Antiviral Surface Coatings: From Pandemic Lessons to Visible-Light-Activated Films
Abstract
:1. Introduction
2. Viral Infection from Fomites, Narrative or a Scientific Case?
3. The Virus Matter—The Difference Between Enveloped and Non-Enveloped Viruses
4. How Surface Properties Influence Virion Survival
5. Antiviral Coatings, Different Materials and Strategies
5.1. Antiviral Coatings Activated by Visible Light
5.2. Effect of Reactive Oxygen Species
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boone, S.A.; Gerba, C.P. Significance of fomites in the spread of respiratory and enteric viral disease. Appl. Environ. Microbiol. 2007, 73, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Zambrana, W.; Boehm, A.B. Occurrence of Human Viruses on Fomites in the Environment: A Systematic Review and Meta-analysis. ACS Environ. Au 2023, 3, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Cobrado, L.; Silva-Dias, A.; Azevedo, M.M.; Rodrigues, A.G. High-touch surfaces: Microbial neighbours at hand. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2053–2062. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Zhang, B.; Shi, R.; Gao, Y.; Wang, Z.; Ling, Z.; Tian, Y. Decay pattern of SARS-CoV-2 RNA surface contamination in real residences. Sci. Rep. 2024, 14, 6190. [Google Scholar] [CrossRef]
- Onakpoya, I.J.; Heneghan, C.J.; Spencer, E.A.; Brassey, J.; Rosca, E.C.; Maltoni, S.; Plüddemann, A.D.; Evans, H.J.; Conly, M.; Jefferson, T. Viral cultures for assessing fomite transmission of SARS-CoV-2: A systematic review and meta-analysis. J. Hosp. Infect. 2022, 130, 63–94. [Google Scholar] [CrossRef] [PubMed]
- Arienzo, A.; Gallo, V.; Tomassetti, F.; Pitaro, N.; Pitaro, M.; Antonini, G. A narrative review of alternative transmission routes of COVID 19: What we know so far. Pathog. Glob. Health 2023, 117, 681–695. [Google Scholar] [CrossRef]
- Ganime, A.C.; Carvalho-Costa, F.A.; Santos, M.; Costa Filho, R.; Leite, J.P.; Miagostovich, M.P. Viability of human adenovirus from hospital fomites. J. Med. Virol. 2014, 12, 2065–2069. [Google Scholar] [CrossRef] [PubMed]
- Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio 2015, 6, e01697-15. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Li, Y.; Wong, T.; Hui, D. Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong. PLoS ONE 2017, 12, e0181558. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation with Biocidal Agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.; Brown, E.; Colenutt, C.; Schley, D.; Gubbins, S. Inferring transmission routes for foot-and-mouth disease virus within a cattle herd using approximate Bayesian computation. Epidemics 2024, 46, 100740. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Tang, J.W.; Li, Y. Airborne or Fomite Transmission for Norovirus? A Case Study Revisited. Int. J. Environ. Res. Public Health 2017, 14, 1571. [Google Scholar] [CrossRef] [PubMed]
- Canales, R.A.; Reynolds, K.A.; Wilson, A.M.; Fankem, S.L.M.; Weir, M.H.; Rose, J.B.; Abd-Elmaksoud, S.; Gerba, C.P. Modeling the role of fomites in a norovirus outbreak. J. Occup. Environ. Hyg. 2019, 16, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Morter, S.; Bennet, J.; Fish, J.; Richards, J.; Allen, D.J.; Nawaz, S.; Iturriza-Gomara, M.; Brolly, S.; Gray, J. Norovirus in the hospital setting: Virus introduction and spread within the hospital environment. J. Hosp. Infect. 2011, 77, 106–112. [Google Scholar] [CrossRef]
- Jones, E.L.; Kramer, A.; Gaither, M.; Gerba, C.P. Role of fomite contamination during an outbreak of norovirus on houseboats. Int. J. Environ. Health Res. 2007, 17, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.P.; Stilianakis, N.I. Fomites, hands, and the transmission of respiratory viruses. J. Occup. Environ. Hyg. 2020, 18, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kraay, A.N.M.; Hayashi, M.A.L.; Hernandez-Ceron, N.; Spicknall, I.H.; Eisenberg, M.C.; Meza, R.; Eisenberg, J.N.S. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 2018, 18, 540. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S.; Steyer, A.; Poljšak-Prijatelj, M.; Cencič, A.; Šostar-Turk, S.; Koren, S. Rotaviral RNA found on various surfaces in a hospital laundry. J. Virol. Methods 2008, 148, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Pitol, A.K.; Julian, T.R. Community transmission of SARS-CoV-2by surfaces: Risks and risk reduction strategies. Environ. Sci. Technol. Lett. 2021, 8, 263–269. [Google Scholar] [CrossRef]
- Tang, L.; Rhoads, W.J.; Eichelberg, A.; Hamilton, K.A.; Julian, T.R. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. Environ. Health Perspect. 2024, 132, 056001. [Google Scholar] [CrossRef]
- Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R.N. Prolonged infectivity of SARS-CoV-2 in fomites. Emerg. Infect. Dis. 2020, 26, 2256–2257. [Google Scholar] [CrossRef]
- Paton, S.; Spencer, A.; Garratt, I.; Thompson, K.A.; Dinesh, I.; Aranega-Bou, P.; Stevenson, D.; Clark, S.; Dunning, J.; Bennett, A.; et al. Persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and viral RNA in relation to surface type and contamination concentration. Appl. Environ. Microbiol. 2021, 87, e00526-21. [Google Scholar] [CrossRef] [PubMed]
- Derqui, N.; Koycheva, A.; Zhou, J.; Pillay, T.D.; Crone, M.A.; Hakki, S.; Fenn, J.; Kundu, R.; Varro, R.; Conibear, E.; et al. Risk factors and vectors for SARS-CoV-2 household transmission: A prospective, longitudinal cohort study. Lancet Microbe 2023, 4, e397–e408. [Google Scholar] [CrossRef]
- Lewis, D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning? Nature 2021, 590, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, M.U.; Colaneri, M.; Seminari, E.M.; Baldanti, F.; Bruno, R. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions. Lancet Infec. Dis. 2021, 21, e112. [Google Scholar] [CrossRef] [PubMed]
- Sobolik, J.S.; Sajewski, E.T.; Jaykus, L.A.; Cooper, D.K.; Lopman, B.A.; Kraay, A.N.; Ryan, P.B.; Guest, J.L.; Webb-Girard, A.; Leon, J.S. Decontamination of SARS-CoV-2 from cold-chain food packaging provides no marginal benefit in risk reduction to food workers. Food Control 2022, 136, 108845. [Google Scholar] [CrossRef]
- Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef] [PubMed]
- Meister, T.L.; Dreismeier, M.; Blanco, E.V.; Brüggemann, Y.; Heinen, N.; Kampf, G.; Todt, D.; Nguyen, H.P.; Steinmann, J.; Schmidt, W.E.; et al. Low Risk of Severe Acute Respiratory Syndrome Coronavirus 2 Transmission by Fomites: A Clinical Observational Study in Highly Infectious Coronavirus Disease 2019 Patients. J. Infect. Dis. 2022, 226, 1608–1615. [Google Scholar] [CrossRef]
- Walji, S.D.; Aucoin, M.G. A critical evaluation of current protocols for self-sterilizing surfaces designed to reduce viral nosocomial infections. Am. J. Infect. Control. 2020, 48, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Haldar, J.; Weight, A.K.; Klibanov, A.M. Preparation, application and testing of permanent antibacterial and antiviral coatings. Nat. Protoc. 2007, 2, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Shorta, K.R.; Cowling, B.J. Assessing the potential for fomite transmission of SARS-CoV-2. Lancet Microbe 2023, 4, e380–e381. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.-M.; Zhao, X.; Wen, R.-F.; Huang, J.-J.; Pi, G.-H.; Zhang, S.-X.; Han, J.; Bi, S.-L.; Ruan, L.; Dong, X.-P.; et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. 2003, 16, 246–255. [Google Scholar]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Torriani, F.; Taplitz, R. History of infection prevention and control. Infect. Dis. 2010, 76–85. [Google Scholar] [CrossRef]
- Church, D.L. Major factors affecting the emergence and re-emergence of infectious diseases. Clin. Lab. Med. 2004, 24, 559–586. [Google Scholar] [CrossRef]
- Tamele, B.; Zamora-Pérez, A.; Litardi, C.; Howes, J.; Steinmann, E.; Todt, D. Catch Me (If You Can): Assessing the Risk of SARS-CoV-2 Transmission via Euro Cash; Occasional Papers. N. 259; European Central Bank: Frankfurt, Germany, 2021. [Google Scholar]
- Schijven, J.F.; Wind, M.; Todt, D.; Howes, J.; Tamele, B.; Steinmann, E. Risk assessment of banknotes as a fomite of SARS-CoV-2 in cash payment transactions. Risk Anal. 2023, 43, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Yao, M. SARS-CoV-2 aerosol transmission and detection. Eco-Environ. Health 2022, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- About COVID-19. Available online: www.cdc.gov/covid/about/index.html (accessed on 20 January 2025).
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Liao, H.; Lyon, C.J.; Ying, B.; Hu, T. Climate change, its impact on emerging infectious diseases and new technologies to combat the challenge. Emerg. Microbes Infect. 2024, 13, 2356143. [Google Scholar] [CrossRef]
- Barker, J.; Stevens, D.; Bloomfield, S.F. Spread and Prevention of Some Common Viral Infections in Community Facilities and Domestic Homes. J. Appl. Microbiol. 2001, 91, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Hota, B. Contamination, Disinfection, and Cross-Colonization: Are Hospital Surfaces Reservoirs for Nosocomial Infection? Clin. Infect. Dis. 2004, 39, 1182–1189. [Google Scholar] [PubMed]
- Merkl, P.; Long, S.; McInerney, G.M.; Sotiriou, G.A. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials 2021, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Firquet, S.; Beaujard, S.; Lobert, P.-E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Survival of enveloped and nonenveloped viruses on inanimate surfaces. Microb. Environ. 2015, 30, 140–144. [Google Scholar] [CrossRef]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The Effect of Temperature on Persistence of SARS-CoV-2 on Common Surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.; Payne, D. The Action of Three Antiseptics/Disinfectants against Enveloped and Non-Enveloped Viruses. J. Hosp. Infect. 1998, 38, 283–295. [Google Scholar] [CrossRef]
- Joonaki, E.; Hassanpouryouzband, A.; Heldt, C.L.; Areo, O. Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions. Chem 2020, 6, 2135–2146. [Google Scholar] [CrossRef]
- Guo, A.; Shieh, Y.C.; Wang, R.R. Features of material surfaces affecting virus adhesion as determined by nanoscopic quantification. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125109. [Google Scholar] [CrossRef]
- Aydogdu, M.O.; Altun, E.; Ren, G.; Homer-Vanniasinkam, S.; Chen, B.; Edirisinghe, M. Surface interactions and viability of coronaviruses. J. R. Soc. Interf. 2021, 18, 20200798. [Google Scholar] [CrossRef] [PubMed]
- Piersanti, P.; White, K.; Dragnea, B.; Temam, R. Modelling virus contact mechanics under atomic force imaging conditions. Appl. Anal. 2022, 101, 3947–3957. [Google Scholar] [CrossRef]
- Armanious, A.; Aeppli, M.; Jacak, R.; Refardt, D.; Sigstam, T.; Kohn, T.; Sander, M. Viruses at Solid–Water Interfaces: A Systematic Assessment of Interactions Driving Adsorption. Environ. Sci. Technol. 2016, 50, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Wang, N.; Irudayaraj, J.; Majima, T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv. Colloid Interf. Sci. 2023, 320, 103006. [Google Scholar] [CrossRef]
- Seong, D.; Kingsak, M.; Lin, Y.; Wang, Q.; Hoque, S. Fate and transport of enveloped viruses in indoor built spaces—Through understanding vaccinia virus and surface interactions. Biomater. Transl. 2021, 2, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tarabara, V.V. Virus adhesion to archetypal fomites: A study with human adenovirus and human respiratory syncytial virus. Chem. Eng. J. 2022, 429, 132085. [Google Scholar] [CrossRef]
- Qi, S.; Kiratzis, I.; Adoni, P.; Tuekprakhon, A.; Hill, H.J.; Stamataki, Z.; Nabi, A.; Waugh, D.; Rodriguez, J.R.; Clarke, S.M.; et al. Porous Cellulose Thin Films as Sustainable and Effective Antimicrobial Surface Coatings. ACS Appl. Mater. Interf. 2023, 15, 20638–20648. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Poon, L.L.M.; Chin, A.W.H.; Ducker, W.A. Effect of Surface Porosity on SARS-CoV-2 Fomite Infectivity. ACS Omega 2022, 7, 18238–18246. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R. Contribution of the Hydrophobic Effect to Microbial Infection. Microbes Infect. 2000, 2, 391–400. [Google Scholar] [CrossRef]
- Meguid, S.A.; Elzaabalawy, A. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: Part I— Protection strategies against fomites. Int. J. Mech. Mater. Des. 2020, 16, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Talebian, S.; Wallace, G.G.; Schroeder, A.; Stellacci, F.; Conde, J. Nanotechnology-Based Disinfectants and Sensors for SARS-CoV-2. Nat. Nanotechnol. 2020, 15, 618–621. [Google Scholar] [CrossRef]
- Pemmada, R.; Zhu, X.; Dash, M.; Zhou, Y.; Ramakrishna, S.; Peng, X.; Thomas, V.; Jain, S.; Nanda, H.S. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials 2020, 13, 4041. [Google Scholar] [CrossRef]
- Rakowska, M.T.; Faruqui, N.; Bankier, C.; Pei, Y.; Pollard, A.J.; Zhang, J.; Gilmore, I.S. Antiviral surfaces and coatings and their mechanisms of action. Commun. Mater. 2021, 2, 53. [Google Scholar] [CrossRef]
- Sun, Z.; Ostrikov, K. Future antiviral surfaces: Lessons from COVID-19 pandemic. Sustain. Mater. Technol. 2020, 25, e00203. [Google Scholar] [CrossRef]
- Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Duday, D.; Scolan, E.; Perbal, S.; Prato, M.; Lasseur, C.; Hołyńska, M. Antimicrobial Surfaces for Applications on Confined Inhabited Space Stations. Adv. Mater. Interfaces 2021, 8, 2100118. [Google Scholar] [CrossRef]
- Malfatti, L.; Poddighe, M.; Stagi, L.; Carboni, D.; Anedda, R.; Casula, M.F.; Poddesu, B.; De Forni, D.; Lori, F.; Livraghi, S.; et al. Visible Light Activation of Virucidal Surfaces Empowered by Pro-Oxidant Carbon Dots. Adv. Funct. Mater. 2024, 34, 2404511. [Google Scholar] [CrossRef]
- Innocenzi, P.; Stagi, L. Carbon-based Antiviral Nanomaterials, Graphene, C-dots and Fullerenes. A perspective. Chem. Sci. 2020, 11, 6606–6622. [Google Scholar] [CrossRef]
- Mondal, D.; Bera, S. Porphyrins and phthalocyanines: Promising molecules for light-triggered antibacterial nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 033002. [Google Scholar] [CrossRef]
- Xu, P.Y.; Li, X.Q.; Chen, W.G.; Deng, L.L.; Tan, Y.Z.; Zhang, Q.; Xie, S.Y.; Zheng, L.S. Progress in Antiviral Fullerene Research. Nanomaterials 2022, 12, 2547. [Google Scholar] [CrossRef] [PubMed]
- Innocenzi, P.; De Forni, D.; Lori, F. Antiviral Activity of Carbon Dots: Strategies and Mechanisms of Action. Small Struct. 2024, 2400401. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á.; Takayama, K.; Kumar Mishra, Y.; de la Fuente-Nunez, C. Carbon-Based Nanomaterials for Antiviral Applications. Adv. Funct. Mater. 2024, 34, 2402023. [Google Scholar] [CrossRef]
- Innocenzi, P.; Stagi, L. Carbon dots as oxidant-antioxidant nanomaterials, understanding the structure-properties relationship. A critical review. Nano Today 2023, 5, 101837. [Google Scholar] [CrossRef]
- Schutte-Smith, M.; Erasmus, E.; Mogale, R.; Marogoa, N.; Jayiya, A.; Visser, H.G. Using visible light to activate antiviral and antimicrobial properties of TiO2 nanoparticles in paints and coatings: Focus on new developments for frequent-touch surfaces in hospitals. J. Coat. Technol. Res. 2023, 20, 789–817. [Google Scholar] [CrossRef]
- Vibornijs, V.; Zubkins, M.; Strods, E.; Rudevica, Z.; Korotkaja, K.; Ogurcovs, A.; Kundzins, K.; Purans, J.; Zajakina, A. Analysis of Antibacterial and Antiviral Properties of ZnO and Cu Coatings Deposited by Magnetron Sputtering: Evaluation of Cell Viability and ROS Production. Coatings 2024, 14, 14. [Google Scholar] [CrossRef]
- Qi, K.; Xing, X.; Zada, A.; Li, M.; Wang, Q.; Liu, S.Y.; Lin, H.; Wang, G. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram. Int. 2020, 46, 1494–1502. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Ishihara, R.; Omiya, D.; Ishitsuka, M.; Hirano, S.; Suzuki, T. Application of a Photocatalyst as an Inactivator of Bovine Coronavirus. Viruses 2020, 12, 1372. [Google Scholar] [CrossRef]
- Tahmasebizad, N.; Hamedani, M.T.; Shaban Ghazani, M.; Pazhuhanfar, Y. Photocatalytic Activity and Antibacterial Behavior of TiO2 Coatings Co-Doped with Copper and Nitrogen via Sol–Gel Method. J. Sol-Gel Sci. Technol. 2020, 93, 570–578. [Google Scholar] [CrossRef]
- Zsolt, B.; Zsolt, C.; Dóra, T.; László, J.; Lilla, B.; Ágota, D.; Tóth Péter, S.; Csaba, J.; Ernő, D.; Imre, D. Visible Light-Generated Antiviral Effect on Plasmonic Ag-TiO2-Based Reactive Nanocomposite Thin Film. Front. Bioeng. Biotechnol. 2021, 9, 709462. [Google Scholar] [CrossRef]
- Kidchob, T.; Malfatti, L.; Marongiu, D.; Enzo, S.; Innocenzi, P. Sol–Gel Processing of Bi2Ti2O7 and Bi2Ti4O11 Films with Photocatalytic Activity. J. Am. Ceram. Soc. 2010, 93, 2897–2902. [Google Scholar] [CrossRef]
- Ratova, M.; Redfern, J.; Verran, J.; Kelly, P.J. Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Appl. Cat. B Environ. 2018, 239, 223–232. [Google Scholar] [CrossRef]
- Schweitzer, C.; Schmidt, R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003, 103, 1685–1757. [Google Scholar] [CrossRef]
- Edge, R.; Truscott, T.G. The Reactive Oxygen Species Singlet Oxygen, Hydroxy Radicals, and the Superoxide Radical Anion—Examples of Their Roles in Biology and Medicine. Oxygen 2021, 1, 77–95. [Google Scholar] [CrossRef]
- Sheng, H.; Nakamura, K.; Kanno, T.; Sasaki, K.; Niwano, Y. Microbicidal Activity of Artificially Generated Hydroxyl Radicals. In Interface Oral Health Science; Sasaki, K., Suzuki, O., Takahashi, N., Eds.; Springer: Tokyo, Japan, 2014. [Google Scholar] [CrossRef]
- Sagadevan, A.; Hwang, K.C.; Su, M.D. Singlet oxygen-mediated selective C–H bond hydroperoxidation of ethereal hydrocarbons. Nat. Commun. 2017, 8, 1812. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-K.; Song, S.; Jung, S.-J.; Hwang, J.-W.; Kim, M.-G.; Kim, J.-H.; Sung, J.; Lee, J.-K.; Kim, Y.-R. Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric conditions. Phys. Chem. Chem. Phys. 2020, 22, 21664–21671. [Google Scholar] [CrossRef] [PubMed]
External Factor | Enveloped Virus | Non-Enveloped Virus |
---|---|---|
Desiccation | Sensitive to drying due to dependence on a hydrated lipid envelope | More resistant to drying; capsid structure retains integrity |
Temperature | Moderate resistance; extreme heat denatures envelope proteins. | Higher resistance; capsids withstand a wider range of temperatures |
Humidity | Stability decreases at low humidity due to lipid degradation | Stability often increases at low humidity |
pH | Sensitive to extreme pH changes that disrupt the lipid envelope | Stable across a broad pH range, including acidic and alkaline conditions |
UV Radiation | Moderately resistant; UV can damage the viral RNA/DNA | More resistant due to protective protein capsid. |
Reactive oxygen species | Weakly resistant, ROS disrupt the lipidic bonds | Resilient to ROS attacks |
Surface Property | Effect on Antiviral Activity | Examples and Applications | Challenges |
---|---|---|---|
Roughness | Increased surface area enhances contact with antiviral agents. | Rough surfaces coated with metals like copper improve viral inactivation. | Can harbor viral particles in crevices, making cleaning difficult. |
Too much roughness may shield viruses from external disinfectants. | Antiviral coatings for high-touch surfaces like door handles. | Requires precise engineering to balance efficacy and cleanliness | |
Porosity | Porous surfaces act as reservoirs for sustained release of antiviral agents. | Metal–organic frameworks loaded with silver or copper for continuous antiviral action. | Excessive porosity can trap viruses, reducing efficacy of surface cleaning. |
Promotes interaction between viruses and embedded antiviral agents. | Porous membranes used in air and water filters and self-sterilizing materials. | May reduce mechanical strength of materials in some applications. | |
Hydrophobicity | Hydrophobic surfaces repel waterborne viruses, reducing adhesion. | Superhydrophobic surfaces prevent viral contamination via self-cleaning properties. | Non-polar interactions may enhance adhesion of some enveloped viruses. |
Creates self-cleaning surfaces where water droplets roll off, removing contaminants. | Commonly applied in medical textiles, PPE, and protective coatings. | Requires robust materials to maintain hydrophobicity over time. | |
Hydrophilicity | Increases viral interaction by enhancing surface wettability. | Hydrophilic coatings with embedded ROS generators improve inactivation efficiency. | Excessive water retention may reduce long-term antiviral efficacy. |
Surface Energy | High surface energy promotes strong adhesion of antiviral agents or coatings. | High-energy surfaces, such as titania, enhance ROS production for photodynamic antiviral activity. | Can increase adherence of contaminants if not combined with effective antiviral coatings. |
Low-energy surfaces resist viral adhesion, reducing contamination risk. | Low-energy fluoropolymer coatings are used in touchscreens and medical devices. | Low-energy surfaces may be less effective at retaining antiviral agents. |
Approach | Advantages | Challenges |
---|---|---|
Metal-based coatings | Broad-spectrum efficacy, durability | Potential toxicity, high cost |
Polymer-based coatings | Versatility, metal-free | Limited long-term stability |
Photocatalytic coatings | Light-activated, self-cleaning properties | Dependence on light exposure, wavelength and intensity |
Nanomaterial-Enhanced | High efficacy, scalability | High cost, potential toxicity |
Bio-inspired coatings | Eco-friendly, sustainable | Lower efficacy in some cases |
System | Mechanism | Advantages | Challenges | Applications |
---|---|---|---|---|
Porphyrin-based coatings | Generates singlet oxygen under visible light via photosensitization. | High efficiency; broad-spectrum activity; customizable. | Potential photobleaching; stability issues in some environments. | Medical textiles, air filters, hospital surfaces. |
Phthalocyanine-based coatings | Produces singlet oxygen through photosensitization in the visible spectrum. | High photostability; strong visible light absorption. | Complex synthesis; cost of materials can be high. | Photodynamic therapy, antiviral paints. |
Carbon-based coatings | Functionalized graphene or carbon dots generate ROS upon visible light activation. | High surface area; excellent stability; tunable properties. | Cost and complexity ofsynthesis and functionalization | High-performance antiviral surfaces, electronics. |
Metal oxide coatings | Generates reactive oxygen species (ROS) like superoxide and hydroxyl radicals under light. | Durable; scalable; cost-effective. | Requires doping to activate under visible light. | Construction materials, water disinfection. |
Nanoparticle-Enhanced Coatings | Embedded metal (e.g., Ag, Au) nanoparticles enhance light absorption and ROS production. | Synergistic effects; can be tuned for specific wavelengths. | High cost of noble metals; potential environmental concerns. | Medical devices, high-touch public surfaces. |
Characteristic | Description | Examples | Design Challenges |
---|---|---|---|
Photosensitizer Material | Generates reactive oxygen species (ROS) when exposed to light. | Porphyrins, Phthalocyanines, Carbon Dots, Metal-doped Semiconductors (TiO2, ZnO). | Stability under prolonged exposure, photobleaching risk. |
Light Activation Range | Wavelength of light required for activation (UV, visible, or near-infrared). | Visible light (400–700 nm) preferred for safe, continuous activation. | Efficiency drops under low-intensity or short-duration lighting. |
ROS Production Efficiency | Ability to generate singlet oxygen, hydroxyl radicals, or superoxide anions. | 1O2 production via porphyrins; •OH via TiO2 under UV light. | Maintaining high ROS yield while reducing energy requirements. |
Surface Porosity | Controls the interaction of viral particles and storage of photosensitizers. | Porous membranes loaded with photosensitizers. | Excessive porosity may trap viruses, reducing cleaning efficiency. |
Hydrophobicity | Minimizes viral attachment by repelling water and contaminants. | Superhydrophobic surfaces with self-cleaning properties. | Balancing water repellency with compatibility for ROS generation. |
Photostability | Resistance to degradation under prolonged light exposure. | Stable materials like carbon dots or metal-doped semiconductors. | Ensuring longevity without compromising functionality. |
Surface Energy | Influences adhesion of viruses and retention of antiviral agents. | High-energy surfaces for enhanced ROS production; low-energy surfaces to resist viral adhesion. | Precision engineering to balance antiviral efficacy and contamination resistance. |
Mechanical Durability | Ability to withstand wear and maintain functionality over time. | Polymer-based coatings with integrated nanoparticles. | Durability under environmental stress (abrasion, humidity). |
Compatibility | Adhesion to diverse substrates like metals, glass, or polymers. | Functionalized coatings for medical textiles, hospital surfaces, and air filters. | Tailoring deposition techniques (spray-coating, dip-coating) to various materials. |
Light Source Dependency | Requirement for external or ambient light to sustain activation. | Ambient light in healthcare environments; UV in sterilization settings. | Reduced efficacy in poorly lit areas; requires hybrid approaches for continuous protection. |
Broad-Spectrum Activity | Efficacy against a wide range of viruses and bacteria. | Effective against both enveloped (SARS-CoV-2) and non-enveloped (Norovirus) viruses. | Enhancing action against non-enveloped viruses, which are more resistant to ROS. |
Environmental Safety | Minimizing harmful effects on the environment and human health. | Non-toxic materials like carbon-based systems; reduced use of heavy metals. | Balancing high efficacy with eco-friendliness and safe disposal. |
Aspect | Hydroxyl Radicals (•OH) | Singlet Oxygen |
---|---|---|
Reactivity | Extremely reactive, non-selective | Highly selective, moderate reactivity |
Target Viruses | Effective against both enveloped and non-enveloped viruses | More effective against enveloped viruses |
Action Mechanism | Indiscriminately attacks lipids, proteins, and nucleic acids | Targets specific lipid bonds and amino acids |
Stability | Very short-lived | Longer-lived |
Diffusion Distance | Limited to immediate proximity | Greater range |
Generation Methods | Fenton reaction, photocatalysis | Photosensitizers under visible light |
Applications | Suitable for sterilization in high-concentration systems | Ideal for light-activated coatings and surfaces |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innocenzi, P. Antiviral Surface Coatings: From Pandemic Lessons to Visible-Light-Activated Films. Materials 2025, 18, 906. https://doi.org/10.3390/ma18040906
Innocenzi P. Antiviral Surface Coatings: From Pandemic Lessons to Visible-Light-Activated Films. Materials. 2025; 18(4):906. https://doi.org/10.3390/ma18040906
Chicago/Turabian StyleInnocenzi, Plinio. 2025. "Antiviral Surface Coatings: From Pandemic Lessons to Visible-Light-Activated Films" Materials 18, no. 4: 906. https://doi.org/10.3390/ma18040906
APA StyleInnocenzi, P. (2025). Antiviral Surface Coatings: From Pandemic Lessons to Visible-Light-Activated Films. Materials, 18(4), 906. https://doi.org/10.3390/ma18040906