One-Pot Synthesis of Pd@Pt Core-Shell Icosahedron for Efficient Oxygen Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
Preparation of Pd@Pt Core-Shell Icosahedron
2.3. Characterization
2.4. Electrochemical Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, L.J.; Ott, S.; Dionigi, F.; Strasser, P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr. Opin. Electrochem. 2019, 18, 61–71. [Google Scholar] [CrossRef]
- Riemer, M.; Duval-Dachary, S.; Bachmann, T.M. Environmental implications of reducing the platinum group metal loading in fuel cells and electrolysers: Anion exchange membrane versus proton exchange membrane cells. Sustain. Energy Technol. Assess. 2023, 56, 10. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, Z.; Yang, W.J.; Liu, S.J.; Zhang, X.; Yu, Y.; Cheong, W.C.; Zheng, L.R.; Ren, F.Q.; Ying, G.B.; et al. MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093. [Google Scholar] [CrossRef]
- Fan, L.H.; Deng, H.; Zhang, Y.G.; Du, Q.; Leung, D.Y.C.; Wang, Y.; Jiao, K. Towards ultralow platinum loading proton exchange membrane fuel cells. Energy Environ. Sci. 2023, 16, 1466–1479. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, Q.; Xu, G.L.; Qin, X.P.; Hwang, I.H.; Sun, C.J.; Liu, M.; Hua, W.; Wu, H.W.; Zhu, S.Q.; et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512. [Google Scholar] [CrossRef]
- Ma, Z.; Cano, Z.P.; Yu, A.P.; Chen, Z.W.; Jiang, G.P.; Fu, X.G.; Yang, L.; Wu, T.N.; Bai, Z.Y.; Lu, J. Enhancing Oxygen Reduction Activity of Pt-based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angew. Chem. Int. Edit. 2020, 59, 18334–18348. [Google Scholar] [CrossRef]
- Zhang, H.G.; Hwang, S.; Wang, M.Y.; Feng, Z.X.; Karakalos, S.; Luo, L.L.; Qiao, Z.; Xie, X.H.; Wang, C.M.; Su, D.; et al. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar] [CrossRef]
- Han, B.H.; Carlton, C.E.; Kongkanand, A.; Kukreja, R.S.; Theobald, B.R.; Gan, L.; O’Malley, R.; Strasser, P.; Wagner, F.T.; Shao-Horn, Y. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 2015, 8, 258–266. [Google Scholar] [CrossRef]
- Jung, J.I.; Risch, M.; Park, S.; Kim, M.G.; Nam, G.; Jeong, H.Y.; Shao-Horn, Y.; Cho, J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 176–183. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, S.; Fang, Z.C.; Ding, J.; Sang, W.; Wang, Y.C.; Zhao, J.; Peng, Z.M.; Zeng, J. Octahedral Pd@Pt1.8Ni Core-Shell Nanocrystals with Ultrathin PtNi Alloy Shells as Active Catalysts for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 2804–2807. [Google Scholar] [CrossRef]
- Yang, Z.X.; Li, Y.; Wang, X.T.; Li, J.M.; Wang, J.Q.; Zhang, G.K. Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants. J. Environ. Sci. 2024, 142, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H.J.; Topalov, A.A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K.J.J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67. [Google Scholar] [CrossRef] [PubMed]
- Araya, S.S.; Zhou, F.; Liso, V.; Sahlin, S.L.; Vang, J.R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kaer, S.K. A comprehensive review of PBI-based high temperature PEM fuel cells. Int. J. Hydrog. Energy 2016, 41, 21310–21344. [Google Scholar] [CrossRef]
- Eom, K.; Kim, G.; Cho, E.; Jang, J.H.; Kim, H.J.; Yoo, S.J.; Kim, S.K.; Hong, B.K. Effects of Pt loading in the anode on the durability of a membrane-electrode assembly for polymer electrolyte membrane fuel cells during startup/shutdown cycling. Int. J. Hydrog. Energy 2012, 37, 18455–18462. [Google Scholar] [CrossRef]
- Qiao, Z.; Wang, C.Y.; Li, C.Z.; Zeng, Y.C.; Hwang, S.; Li, B.Y.; Karakalos, S.; Park, J.; Kropf, A.J.; Wegener, E.C.; et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: Performance and durability improvements. Energy Environ. Sci. 2021, 14, 4948–4960. [Google Scholar] [CrossRef]
- Lao, M.M.; Rui, K.; Zhao, G.Q.; Cui, P.X.; Zheng, X.S.; Dou, S.X.; Sun, W.P. Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angew. Chem. Int. Edit. 2019, 58, 5432–5437. [Google Scholar] [CrossRef] [PubMed]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Yu, J.W.; Yoon, J.B.; Qiu, X.P.; Yang, H.S. Direct Observation of the Dzyaloshinskii-Moriya Interaction in a Pt/Co/Ni Film. Phys. Rev. Lett. 2015, 114, 5. [Google Scholar] [CrossRef]
- Fang, X.Z.; Shang, Q.C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.F.; Zhang, Q.; Luo, Y.; Jiang, H.L. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis. Adv. Mater. 2018, 30, 7. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ji, S.F.; Sun, W.M.; Chen, W.X.; Dong, J.C.; Wen, J.F.; Zhang, J.; Li, Z.; Zheng, L.R.; Chen, C.; et al. Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410. [Google Scholar] [CrossRef]
- Jeong, H.; Kwon, O.; Kim, B.S.; Bae, J.; Shin, S.; Kim, H.E.; Kim, J.; Lee, H.J. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368–375. [Google Scholar] [CrossRef]
- Sun, Q.; Li, X.H.; Wang, K.X.; Ye, T.N.; Chen, J.S. Inorganic non-carbon supported Pt catalysts and synergetic effects for oxygen reduction reaction. Energy Environ. Sci. 2023, 16, 1838–1869. [Google Scholar] [CrossRef]
- Peng, R.S.; Li, S.J.; Sun, X.B.; Ren, Q.M.; Chen, L.M.; Fu, M.L.; Wu, J.L.; Ye, D.Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B Environ. 2018, 220, 462–470. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.X.; Allard, L.F.; Lee, S.; Liu, J.L.; Li, H.; Wang, J.Q.; Wang, J.; Oh, S.; Li, W.; et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 12. [Google Scholar] [CrossRef]
- Li, Z.S.; Li, Y.Y.; He, C.Y.; Shen, P.K. Bimetallic PtAg alloyed nanoparticles and 3-D mesoporous graphene nanosheet hybrid architectures for advanced oxygen reduction reaction electrocatalysts. J. Mater. Chem. A 2017, 5, 23158–23169. [Google Scholar] [CrossRef]
- Xie, M.H.; Shen, M.; Chen, R.H.; Xia, Y.A. Development of Highly-Active Catalysts toward Oxygen Reduction by Controlling the Shape and Composition of Pt-Ni Nanocrystals. ACS Appl. Mater. Interfaces 2023, 15, 49146–49153. [Google Scholar] [CrossRef]
- Hong, J.W.; Kang, S.W.; Choi, B.S.; Kim, D.; Lee, S.B.; Han, S.W. Controlled Synthesis of Pd-Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction. ACS Nano 2012, 6, 2410–2419. [Google Scholar] [CrossRef]
- Zhao, X.R.; Sasaki, K. Advanced Pt-Based Core-Shell Electrocatalysts for Fuel Cell Cathodes. Accounts Chem. Res. 2022, 55, 1226–1236. [Google Scholar] [CrossRef]
- Bu, L.Z.; Zhang, N.; Guo, S.J.; Zhang, X.; Li, J.; Yao, J.L.; Wu, T.; Lu, G.; Ma, J.Y.; Su, D.; et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414. [Google Scholar] [CrossRef]
- Wang, X.; Vara, M.; Luo, M.; Huang, H.W.; Ruditskiy, A.; Park, J.; Bao, S.X.; Liu, J.Y.; Howe, J.; Chi, M.F.; et al. Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability. J. Am. Chem. Soc. 2015, 137, 15036–15042. [Google Scholar] [CrossRef]
- Tao, L.; Wang, K.; Lv, F.; Mi, H.T.; Lin, F.X.; Luo, H.; Guo, H.Y.; Zhang, Q.H.; Gu, L.; Luo, M.C.; et al. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis. Nat. Commun. 2023, 14, 9. [Google Scholar] [CrossRef]
- Guo, Y.; Hou, B.; Cui, X.Z.; Liu, X.C.; Tong, X.L.; Yang, N.J. Pt Atomic Layers Boosted Hydrogen Evolution Reaction in Nonacidic Media. Adv. Energy Mater. 2022, 12, 11. [Google Scholar] [CrossRef]
- Weber, P.; Weber, D.J.; Dosche, C.; Oezaslan, M. Highly Durable Pt-Based Core-Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction. ACS Catal. 2022, 12, 6394–6408. [Google Scholar] [CrossRef]
- Ji, S.D.; Zhang, C.; Guo, R.Y.; Jiang, Y.J.; He, T.N.; Zhan, Q.; Li, R.; Zheng, Y.Z.; Li, Y.N.; Dai, S.; et al. Effect of Interfacial Interaction on Electrocatalytic Activity and Durability of Pt-Based Core-Shell Nanocatalysts. ACS Catal. 2024, 14, 11721–11732. [Google Scholar] [CrossRef]
- Wang, X.; Choi, S.I.; Roling, L.T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.F.; Liu, J.Y.; Xie, Z.X.; Herron, J.A.; et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 8. [Google Scholar] [CrossRef]
- Choi, S.I.; Shao, M.H.; Lu, N.; Ruditskiy, A.; Peng, H.C.; Park, J.; Guerrero, S.; Wang, J.G.; Kim, M.J.; Xia, Y.N. Synthesis and Characterization of Pd@Pt-Ni Core-Shell Octahedra with High Activity toward Oxygen Reduction. ACS Nano 2014, 8, 10363–10371. [Google Scholar] [CrossRef]
- Luo, L.X.; Fu, C.H.; Wu, A.M.; Zhuang, Z.C.; Zhu, F.J.; Jiang, F.L.; Shen, S.Y.; Cai, X.Y.; Kang, Q.; Zheng, Z.F.; et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900. [Google Scholar] [CrossRef]
- Jin, H.; Xu, Z.W.; Hu, Z.Y.; Yin, Z.W.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.H.; Dong, S.H.; Liu, J.F.; et al. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 2023, 14, 10. [Google Scholar] [CrossRef]
- Luo, L.X.; Fu, C.H.; Shen, S.Y.; Zhu, F.J.; Zhang, J.L. Probing structure-designed Cu-Pd nanospheres and their Pt-monolayer-shell derivatives as high-performance electrocatalysts for alkaline and acidic oxygen reduction reactions. J. Mater. Chem. A 2020, 8, 22389–22400. [Google Scholar] [CrossRef]
- Luo, L.X.; Zhu, F.J.; Tian, R.X.; Li, L.; Shen, S.Y.; Yan, X.H.; Zhang, J.L. Composition-Graded PdxNi1-x Nanospheres with Pt Monolayer Shells as High-Performance Electrocatalysts for Oxygen Reduction Reaction. ACS Catal. 2017, 7, 5420–5430. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Figueras-Valls, M.; Shi, Y.F.; Ding, Y.; Mavrikakis, M.; Xia, Y.A. Fast and Non-equilibrium Uptake of Hydrogen by Pd Icosahedral Nanocrystals. Angew. Chem. Int. Edit. 2023, 62, 10. [Google Scholar] [CrossRef]
- Broge, N.L.N.; Sondergaard-Pedersen, F.; Sommer, S.; Iversen, B.B. Formation Mechanism of Epitaxial Palladium-Platinum Core-Shell Nanocatalysts in a One-Step Supercritical Synthesis. Adv. Funct. Mater. 2019, 29, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, H.C.; Liu, J.Y.; Huang, C.Z.; Xia, Y.N. Use of Reduction Rate as a Quantitative Knob for Controlling the Twin Structure and Shape of Palladium Nanocrystals. Nano Lett. 2015, 15, 1445–1450. [Google Scholar] [CrossRef]
- Huang, H.W.; Wang, Y.; Ruditskiy, A.; Peng, H.C.; Zhao, X.; Zhang, L.; Liu, J.Y.; Ye, Z.Z.; Xia, Y.N. Polyol Syntheses of Palladium Decahedra and Icosahedra as Pure Samples by Maneuvering the Reaction Kinetics with Additives. ACS Nano 2014, 8, 7041–7050. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.B.; Qi, L.; You, H.J.; Gross, A.; Li, J.; Yang, H. Icosahedral Platinum Alloy Nanocrystals with Enhanced Electrocatalytic Activities. J. Am. Chem. Soc. 2012, 134, 11880–11883. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.K.; Zhou, S.Y.; Figueras-Valls, M.; Ding, Y.; Lyu, Z.; Mavrikakis, M.; Xia, Y.A. Compressively Strained and Interconnected Platinum Cones with Greatly Enhanced Activity and Durability toward Oxygen Reduction. Adv. Funct. Mater. 2024, 34, 8. [Google Scholar] [CrossRef]
- Li, Z.S.; Li, B.L.; Yu, C.L.; Wang, H.Q.; Li, Q.Y. Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. Adv. Sci. 2023, 10, 53. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, Y.R.; Chen, S.; Zheng, Y.; Fu, X.G.; Zhang, Y.; Wang, W.L. Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction. Front. Energy 2024, 18, 241–262. [Google Scholar] [CrossRef]
- Liu, G.G.; Zhou, W.; Ji, Y.R.; Chen, B.; Fu, G.T.; Yun, Q.B.; Chen, S.M.; Lin, Y.X.; Yin, P.F.; Cui, X.Y.; et al. Hydrogen-Intercalation-Induced Lattice Expansion of Pd@Pt Core-Shell Nanoparticles for Highly Efficient Electrocatalytic Alcohol Oxidation. J. Am. Chem. Soc. 2021, 143, 11262–11270. [Google Scholar] [CrossRef]
- Chen, J.B.; Ying, J.; Xiao, Y.X.; Dong, Y.; Ozoemena, K.I.; Lenaerts, S.; Yang, X.Y. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Sci. China Mater. 2022, 65, 2685–2693. [Google Scholar] [CrossRef]
- Chen, J.B.; Ying, J.; Tian, Y.; Xiao, Y.X.; Yang, X.Y. Electrocatalysis under Magnetic Fields. Adv. Funct. Mater. 2025, 35, 19. [Google Scholar] [CrossRef]
- Chen, J.B.; Ying, J.; Xiao, Y.X.; Tian, G.; Dong, Y.; Shen, L.; de Torresi, S.I.C.; Symes, M.D.; Janiak, C.; Yang, X.Y. Directed Mass and Electron Transfer Promoted by Hierarchical Porous Co-P-O Leads to Enhancement of the Overall Water Splitting Efficiency. ACS Catal. 2023, 13, 14802–14812. [Google Scholar] [CrossRef]
- Liu, M.K.; Lyu, Z.H.; Zhang, Y.; Chen, R.H.; Xie, M.H.; Xia, Y.N. Twin-Directed Deposition of Pt on Pd Icosahedral Nanocrystals for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. Nano Lett. 2021, 21, 2248–2254. [Google Scholar] [CrossRef]
- Wu, R.F.; Tsiakaras, P.; Shen, P.K. Facile synthesis of bimetallic Pt-Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. Appl. Catal. B-Environ. 2019, 251, 49–56. [Google Scholar] [CrossRef]
- Lee, S.R.; Park, J.; Gilroy, K.D.; Yang, X.; Figueroa-Cosme, L.; Ding, Y.; Xia, Y.N. Palladium@Platinum Concave Nanocubes with Enhanced Catalytic Activity toward Oxygen Reduction. ChemCatChem. 2016, 8, 3082–3088. [Google Scholar] [CrossRef]
- Li, H.H.; Ma, S.Y.; Fu, Q.Q.; Liu, X.J.; Wu, L.; Yu, S.H. Scalable Bromide-Triggered Synthesis of Pd@Pt Core-Shell Ultrathin Nanowires with Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 7862–7868. [Google Scholar] [CrossRef]
- Choi, R.; Choi, S.I.; Choi, C.H.; Nam, K.M.; Woo, S.I.; Park, J.T.; Han, S.W. Designed Synthesis of Well-Defined Pd@Pt Core-Shell Nanoparticles with Controlled Shell Thickness as Efficient Oxygen Reduction Electrocatalysts. Chem.-Eur. J. 2013, 19, 8190–8198. [Google Scholar] [CrossRef]
- Ma, Y.X.; Yin, L.S.; Cao, G.J.; Huang, Q.L.; He, M.S.; Wei, W.X.; Zhao, H.; Zhang, D.G.; Wang, M.Y.; Yang, T. Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites. Small 2018, 14, 10. [Google Scholar] [CrossRef]
- Cho, K.Y.; Yeom, Y.S.; Seo, H.Y.; Lee, A.S.; Do, X.H.; Hong, J.P.; Jeong, H.K.; Baek, K.Y.; Yoon, H.G. Fine-sized Pt nanoparticles dispersed on PdPt bimetallic nanocrystals with non-covalently functionalized graphene toward synergistic effects on the oxygen reduction reaction. Electrochim. Acta. 2017, 257, 412–422. [Google Scholar] [CrossRef]
- Wang, X.; Park, J.; Zhang, L.; Xia, Y.N. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. Abstr. Pap. Am. Chem. Soc. 2015, 250, 1. [Google Scholar]
- Xiong, X.L.; Chen, W.H.; Wang, W.; Li, J.; Chen, S.L. Pt-Pd nanodendrites as oxygen reduction catalyst in polymer-electrolyte-membrane fuel cell. Int. J. Hydrog. Energy 2017, 42, 25234–25243. [Google Scholar] [CrossRef]
- He, D.S.; He, D.P.; Wang, J.; Lin, Y.; Yin, P.Q.; Hong, X.; Wu, Y.; Li, Y.D. Ultrathin Icosahedral Pt-Enriched Nanocage with Excellent Oxygen Reduction Reaction Activity. J. Am. Chem. Soc. 2016, 138, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, J.W.; Zhu, G.L.; Han, H.Y. Pd@Pt Core-Shell Nanodots Arrays for Efficient Electrocatalytic Oxygen Reduction. ACS Appl. Nano Mater. 2019, 2, 3695–3700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Zhao, D.; Wang, X.; Jiao, Y.; Liu, M.; Liu, C.; Zhang, Q.; Ren, S.; Liu, Y. One-Pot Synthesis of Pd@Pt Core-Shell Icosahedron for Efficient Oxygen Reduction. Materials 2025, 18, 1279. https://doi.org/10.3390/ma18061279
Tang Z, Zhao D, Wang X, Jiao Y, Liu M, Liu C, Zhang Q, Ren S, Liu Y. One-Pot Synthesis of Pd@Pt Core-Shell Icosahedron for Efficient Oxygen Reduction. Materials. 2025; 18(6):1279. https://doi.org/10.3390/ma18061279
Chicago/Turabian StyleTang, Zisheng, Dafu Zhao, Xiaoqian Wang, Yanhui Jiao, Manrui Liu, Chengqi Liu, Qi Zhang, Shujing Ren, and Yong Liu. 2025. "One-Pot Synthesis of Pd@Pt Core-Shell Icosahedron for Efficient Oxygen Reduction" Materials 18, no. 6: 1279. https://doi.org/10.3390/ma18061279
APA StyleTang, Z., Zhao, D., Wang, X., Jiao, Y., Liu, M., Liu, C., Zhang, Q., Ren, S., & Liu, Y. (2025). One-Pot Synthesis of Pd@Pt Core-Shell Icosahedron for Efficient Oxygen Reduction. Materials, 18(6), 1279. https://doi.org/10.3390/ma18061279