Role of Composition and Temperature in Shaping the Structural and Optical Properties of Iodide-Based Hybrid Perovskite Thin Films Produced by PVco-D Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Physical Vapor Deposition
2.2.2. Atomic Force Microscopy
- h—height relative to the ground at which the topography of the layer is analyzed;
- NB—material points;
- NW—empty points (air);
- NBounded—limited pixels;
- nB—number of isolated areas at height h;
- nW—number of isolated islands at height h.
2.2.3. Spectroscopic Measurements
3. Results and Discussion
3.1. Surface Topography Characterization
3.2. Spectroscopy Characterization
3.2.1. UV-Vis-NIR Spectroscopy
3.2.2. Photoluminescence Spectroscopy
4. Conclusions
- The composition of the perovskite thin film has a significant impact on the structural and optical properties.
- The increase in the MEAI content in the CH3NH3PbI3 perovskite structure is associated with more extensive and taller crystallites forming a thin layer and with higher roughness. The roughness of the perovskite layer increases by more than 60% with an increase in MEAI content from 30% to 70%.
- The highest absorption of electromagnetic radiation in the wavelength range of 400–800 nm is demonstrated by the composition of 50% MEAI + 50% PbI2.
- Measurements of UV-Vis-NIR spectra as a function of the temperature showed phase transitions occurring at temperatures of ~140 K and 310 K for the 30% MEAI + 70% PbI2 perovskite and in the temperature range of 120–150 K for the 50% MEAI + 50% PbI2 perovskite.
- The PL spectrum measurements as a function of the temperature indicate phase transitions in the temperature range of 140 K–160 K and at RT for the perovskite with the composition of 30% MEAI + 70% PbI2, at 140 K for 50% MEAI + 50% PbI2 and 70% MEAI + 30% PbI2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, G. Beschreibung Einiger Neuen Mineralien Des Urals. Ann. Phys. 1839, 124, 551–573. [Google Scholar] [CrossRef]
- BCC Research Editorial. Available online: https://blog.bccresearch.com/a-history-of-perovskite-solar-cells (accessed on 24 February 2025).
- Weber, D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Z. Naturforsch. B 1978, 33, 1443–1445. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, Y.; Ding, L.; Zhang, H.; Li, Q.; Jia, L.; Qin, Y.; Gu, Q.; Zhang, F.; Li, Q.; et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 2024, 635, 596–603. [Google Scholar] [CrossRef]
- Mirershadi, S.; Ahmadi-Kandjani, S.; Zawadzka, A.; Rouhbakhsh, H.; Sahraoui, B. Third order nonlinear optical properties of organometal halide perovskite by means of the Z-scan technique. Chem. Phys. Lett. 2016, 647, 7–13. [Google Scholar] [CrossRef]
- Marjanowska, A.; El Karout, H.; Guichaoua, D.; Sahraoui, B.; Płóciennik, P.; Zawadzka, A. Topography and Nonlinear Optical Properties of Thin Films Containing Iodide-Based Hybrid Perovskites. Nanomaterials 2024, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Waszkowska, K.; Guichaoua, D.; Jędryka, J.; Syvorotka, I.; Syvorotka, N.Y.; Kityk, A.V.; Sahraoui, B. Second- and Third-Order Nonlinear Optical Response of Perovskite LiTaO3. In Proceedings of the 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Jiang, N.; Chu, H.; Pan, Z.; Pan, H.; Zhao, S.; Li, D. Nonlinear optical properties of lead halide perovskite CsPbBr3 for ultrafast pulse generation. Opt. Express 2024, 32, 46428–46438. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, H.; Zhang, Y.; Kitipornchai, S.; Yang, J. Nonlinear dynamic analysis of opto-electro-thermo-elastic perovskite plates. Nonlinear Dyn. 2024, 112, 6159–6180. [Google Scholar] [CrossRef]
- Laouid, A.; Belghiti, A.A.; Wisniewski, K.; Abouais, A.; Tlemçani, M.; Płóciennik, P.; Hajjaji, A.; Zawadzka, A. Enhancing the efficiency and stability of Non_Toxic RbSn0.5Ge0.5I3_Based perovskite solar cells through optimization. Mater. Sci. Eng. B 2024, 310, 117672. [Google Scholar] [CrossRef]
- Zawadzka, A.; Marjanowska, A.; Laouid, A.; Wisniewski, K.; El Kouari, Y.; El Hani, Y.; Płóciennik, P. Low-temperature influence on the properties and efficiency of thin-film perovskite solar cells fabricated by the PVco-D technique. Sol. Energy Mater. Sol. Cells 2024, 274, 112993. [Google Scholar] [CrossRef]
- Han, J.; Park, K.; Tan, S.; Vaynzof, Y.; Xue, J.; Diau, E.W.G.; Bwendi, M.G.; Lee, J.W.; Jeon, I. Perovskite solar cells. Nat. Rev. Methods Primers 2025, 5, 3. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Lee, M.; Kim, Y.; Kim, D.; Yun, J.S.; Min, H. Advancements in perovskite solar cell concentrators and future prospects. J. Mater. Chem. A 2025. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, C.; Li, M. 9-Halide perovskite micro and nano lasers. In Photonic Materials and Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 219–255. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Q.; Su, R.; Do, T.T.H.; Xiong, Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Lett. 2021, 21, 1903–1914. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Gangishetty, M.K.; Abdi-Jalebi, M.; Chin, S.H.; Yusoff, A.R.; Congreve, D.N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H.J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Chen, J.; Wang, F.; Han, R.; Zhang, C.; Kong, J.; Li, L.; Yang, J. A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials 2022, 12, 4390. [Google Scholar] [CrossRef]
- Li, K.; Wang, X.; Li, X.; Wu, F.; Zhang, F.; Wei, Q.; Yue, Z.; Luo, J.; Liu, X. Nonlinear Optical Switching in a Tin-Based Multilayered Halide Perovskite Activated by Stereoactive Lone Pairs and Confined Rotators. Inorg. Chem. 2024, 63, 2275–2281. [Google Scholar] [CrossRef]
- Hua, X.N.; Zhang, W.Y.; Shi, P.P. Two-step nonlinear optical switch in a hydrogen-bonded perovskite-type crystal. Chem. Commun. 2022, 58, 1712–1715. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Hu, S.; Wang, Z.; Du, B.; Peng, Y.; Yang, J.; Shi, Y.; Chen, D.; Chen, X.; et al. A pixelated liquid perovskite array for high-sensitivity and high-resolution X-ray imaging scintillation screens. Nanoscale 2023, 15, 15635–15642. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, C.; Zhang, X.; Wang, K.; Fu, J.; Guo, J.; Wang, S.; Zhao, Q.; Ma, W.; Yuan, J. Controllable Colloidal Synthesis of MAPbI3 Perovskite Nanocrystals for Dual-Mode Optoelectronic Applications. Nano Lett. 2023, 23, 9143–9150. [Google Scholar] [CrossRef]
- Jassim, S.M.; Bakr, N.A.; Mustafa, F.I. Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell. J. Mater. Sci. Mater. Electron. 2020, 31, 16199–16207. [Google Scholar] [CrossRef]
- Hong, S.; Lee, S.H.; Lee, H.H.; Jeon, T.Y.; Kim, H.J. Efficient application of intermediate phase for highly-oriented MAPbI3 perovskite solar cells in ambient air. Solar Energy 2021, 228, 200–205. [Google Scholar] [CrossRef]
- Li, Z.G.; Zacharias, M.; Zhang, Y.; Wei, F.; Qin, Y.; Yang, Y.Q.; An, L.C.; Gao, F.F.; Li, W.; Even, J.; et al. Origin of Phase Transitions in Inorganic Lead Halide Perovskites: Interplay between Harmonic and Anharmonic Vibrations. ACS Energy Lett. 2023, 8, 3016–3024. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Ren, Z.; Wang, S.; Liu, H.; Wang, P.; Huang, Z.; Li, R.; Chen, R. Recent advances toward intraoctahedral phase change in metal halide perovskite nanomaterials. iScience 2024, 27, 110794. [Google Scholar] [CrossRef]
- Brittman, S.; Adhyaksa, G.W.P.; Garnett, E.C. The expanding world of hybrid perovskites: Materials properties and emerging applications. MRS Commun. 2015, 5, 7–26. [Google Scholar] [CrossRef]
- Anoua, R.; Lifi, H.; Touhtouh, S.; El Jouad, M.; Hajjaji, A.; Bakasse, M.; Płociennik, P.; Zawadzka, A. Optical and morphological properties of Curcuma longa dye for dye-sensitized solar cells. Environ. Sci. Pollut. Res. 2021, 28, 57860–57871. [Google Scholar] [CrossRef]
- Krbaťa, M.; Eckert, M.; Križan, D.; Barényi, I.; Mikušová, I. Hot Deformation Process Analysis and Modelling of X153CrMoV12 Steel. Metals 2019, 9, 1125. [Google Scholar] [CrossRef]
- Korpi, A.G.; ţălu, Ş.; Bramowicz, M.; Arman, A.; Kulesza, S.; Pszczolkowski, B.; Jurecka, S.; Mardani, M.; Luna, C.; Balashabadi, P.; et al. Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Mater. Res. Express 2019, 6, 086463. [Google Scholar] [CrossRef]
- Hidalgo, J.; Castro-Mendez, A.F.; Correa-Baena, J.P. Imaging and Mapping Characterization Tools for Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1900444. [Google Scholar] [CrossRef]
- Green, M.A.; Jiang, Y.; Soufiani, A.M.; Ho-Baillie, A. Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites. Phys. Chem. Lett. 2015, 6, 4774–4785. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, J.; Park, N. First-principles identification of the charge-shifting mechanism and ferroelectricity in hybrid halide perovskites. Sci. Rep. 2020, 10, 19635. [Google Scholar] [CrossRef]
- Kong, W.; Ye, Z.; Qi, Z.; Zhang, B.; Wang, M.; Rahimi-Iman, A.; Wu, H. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 2015, 17, 16405. [Google Scholar] [CrossRef]
- Keshavarz, M.; Ottesen, M.; Wiedmann, S.; Wharmby, M.; Kuchler, R.; Yuan, H.; Debroye, E.; Steele, J.A.; Martens, J.; Hussey, N.E.; et al. Tracking Structural Phase Transitions in Lead-Halide Perovskites by Means of Thermal Expansion. Adv. Mater. 2019, 31, 1900521. [Google Scholar] [CrossRef]
Material | Average Crystallite Height [nm] | Mean Square Roughness [nm] |
---|---|---|
30% MEAI + 70% PbI2 | 18 | 4 |
50% MEAI + 50% PbI2 | 77 | 26 |
70% MEAI + 30% PbI2 | 109 | 20 |
MEAI | 299 | 109 |
PbI2 | 34 | 16 |
Material | Phase Transition | Based on UV-Vis-NIR (T) | Based on PL (T) |
---|---|---|---|
30% MEAI + 70% PbI2 | From orthorhombic to tetragonal | ~140 K | 140–160 K |
From tetragonal to cubic | 310 K | ~RT | |
50% MEAI + 50% PbI2 | From orthorhombic to tetragonal | 120–150 K | 140 K |
70% MEAI + 30% PbI2 | From orthorhombic to tetragonal | Not found | 140 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjanowska, A.; Wiśniewski, K.; Płóciennik, P.; Sahraoui, B.; Zawadzka, A. Role of Composition and Temperature in Shaping the Structural and Optical Properties of Iodide-Based Hybrid Perovskite Thin Films Produced by PVco-D Technique. Materials 2025, 18, 1336. https://doi.org/10.3390/ma18061336
Marjanowska A, Wiśniewski K, Płóciennik P, Sahraoui B, Zawadzka A. Role of Composition and Temperature in Shaping the Structural and Optical Properties of Iodide-Based Hybrid Perovskite Thin Films Produced by PVco-D Technique. Materials. 2025; 18(6):1336. https://doi.org/10.3390/ma18061336
Chicago/Turabian StyleMarjanowska, Agnieszka, Krzysztof Wiśniewski, Przemysław Płóciennik, Bouchta Sahraoui, and Anna Zawadzka. 2025. "Role of Composition and Temperature in Shaping the Structural and Optical Properties of Iodide-Based Hybrid Perovskite Thin Films Produced by PVco-D Technique" Materials 18, no. 6: 1336. https://doi.org/10.3390/ma18061336
APA StyleMarjanowska, A., Wiśniewski, K., Płóciennik, P., Sahraoui, B., & Zawadzka, A. (2025). Role of Composition and Temperature in Shaping the Structural and Optical Properties of Iodide-Based Hybrid Perovskite Thin Films Produced by PVco-D Technique. Materials, 18(6), 1336. https://doi.org/10.3390/ma18061336