, P.; Jia, J.; Fu, Y.; Zhang, L.; Wang, Y.; Wang, J.; Zhou, Y.; Shi, P.; Zhao, R.; Huang, Y. Detection of blemish for fiber-optic imaging elements. Opt. Eng. 2020, 59, 053105. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, S.S.; Li, Z.W. Technological advances in U.S. military low-light night vision head-mounted systems. Infrared 2022, 43, 12–19. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, N.J.; Zhu, S.Q.; Zhang, L.X.; Cai, W. Research progress of extreme ultraviolet detectors. Chin. J. Lasers 2024, 51, 0701008. (In Chinese) [Google Scholar] [CrossRef]
- Du, J. Challenges in molecular dynamics simulations of multicomponent oxide glasses. In Molecular Dynamics Simulations of Disordered Materials; Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S., Eds.; Springer: Cham, Switzerland, 2015; pp. 157–180. [Google Scholar] [CrossRef]
- Ma, X.; Ren, H.; Liu, Y.; Wang, Z.; Liu, H.; Wang, S. Research progress of high-resolution polymer fiber optic faceplates. Proc. SPIE 2024, 13282, 8–13. [Google Scholar] [CrossRef]
- Jiao, P.; Huang, Y.; Wang, Y.; Wang, J.; Fu, Y.; Du, Y.; Zhang, L.; Zhao, Y.; Zhang, X.; Jia, J. Influencing mechanism of fiber deformation on mesh pattern noise in inverting-image fiber-optic arrays. Opt. Fiber Technol. 2023, 76, 103219. [Google Scholar] [CrossRef]
- Ma, X.X.; Ren, H.Y.; Qiao, H.; Wang, Z.Z.; Zhang, B.Q.; Wang, S.Z. Advanced preparation technology and imaging performance of polymer fiber optic faceplates. Acta Opt. Sin. 2024, 44, 2306003. (In Chinese) [Google Scholar] [CrossRef]
- Eisenberg, A.; Takahashi, K. Viscoelasticity of silicate polymers and its structural implications. J. Non-Cryst. Solids 1970, 3, 279–293. [Google Scholar] [CrossRef]
- Kitamura, N. Compression creep and dynamic viscoelastic studies of binary sodium and lithium silicate glasses around deformation temperature. J. Ceram. Soc. Jpn. 2017, 125, 721–727. [Google Scholar] [CrossRef]
- Zhang, Z.; Ispas, S.; Kob, W. Origin of the non-linear elastic behavior of silicate glasses. Acta Mater. 2021, 231, 117855. [Google Scholar] [CrossRef]
- Zheng, Q.; Mauro, J.C. Viscosity of glass-forming systems. J. Am. Ceram. Soc. 2017, 100, 6–25. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, H.; Deng, Y.; Yan, J.; Jiang, Y.; Chen, G.; Zu, Q.; Sun, L. A novel viscosity-temperature model of glass-forming liquids by modifying the Eyring viscosity equation. Appl. Sci. 2020, 10, 428. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Cao, X.W.; Yu, Y.H.; Juodkazis, S.; Chen, Q.D. Holographic laser fabrication of 3D artificial compound μ-eyes. Light Adv. Manuf. 2023, 4, 26. [Google Scholar] [CrossRef]
- Razum, M.; Marijan, S.; Filho, J.C.; Andrade, A.A.; Silva, A.C.A.; Dantas, N.O.; Pisk, J.; Šantić, A.; Pavić, L. Mixed-alkali effect and correlation to glass structure in ionically conductive P2O5-Al2O3-Na2O-K2O glass system. Coatings 2023, 13, 185. [Google Scholar] [CrossRef]
- Kitamura, N.; Suetsugu, T.; Nakano, K.; Higashi, N.; Yamaguro, T. Viscoelastic study of the creep behavior of GeS2-SbS3/2-SnS and GaS3/2-SbS3/2-SnS glasses around their deformation temperatures. J. Non-Cryst. Solids 2019, 517, 44–50. [Google Scholar] [CrossRef]
- Arai, M.; Kato, Y.; Kodera, T. Characterization of the thermo-viscoelastic property of glass and numerical simulation of the press molding of glass lens. J. Therm. Stress. 2009, 32, 1235–1255. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, S.; Liang, R.; Luo, H.; Xiao, H.; Yuan, N. New testing and calculation method for determination of viscoelasticity of optical glass. Opt. Express 2020, 28, 626–638. [Google Scholar] [CrossRef]
- Liu, G.; Fang, F. Determination accuracy enhancement of viscoelastic constitutive model of optical glass. Mater. Des. 2023, 236, 112513. [Google Scholar] [CrossRef]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef]
- Le Losq, C.; Neuville, D.R. Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts. Chem. Geol. 2013, 346, 57–71. [Google Scholar] [CrossRef]
- Habasaki, J.; Okada, I.; Hiwatari, Y. MD study of the mixed alkali effect in a lithium–potassium metasilicate glass. J. Non-Cryst. Solids 1995, 183, 12–21. [Google Scholar] [CrossRef]
- Wilkinson, C.J.; Potter, A.R.; Welch, R.S.; Bragatto, C.; Zheng, Q.; Bauchy, M.; Affatigato, M.; Feller, S.A.; Mauro, J.C. Topological origins of the mixed alkali effect in glass. J. Phys. Chem. B 2019, 123, 7482–7489. [Google Scholar] [CrossRef] [PubMed]
- Onodera, Y.; Takimoto, Y.; Hijiya, H.; Taniguchi, T.; Urata, S.; Inaba, S.; Fujita, S.; Obayashi, I.; Hiraoka, Y.; Kohara, S. Origin of the mixed alkali effect in silicate glass. NPG Asia Mater. 2019, 11, 75. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, S.; Huang, B.; Fang, D.; Liu, K. Accurate and efficient determination of glass thermo-viscoelastic properties using creep compliance master curve construction approach. J. Non-Cryst. Solids 2024, 631, 122930. [Google Scholar] [CrossRef]
- Narayanaswamy, O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971, 54, 491–498. [Google Scholar] [CrossRef]
- McEwan, M.J.; Phillips, L.F. Dissociation energy of NaO2. Trans. Faraday Soc. 1966, 62, 1717–1720. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Henderson, G.S.; Bancroft, G.M.; Ho, R. Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: Implications for spectroscopic studies and for the modified random network model. J. Non-Cryst. Solids 2015, 409, 139–148. [Google Scholar] [CrossRef]
- Schmitz, S.; Beltrán, A.M.; Cresswell, M.; Boccaccini, A.R. A structural comparison of ordered and non-ordered ion doped silicate bioactive glasses. Materials 2020, 13, 992. [Google Scholar] [CrossRef]
- Wang, F.; Dong, H.H.; Guo, M.T.; Shao, C.Y.; Yu, C.L.; Hu, L.L. Optical spectra and structural characteristics of Yb-doped silica glass. J. Chin. Ceram. Soc. 2022, 50, 991–1005. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, X.Z.; Han, T.; Yang, P.H.; Zu, C.K. Research progress of lithium-aluminosilicate glass. Bull. Chin. Ceram. Soc. 2022, 41, 2143–2152+2159. (In Chinese) [Google Scholar] [CrossRef]
- Kumar Yadav, A.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar] [CrossRef]
- Le Losq, C.; Neuville, D.R. Molecular structure, configurational entropy and viscosity of silicate melts: Link through the Adam and Gibbs theory of viscous flow. J. Non-Cryst. Solids 2017, 463, 175–188. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Singh, K. Modification of silicate structural units by K2O for enhancing automobile windshield glass properties. J. Phys. Chem. Solids 2023, 181, 111523. [Google Scholar] [CrossRef]
Wavenumber/cm−1 | Corresponding Structural Group |
---|---|
520 | Symmetric stretching vibration of Si-O in a planar four-membered ring (D1) [30,31,32] |
606 | Symmetric stretching vibration of Si-O in a planar three-membered ring (D2) [30,31,32] |
1050 | Asymmetric Si-O stretching vibrations in any Qn unit [22,33,34,35] |
1100 | Si-O stretching in Q3 units [32,33,34,35] |
1150 | Si-O stretching in Q4 units [33,34,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Huang, Y.; Tao, H.; Jiao, P.; Xiao, Z.; Jia, J. Sodium and Potassium Mixed Effects on the Viscoelastic Behavior of Silicate Glasses. Materials 2025, 18, 1337. https://doi.org/10.3390/ma18061337
Wu F, Huang Y, Tao H, Jiao P, Xiao Z, Jia J. Sodium and Potassium Mixed Effects on the Viscoelastic Behavior of Silicate Glasses. Materials. 2025; 18(6):1337. https://doi.org/10.3390/ma18061337
Chicago/Turabian StyleWu, Fucheng, Yonggang Huang, Haizheng Tao, Peng Jiao, Ziyang Xiao, and Jinsheng Jia. 2025. "Sodium and Potassium Mixed Effects on the Viscoelastic Behavior of Silicate Glasses" Materials 18, no. 6: 1337. https://doi.org/10.3390/ma18061337
APA StyleWu, F., Huang, Y., Tao, H., Jiao, P., Xiao, Z., & Jia, J. (2025). Sodium and Potassium Mixed Effects on the Viscoelastic Behavior of Silicate Glasses. Materials, 18(6), 1337. https://doi.org/10.3390/ma18061337