Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CeO2 Nanoparticles
2.2. Characterization of CeO2 Nanoparticles
2.3. Preparation of GelMA/PEGDA-CeO2 Hydrogel Inks
2.4. Photopolymerization Behaviors of GelMA/PEGDA-CeO2 Hydrogel Inks
2.5. Vat Photopolymerization of GelMA/PEGDA-CeO2 Hydrogel Scaffolds
2.6. Microstructure and Mechanical Properties of GelMA/PEGDA-CeO2 Hydrogel Scaffolds
2.7. Biological Properties of GelMA/PEGDA-CeO2 Hydrogel Scaffolds
2.8. Statistical Analysis
3. Results
3.1. Characteristics of CeO2 Nanoparticles
3.2. Photopolymerization Behavior of GelMA/PEGDA-CeO2 Hydrogel Inks
3.3. Microstructures of GelMA/PEGDA-CeO2 Hydrogel Scaffolds
3.4. Mechanical Properties of GelMA/PEGDA-CeO2 Hydrogels
3.5. Swelling and Biodegradation Behaviors of GelMA/PEGDA-CeO2 Hydrogel Scaffolds
3.6. Antimicrobial Efficacy of GelMA/PEGDA-CeO2 Hydrogel Scaffolds
3.7. VP of Macroporous GelMA/PEGDA-CeO2 Hydrogel Scaffolds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 3, 316–342. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Alexander, A.; Shukla, R.; Jain, S.; Bisht, A.; Kumari, K.; Verma, K.; Sharma, S. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review. Int. J. Biol. Macromol. 2024, 271, 132280. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, B.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef] [PubMed]
- Bupphathong, S.; Quiroz, C.; Huang, W.; Chung, P.F.; Tao, H.Y.; Lin, C.H. Gelatin methacrylate hydrogel for tissue engineering applications—A review on material modifications. Pharmaceuticals 2022, 15, 171. [Google Scholar] [CrossRef]
- Moore, E.; West, J. Bioactive poly (ethylene glycol) acrylate hydrogels for regenerative engineering. Regenerat. Eng. Transl. Med. 2019, 5, 167–179. [Google Scholar] [CrossRef]
- O’Connell, C.D.; Zhang, B.; Onofrillo, C.; Duchi, S.; Blanchard, R.; Quigley, A.; Bourke, J.; Gambhir, S.; Kapsa, R.; Di Bella, C.; et al. Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter 2018, 14, 2142–2151. [Google Scholar] [CrossRef]
- Best, J.P.; Cui, J.; Müllner, M.; Caruso, F. Tuning the mechanical properties of nanoporous hydrogel particles via polymer cross-linking. Langmuir 2013, 29, 9824–9831. [Google Scholar] [CrossRef]
- Karmmerer, E.; Melchels, F.P.W.; Holzapfel, B.M.; Meckel, T.; Hutmacher, D.W.; Loessner, D. Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system. Acta Biomater. 2014, 10, 2551–2562. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Li, M.; Song, P.; Lei, H.; Gui, X.; Zhou, C.; Liu, L. Biomimetic methacrylated gelatin hydrogel loaded with bone marrow mesenchymal stem cells for bone tissue regeneration. Front. Bioeng. Biotechnol. 2021, 9, 770049. [Google Scholar] [CrossRef]
- Khalili, M.H.; Zhang, R.; Wilson, S.; Goel, S.; Impey, S.A.; Aria, A.I. Additive manufacturing and physicomechanical characteristics of PEGDA hydrogels: Recent advances and perspective for tissue engineering. Polymers 2023, 15, 2341. [Google Scholar] [CrossRef]
- Hamedi, E.; Vahedi, N.; Sigaroodi, F.; Parandakh, A.; Hosseinzadeh, S.; Zeinali, F.; Khani, M.M. Recent progress of bio-printed PEGDA-based bioinks for tissue regeneration. Polym. Adv. Technol. 2023, 34, 3505–3517. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, T.; Lin, X. 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem. Eng. J. 2022, 430, 132926. [Google Scholar] [CrossRef]
- Tripathi, S.; Mandal, S.S.; Bauri, S.; Maiti, P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (2020) 2022, 4, e194. [Google Scholar] [CrossRef]
- Klotz, B.J.; Gawlitta, D.; Rosenberg, A.J.W.P.; Malda, J.; Melchels, F.P.W. Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends Biotechnol. 2016, 34, 394–407. [Google Scholar] [CrossRef]
- Liu, T.; Weng, W.; Zhang, Y.; Sun, S.; Yang, H. Applications of gelatin methacryloyl (GelMA) hydrogels in microfluidic technique-assisted tissue engineering. Molecules 2020, 25, 5305. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.N.; Thomas, J.; Vaidehi, B.R.; Devi, N.G.; Janardanan, A.; Namboothiri, P.K.; Peter, M. An insight into synthesis, properties and applications of gelatin methacryloyl hydrogel for 3D bioprinting. Mater. Adv. 2023, 4, 5496–5529. [Google Scholar] [CrossRef]
- Wang, H.; Wan, J.; Zhang, Z.; Hou, R. Recent advances on 3D-bioprinted gelatin methacrylate hydrogels for tissue engineering in wound healing: A review of current applications and future prospects. Int. Wound J. 2024, 21, e14533. [Google Scholar] [CrossRef]
- Pepelanova, I.; Kruppa, K.; Scheper, T.; Lavrentieva, A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering 2018, 5, 55. [Google Scholar] [CrossRef]
- Zhou, M.; Lee, B.H.; Tan, Y.J.; Tan, L.P. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication 2019, 11, 025011. [Google Scholar] [CrossRef]
- Duan, J.; Cao, Y.; Shen, Z.; Cheng, Y.; Ma, Z.; Wang, L.; Zhang, Y.; An, Y.; Sang, S. 3D bioprinted GelMA/PEGDA hybrid scaffold for establishing an in vitro model of melanoma. J. Microbiol. Biotechnol. 2022, 32, 531–540. [Google Scholar] [CrossRef]
- Gu, Y.; Zou, Y.; Huang, Y.; Liang, R.; Wu, Y.; Hu, Y.; Hong, Y.; Zhang, X.; Toh, Y.C.; Ouyang, H.; et al. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect. Biofabrication 2024, 16, 015003. [Google Scholar] [CrossRef] [PubMed]
- Clauzel, J.; Colitti, N.; Combeau, M.; Labriji, W.; Robert, L.; Brilhault, A.; Cirillo, C.; Desmoulin, F.; Raymond-Letron, I.; Loubinoux, I. In vivo biocompatibility assessment of 3D printed bioresorbable polymers for brain tissue regeneration. A feasibility study. Regen. Ther. 2024, 26, 941–955. [Google Scholar] [CrossRef]
- Maeng, W.Y.; Lee, Y.; Chen, S.H.; Kim, K.S.; Sung, D.; Tseng, W.L.; Kim, G.N.; Koh, Y.H.; Hsueh, Y.Y.; Koo, J. 3D printed biodegradable hydrogel-based multichannel nerve conduits mimicking peripheral nerve fascicules. Mater. Today Bio 2025, 31, 101514. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Li, H.; Yu, K.; Xie, C.; Wang, P.; Zheng, Y.; Zhang, P.; Xiu, J.; Yang, Y.; Zhang, F. 3D Printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater. Des. 2020, 192, 108757. [Google Scholar] [CrossRef]
- Liang, J.; Dijkstra, P.J.; Poot, A.A.; Grijpma, D.W. Hybrid hydrogels based on methacrylate-functionalized gelatin (GelMA) and synthetic polymers. Biomed. Mater. Devices 2023, 1, 191–201. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, K.; Jiang, T.; Li, S.; Chen, J.; Wu, Z.; Li, W.; Tan, R.; Wei, W.; Yang, X.; et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and tazarotene promote diabetic wound healing. J. Nanobiotechnol. 2022, 20, 147. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, M.; Wang, J.; Zhang, W.; Lu, W.; Gao, Y.; Zhang, B.; Guo, Y. Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials. Materials 2018, 11, 1345. [Google Scholar] [CrossRef]
- Mamaghani, K.R.; Naghib, S.M.; Zahedi, A.; Rahmanian, M.; Mozafari, M. GelMA/PEGDA containing graphene oxide as an IPN hydrogel with superior mechanical performance. Mater. Today Proc. 2018, 5, 15790–15799. [Google Scholar] [CrossRef]
- Gäbler, S.; Stampfl, J.; Koch, T.; Seidler, S.; Schüller, G.; Redl, H. Determination of the viscoelastic properties of hydrogels based on polyethylene glycol diacrylate (PEG-DA) and human articular cartilage. Int. J. Mater. Eng. Innov. 2009, 1, 3–20. [Google Scholar] [CrossRef]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 2010, 16, 371–383. [Google Scholar] [CrossRef]
- Huang, L.; Guo, Z.; Yang, X.; Zhang, Y.; Liang, Y.; Chen, X.; Qiu, X.; Chen, X. Advancements in GelMA bioactive hydrogels: Strategies for infection control and bone tissue regeneration. Theranostics 2025, 15, 460–493. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I.; George, E.; Saxena, N.; Sen, S. Silver-nanoparticle-entrapped soft gelMA gels as prospective scaffolds for wound healing. ACS Appl. Bio. Mater. 2019, 2, 1802–1814. [Google Scholar] [CrossRef]
- Dorterler, O.C.; Akgun, B.; Alper, M.; Ayhan, F. Improving antimicrobial properties of GelMA biocomposite hydrogels for regenerative endodontic treatment. Polymers 2024, 16, 1675. [Google Scholar] [CrossRef]
- Abdelmoneim, D.; Coates, D.; Porter, G.; Schmidlin, P.; Li, K.C.; Botter, S.; Lim, K.; Dunca, W. In vitro and in vivo investigation of antibacterial silver nanoparticles functionalized bone grafting substitutes. J. Biomed. Mater. Res. 2024, 112, 2042–2054. [Google Scholar] [CrossRef]
- Cheng, F.; Xu, L.; Zhang, X.; He, J.; Huang, Y.; Li, H. Generation of a photothermally responsive antimicrobial, bioadhesive gelatin methacryloyl (GelMA) based hydrogel through 3D printing for infectious wound healing. Int. J. Biol. Macromol. 2024, 260, 129372. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yin, Z.; Wang, Y.; Jiang, Y.; Chen, J.; Miao, Z.; He, F.; Cheng, R.; Tan, L.; Li, K. Photopolymerizable and antibacterial hydrogels loaded with metabolites from Lacticaseibacillus rhamnosus GG for infected wound healing. Biomacromolecules 2024, 25, 2587–2596. [Google Scholar] [CrossRef]
- Siebert, L.; Luna-Cerón, E.; García-Rivera, L.E.; Oh, J.; Jang, J.; Rosas-Gómez, D.A.; Pérez-Gómez, M.D.; Maschkowitz, G.; Fickenscher, H.; Oceguera-Cuevas, D.; et al. Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold. Adv. Funct. Mater. 2021, 31, 2007555. [Google Scholar] [CrossRef]
- Tao, B.; Lin, C.; Qin, X.; Yu, Y.; Guo, A.; Li, K.; Tian, H.; Yi, W.; Lei, D.; Chen, Y.; et al. Fabrication of gelatin-based and Zn2+-incorporated composite hydrogel for accelerated infected wound healing. Mater. Today Bio. 2022, 13, 100216. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Zahid, A.A.; Hasan, A.; Dalvi, Y.B.; Jacob, J. Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity. ACS Biomater. Sci. Eng. 2021, 7, 279–290. [Google Scholar] [CrossRef]
- Wang, R.; He, X.; Bai, J.; Su, S.; Zhou, R.; Gao, S.; Liu, H.; Zhou, F. Cerium oxide nanoparticles-reinforced GelMA hydrogel loading bone marrow stem cells with osteogenic and inflammatory regulatory capacity for bone defect repair. ACS Appl. Mater. Interfaces. 2024, 16, 67373–67384. [Google Scholar] [CrossRef]
- Kalaycıoglu, Z.; Kahya, N.; Adımcılar, V.; Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Erim, F.B. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur. Polym. J. 2020, 133, 109777. [Google Scholar] [CrossRef]
- Kalantari, K.; Mostafavi, E.; Saleh, B.; Soltantabar, P.; Webster, T.J. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polym. J. 2020, 134, 109853. [Google Scholar] [CrossRef]
- Nosrati, H.; Heydari, M.; Khodaei, M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing. Mater. Today Bio 2023, 23, 100823. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, F.; Wu, L.; Xia, D.; Liu, Y. CeO2 nanoparticles to promote wound healing: A Systematic review. Adv. Healthc. Mater. 2024, 13, e2302858. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Du, Y.; Jiang, H.; Jiang, G.S. Cerium promotes bone marrow stromal cells migration and osteogenic differentiation via smad1/5/8 signaling pathway. Int. J. Clin. Exp. Pathol. 2014, 7, 5369–5378. [Google Scholar]
- Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T.P. Synthesis of cerium oxide (CeO2) nanoparticles using simple co-precipitation method. Rev. Mex. Fis. 2016, 62, 496–499. [Google Scholar]
- Suresh, R.; Ponnuswamy, V.; Mariappan, R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl. Surf. Sci. 2013, 273, 457–464. [Google Scholar] [CrossRef]
- Brady, G.A.; Halloran, J.W. Differential photo-calorimetry of photopolymerizable ceramic suspensions. J. Mater. Sci. 1998, 33, 4551–4560. [Google Scholar] [CrossRef]
- Patel, P.; Kansara, K.; Singh, R.; Shukla, R.K.; Singh, S.; Dhawan, A.; Kumar, A. Cellular internalization and antioxidant activity of cerium oxide nanoparticles in human monocytic leukemia cells. Int. J. Nanomed. 2018, 13, 39–41. [Google Scholar] [CrossRef]
- Tavarez-Martínez, G.M.; Onofre-Bustamante, E.; De La Cruz-Terrazas, E.C.; Escudero-Rincón, M.L.; Domínguez-Crespo, M.A. Evaluation of TiO2/CeO2 coating on Ti6Al4V alloy in PBS physiological medium using conventional and near field electrochemical techniques. Appl. Surf. Sci. 2019, 494, 1109–1118. [Google Scholar] [CrossRef]
- Bortamuly, R.; Konwar, G.; Boruah, P.K.; Das, M.R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA composites: Synthesis, characterization, and utilization as supercapacitor electrode materials. Ionics 2020, 26, 5747–5756. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, J.; Yan, B.; Liu, L.; Chen, D.; Liu, X. Regulation of Ce (III) / Ce (IV) ratio of cerium oxide for antibacterial application. iScience 2021, 24, 102226. [Google Scholar] [CrossRef]
- Jian, X.; Wang, H.; Jian, X.; Zou, Y.; Jiang, B.; Chen, C.; Guo, J.; Li, W.; Yu, B. A flexible adhesive hydrogel dressing of embedded structure with pro-angiogenesis activity for wound repair at moving parts inspired by commercial adhesive bandages. Mater. Today Adv. 2024, 21, 100452. [Google Scholar] [CrossRef]
- Todros, S.; Castilho, M.; Espino, D.M.; Pavan, P.G. Editorial: Mechanical behavior of hydrogels for soft tissue replacement and regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1254076. [Google Scholar] [CrossRef]
- Van Damme, L.; Blondeel, P.; Van Vilerberghe, S. Injectable biomaterials as minimal invasive strategy towards soft tissue regeneration–an overview. J. Phys. Mater. 2021, 4, 022001. [Google Scholar] [CrossRef]
- Chanmugam, A.; Langemo, D.; Thomason, K.; Haan, J.; Altenburger, E.A.; Tippett, A.; Henderson, L.; Zortman, T.A. Relative temperature maximum in wound infection and inflammation as compared with a control subject using long-wave infrared thermography. Adv. Skin Wound Care 2017, 30, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Farias, I.A.P.; Santos, C.C.L.; Sampaio, F.C. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review. Biomed. Res. Int. 2018, 2018, 1923606. [Google Scholar] [CrossRef]
- Zamani, K.; Allah-Bakhshi, N.; Akhavan, F.; Yousefi, M.; Golmoradi, R.; Ramezani, M.; Bach, H.; Razavi, S.; Irajian, G.R.; Pakdin-Parizi, A.; et al. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol. 2021, 21, 68. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater. 2019, 62, 1727–1739. [Google Scholar] [CrossRef]
Composition | GelMA (% w/v) | PEGDA (% w/v) | CeO2 (% w/v) | BYK-190 (% w/v) | LAP (% w/v) | Inert Dye (% w/v) |
---|---|---|---|---|---|---|
G20P10 | 20 | 10 | 0 | 0 | 0.2 | 0.01 |
G20P10C0.1 | 0.1 | 0.1 | ||||
G20P10C0.5 | 0.5 | 0.5 | ||||
G20P10C1 | 1 | 1 | ||||
G20P10C5 | 5 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpuhwe, N.A.; Kim, G.-N.; Koh, Y.-H. Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy. Materials 2025, 18, 1125. https://doi.org/10.3390/ma18051125
Mpuhwe NA, Kim G-N, Koh Y-H. Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy. Materials. 2025; 18(5):1125. https://doi.org/10.3390/ma18051125
Chicago/Turabian StyleMpuhwe, Nelly Aimelyne, Gyu-Nam Kim, and Young-Hag Koh. 2025. "Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy" Materials 18, no. 5: 1125. https://doi.org/10.3390/ma18051125
APA StyleMpuhwe, N. A., Kim, G.-N., & Koh, Y.-H. (2025). Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy. Materials, 18(5), 1125. https://doi.org/10.3390/ma18051125