Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Description
2.2. Sample and LC Testing
2.3. Raman Spectroscopy
2.4. Fungal Biofilm Formation on Implants
3. Results
- The frequencies of 200–1020 cm−1 correspond to the out-of-plane C-H deformation of the hydrogen atoms that are bonded to the aromatic rings, known as γC−H. This region exhibits a multitude of modes ranging from strong to extremely weak intensity, which corresponds to deformations of the C-H bond in the phenyl ring that occur out-of-plane.
- The frequencies of 1020 and 1200 cm−1 correspond to the in-plane deformation of the C-H bonds linked to the aromatic rings, as well as the stretching of the C-O-C bonds. In PEEK, the C-O-C stretching mode is utilized for spectral normalization due to its lower sensitivity to microstructural differences compared to other vibration modes.
- Within the range of 1200 to 1540 cm−1, there is a stretching of C-O or C-O-C bonds, specifically vC−O or νC−O−C. In this region, there is a peak at 1203 cm−1 that corresponds to the antisymmetric version of the strong C-O-C stretching found in the prior zone.
- The stretching vibration of the C=C ring, vC=C, occurs within the range of 1540 to 1635 cm−1. Two quite pronounced modes are observed in the spectra at around 1598 and 1612 cm−1. Briscoe et al. [51] attribute the 1595 and the peak at 1607 cm−1 to the vibration of the phenyl ring. The sample’s modes are dependent on the laser’s orientation and polarization [52].
- The stretching of the carbonyl C=O bond in the ketone group, denoted as vC=O, occurs between 1635 and 1700 cm−1.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levy, H.A.; Karamian, B.A.; Yalla, G.R.; Canseco, J.A.; Vaccaro, A.R.; Kepler, C.K. Impact of surface roughness and bulk porosity on spinal interbody implants. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 478–489. [Google Scholar] [CrossRef]
- Jansson, K.Å.; Németh, G.; Granath, F.; Blomqvist, P. Surgery for herniation of a lumbar disc in Sweden between 1987 and 1999. J. Bone Jt. Surg. Br. 2004, 86, 841–847. [Google Scholar] [CrossRef]
- Sivasubramaniam, V.; Patel, H.C.; Ozdemir, B.A.; Papadopoulos, M.C. Trends in hospital admissions and surgical procedures for degenerative lumbar spine disease in England: A 15-year time-series study. BMJ Open 2015, 5, e009011. [Google Scholar] [CrossRef]
- Grotle, M.; Småstuen, M.C.; Fjeld, O.; Grøvle, L.; Helgeland, J.; Storheim, K.; Solberg, T.K.; Zwart, J.-A. Lumbar spine surgery across 15 years: Trends, complications and reoperations in a longitudinal observational study from Norway. BMJ Open 2019, 9, e028743. [Google Scholar] [CrossRef] [PubMed]
- Drossopoulos, P.N.; Ononogbu-uche, F.C.; Tabarestani, T.Q.; Huang, C.-C.; Paturu, M.; Bardeesi, A.; Ray, W.Z.; Shaffrey, C.I.; Goodwin, C.R.; Erickson, M.; et al. Evolution of the Transforaminal Lumbar Interbody Fusion (TLIF): From Open to Percutaneous to Patient-Specific. J. Clin. Med. 2024, 13, 2271. [Google Scholar] [CrossRef] [PubMed]
- Encarnacion Santos, D.; Nurmukhametov, R.; Donasov, M.; Volovich, A.; Bozkurt, I.; Wellington, J.; Miguel, L.E.; Ismael, P.; Bipin, C. Management of lumbar spondylolisthesis: A retrospective analysis of posterior lumbar interbody fusion versus transforaminal lumbar interbody fusion. J. Craniovertebr. Junction Spine 2024, 15, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wu, H.; Li, F.; Zheng, J.; Cao, P.; Hu, B. Meta-analysis of the efficacy and safety of OLIF and TLIF in the treatment of degenerative lumbar spondylolisthesis. J. Orthop. Surg. Res. 2024, 19, 242. [Google Scholar] [CrossRef]
- Vranceanu, D.M.; Ungureanu, E.; Ionescu, I.C.; Parau, A.C.; Pruna, V.; Titorencu, I.; Badea, M.; Gălbău, C.-Ș.; Idomir, M.; Dinu, M.; et al. In Vitro Characterization of Hydroxyapatite-Based Coatings Doped with Mg or Zn Electrochemically Deposited on Nanostructured Titanium. Biomimetics 2024, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, B.M.; Beltran, F.O.; Hahn, M.S.; Grunlan, M.A. Trends in bioactivity: Inducing and detecting mineralization of regenerative polymeric scaffolds. J. Mater. Chem. B 2024, 12, 2720–2736. [Google Scholar] [CrossRef]
- Lee, J.; Chang, S.-H.; Cho, H.-C.; Song, K.-S. Anterior Bridging Bone in a Newly Designed Cage for Lumbar Interbody Fusion: Radiographic and Finite Element Analysis. World Neurosurg. 2021, 154, e389–e397. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, D.-S.; Hwang, G.Y.; Lee, J.-K.; Lee, H.-L.; Jung, J.-W.; Hwang, S.Y.; Baek, S.-W.; Yoon, S.L.; Ha, Y.; et al. Multi-modulation of immune-inflammatory response using bioactive molecule-integrated PLGA composite for spinal fusion. Mater. Today Bio 2023, 19, 100611. [Google Scholar] [CrossRef]
- Fan, W.; Guo, L.-X.; Zhang, M. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems. Eur. Spine J. 2021, 30, 2342–2350. [Google Scholar] [CrossRef]
- Patel, D.V.; Yoo, J.S.; Karmarkar, S.S.; Lamoutte, E.H.; Singh, K. Interbody options in lumbar fusion. J. Spine Surg. 2019, 5, S19–S24. [Google Scholar] [CrossRef]
- Curmi, A.; Rochman, A.; Buhagiar, J. Influence of polyether ether ketone (PEEK) viscosity on interlayer shear strength in screw extrusion additive manufacturing. Addit. Manuf. 2024, 84, 104086. [Google Scholar] [CrossRef]
- Dua, R.; Rashad, Z.; Spears, J.; Dunn, G.; Maxwell, M. Applications of 3D-Printed PEEK via Fused Filament Fabrication: A Systematic Review. Polymers 2021, 13, 4046. [Google Scholar] [CrossRef]
- Ai, J.-R.; Li, S.; Vogt, B.D. Increased strength in carbon-poly(ether ether ketone) composites from material extrusion with rapid microwave post processing. Addit. Manuf. 2022, 60, 103209. [Google Scholar] [CrossRef]
- Chen, P.; Su, J.; Wang, H.; Yang, L.; Cai, H.; Li, M.; Li, Z.; Liu, J.; Wen, S.; Zhou, Y.; et al. Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion. J. Mater. Sci. Technol. 2022, 125, 105–117. [Google Scholar] [CrossRef]
- Han, J.; Gao, H.; Liu, X.; Shang, Y.; Zhang, H. Improving the high-temperature performance by constructing restricted amorphous regions in PEEK. Polym. Degrad. Stab. 2024, 220, 110632. [Google Scholar] [CrossRef]
- Doumeng, M.; Makhlouf, L.; Berthet, F.; Marsan, O.; Delbé, K.; Denape, J.; Chabert, F.A. comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym. Test 2021, 93, 106878. [Google Scholar] [CrossRef]
- Jin, L.; Ball, J.; Bremner, T.; Sue, H.-J. Crystallization behavior and morphological characterization of poly(ether ether ketone). Polymer 2014, 55, 5255–5265. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kobayasi, S.; Numata, T.; Kamihara, N.; Shimda, T.; Jikei, M.; Muraoka, M.; Barnsley, J.E.; Fraser-Miller, S.J.; Gordon, K.C. Evaluation of crystallinity in carbon fiber-reinforced poly(ether ether ketone) by using infrared low frequency Raman spectroscopy. J. Appl. Polym. Sci. 2022, 139, 51677. [Google Scholar] [CrossRef]
- Jiang, S.; Yuan, C.; Wong, J.S.S. Effectiveness of glycerol-monooleate in high-performance polymer tribo-systems. Tribol. Int. 2021, 155, 106753. [Google Scholar] [CrossRef]
- Yang, X.; Yokokura, S.; Nagahama, T.; Yamaguchi, M.; Shimada, T. Molecular Dynamics Simulation of Poly(Ether Ether Ketone) (PEEK) Polymer to Analyze Intermolecular Ordering by Low Wavenumber Raman Spectroscopy and X-Ray Diffraction. Polymers 2022, 14, 5406. [Google Scholar] [CrossRef]
- Bonmatin, M.; Chabert, F.; Bernhart, G.; Cutard, T.; Djilali, T. Ultrasonic welding of CF/PEEK composites: Influence of welding parameters on interfacial temperature profiles and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107074. [Google Scholar] [CrossRef]
- Patnaik, L.; Maity, S.R.; Kumar, S. Lubricated sliding of CFRPEEK/AlCrN film tribo-pair and its effect on the mechanical properties and structural integrity of the AlCrN film. Mater. Chem. Phys. 2021, 273, 124980. [Google Scholar] [CrossRef]
- Gaitanelis, D.; Chanteli, A.; Worrall, C.; Weaver, P.M.; Kazilas, M. A multi-technique and multi-scale analysis of the thermal degradation of PEEK in laser heating. Polym. Degrad. Stab. 2023, 211, 110282. [Google Scholar] [CrossRef]
- Al Khatib, A.; Le-Franc, R.; Guin, J.-P.; Coulon, J.-F. Investigating the thermal effects of plasma surface treatment on crystallinity and mechanical behavior of PEEK. Polym. Degrad. Stab. 2023, 216, 110500. [Google Scholar] [CrossRef]
- Delbé, K.; Chabert, F. Raman spectroscopy investigation on amorphous polyetherketoneketone (PEKK). Vib. Spectrosc. 2023, 129, 103620. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Thiex, M.; Sperka, P.; Hartl, M.; Reitschuster, S.; Maier, E.; Lohner, T.; Stahl, K. DLC-Coated Thermoplastics: Tribological Analyses Under Dry and Lubricated Sliding Conditions. Tribol. Lett. 2023, 71, 2. [Google Scholar] [CrossRef]
- Guo, C.; Lu, R.; Wang, X.; Chen, S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. J. Mater. Sci. Mater. Med. 2021, 32, 135. [Google Scholar] [CrossRef]
- Kashii, M.; Kitaguchi, K.; Makino, T.; Kaito, T. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J. Orthop. Sci. 2020, 25, 565–570. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Dai, J.; Wang, Y.; Bai, H.; Lu, B.; Chen, J.; Fan, X.; Ma, X. Design and Biomechanical Evaluation of a Bidirectional Expandable Cage for Oblique Lateral Interbody Fusion. World Neurosurg. 2023, 180, e644–e652. [Google Scholar] [CrossRef]
- Fushimi, K.; Miyagawa, T.; Iwai, C.; Nozawa, S.; Iinuma, N.; Tanaka, R.; Shirai, G.; Tanahashi, H.; Yokoi, T.; Akiyama, H. Transforaminal Lumbar Interbody Fusion with Double Banana Cages: Clinical Evaluations and Finite Element Model Analysis. Glob. Spine J. 2023, 14, 219256822311657. [Google Scholar] [CrossRef]
- Kumar, P.; Bhardwaj, R.; Matharu, A.L.; Meena, V.K. Comparative Analysis of Porous Titanium Spinal Cage with Conventional Spinal Cages: A Finite Element Study. J. Sci. Ind. Res. 2023, 82, 1134–1142. [Google Scholar] [CrossRef]
- Heary, R.F.; Parvathreddy, N.; Sampath, S.; Agarwal, N. Elastic modulus in the selection of interbody implants. J. Spine Surg. 2017, 3, 163–167. [Google Scholar] [CrossRef]
- Deng, X.; Zeng, Z.; Peng, B.; Yan, S.; Ke, W. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling. Materials 2018, 11, 216. [Google Scholar] [CrossRef]
- Wang, Y.; Müller, W.-D.; Rumjahn, A.; Schmidt, F.; Schwitalla, A.D. Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J. Mech. Behav. Biomed. Mater. 2021, 115, 104250. [Google Scholar] [CrossRef]
- Hu, B.; Duan, X.; Xing, Z.; Xu, Z.; Du, C.; Zhou, H.; Chen, R.; Shan, B. Improved design of fused deposition modeling equipment for 3D printing of high-performance PEEK parts. Mech. Mater. 2019, 137, 103139. [Google Scholar] [CrossRef]
- Torstrick, F.B.; Safranski, D.L.; Burkus, J.K.; Chappuis, J.L.; Lee, C.S.D.; Guldberg, R.E.; Gall, K.; Smith, K. Getting PEEK to Stick to Bone: The Development of Porous PEEK for Interbody Fusion Devices. Tech. Orthop. 2017, 32, 158–166. [Google Scholar] [CrossRef]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the pig as a human biomedical model. Sci. Transl. Med. 2021, 13, eabd5758. [Google Scholar] [CrossRef]
- Cone, S.G.; Warren, P.B.; Fisher, M.B. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng. Part C Methods 2017, 23, 763–780. [Google Scholar] [CrossRef]
- E9−19; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM International: West Conshohocken, PA, USA, 2021.
- ISO 604; Plastics—Determination of Compressive Properties. International Organization for Standardization: Geneva, Switzerland, 2002.
- Uniyal, P.; Sihota, P.; Kumar, N. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone. J. Mech. Behav. Biomed. Mater. 2022, 125, 104910. [Google Scholar] [CrossRef]
- Özkaya, N.; Leger, D.; Goldsheyder, D.; Nordin, M. Fundamentals of Biomechanics; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Hamill, J.; Knutzen, K.M.; Derrick, T.R. Biomechanical Basis of Human Movement, 4th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2015. [Google Scholar]
- Tanguy, A.; Mantisi, B.; Tsamados, M. Vibrational modes as a predictor for plasticity in a model glass. Europhys. Lett. 2010, 90, 16004. [Google Scholar] [CrossRef]
- Kurutzné Kovács, M.; Csákány, T.; Varga, P.; Varga, P.P. Biomechanical evaluation of interbody devices by using mechanical compressive test: PEEK spacers versus PMMA cement spacers. Biomech. Hung. 2013. [Google Scholar] [CrossRef]
- Sastri, V.R. Material Requirements for Plastics used in Medical Devices. In Plastics in Medical Devices; Elsevier: Amsterdam, The Netherlands, 2010; pp. 33–54. [Google Scholar] [CrossRef]
- Gardon, M.; Latorre, A.; Torrell, M.; Dosta, S.; Fernández, J.; Guilemany, J.M. Cold gas spray titanium coatings onto a biocompatible polymer. Mater. Lett. 2013, 106, 97–99. [Google Scholar] [CrossRef]
- Briscoe, B.J.; Stuart, B.H.; Thomas, P.S.; Williams, D.R. A comparison of thermal- and solvent-induced relaxation of poly(ether ether ketone) using Fourier transform Raman spectroscopy. Spectrochim. Acta A 1991, 47, 1299–1303. [Google Scholar] [CrossRef]
- Al Lafi, A.G.; Alzier, A.; Allaf, A.W. Wide angle X-ray diffraction patterns and 2D-correlation spectroscopy of crystallization in proton irradiated poly(ether ether ketone). Heliyon 2021, 7, e07306. [Google Scholar] [CrossRef]
- Knop, C.; Lange, U.; Bastian, L.; Oeser, M.; Blauth, M. Biomechanical compression tests with a new implant for thoracolumbar vertebral body replacement. Eur. Spine J. 2001, 10, 30–37. [Google Scholar] [CrossRef]
- Tencer, A.F.; Hampton, D.; Eddy, S. Biomechanical Properties of Threaded Inserts for Lumbar Interbody Spinal Fusion. Spine 1995, 20, 2408–2414. [Google Scholar] [CrossRef]
- Yoder, J.H.; Auerbach, J.D.; Maurer, P.M.; Erbe, E.M.; Entrekin, D.; Balderston, R.A.; Bertagnoli, R.; Elliott, D. Augmentation Improves Human Cadaveric Vertebral Body Compression Mechanics for Lumbar Total Disc Replacement. Spine 2010, 35, E325–E331. [Google Scholar] [CrossRef]
- Xu, D.S.; Walker, C.T.; Godzik, J.; Turner, J.D.; Smith, W.; Uribe, J.S. Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: A literature review. Ann. Transl. Med. 2018, 6, 104. [Google Scholar] [CrossRef]
- Akbary, K.; Quillo-Olvera, J.; Lin, G.-X.; Jo, H.-J.; Kim, J.-S. Outcomes of Minimally Invasive Oblique Lumbar Interbody Fusion in Patients with Lumbar Degenerative Disease with Rheumatoid Arthritis. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2019, 80, 162–168. [Google Scholar] [CrossRef]
- Huang, S.; Min, S.; Wang, S.; Jin, A. Biomechanical effects of an oblique lumbar interbody fusion combined with posterior augmentation: A finite element analysis. BMC Musculoskelet. Disord. 2022, 23, 611. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-C.; Ryu, K.-S.; Lee, S.-H.; Kim, Y.H.; Lee, S.J.; Park, C.-K. Biomechanical comparison of anterior lumbar interbody fusion: Stand-alone interbody cage versus interbody cage with pedicle screw fixation—A finite element analysis. BMC Musculoskelet. Disord. 2013, 14, 220. [Google Scholar] [CrossRef]
- Lallemant, M.; Kadiakhe, T.; Chambert, J.; Lejeune, A.; Ramanah, R.; Mottet, N.; Jacquet, E. In vitro biomechanical properties of porcine perineal tissues to better understand human perineal tears during delivery. Acta Obs. Gynecol. Scand. 2024, 103, 1386–1395. [Google Scholar] [CrossRef]
- Kong, K.; Davies, R.J.; Young, R.J.; Eichhorn, S.J. Molecular and Crystal Deformation in Poly(aryl ether ether ketone) Fibers. Macromolecules 2008, 41, 7519–7524. [Google Scholar] [CrossRef]
- Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Siddiqui, F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J. Prosthodont. Res. 2016, 60, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, X.; Liu, T.; Dong, L. Biomechanical analysis of a customized lumbar interspinous spacer based on transfacetopedicular screw fixation: A finite element study. Med. Eng. Phys. 2022, 107, 103850. [Google Scholar] [CrossRef]
- Khan, H.A.; Ber, R.; Neifert, S.N.; Kurland, D.B.; Laufer, I.; Kondziolka, D.; Chhabra, A.; Frempong-Boadu, A.K.; Lau, D. Carbon fiber–reinforced PEEK spinal implants for primary and metastatic spine tumors: A systematic review on implant complications and radiotherapy benefits. J. Neurosurg. Spine 2023, 39, 534–547. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Zhang, J.; Kang, J.; Fan, Y.; Zhang, Z.; Shi, J.; Zhang, Z.; Huang, Y.; Liu, S. Customed 3D-printed Polyetheretherketone (PEEK) Implant for Secondary Salvage Reconstruction of Mandibular Defects: Case Report and Literature Review. J. Craniofacial Surg. 2023, 34, 2460–2463. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. [Google Scholar] [CrossRef]
- Desai, J.V.; Mitchell, A.P.; Andes, D.R. Fungal Biofilms, Drug Resistance, and Recurrent Infection. Cold Spring Harb. Perspect. Med. 2014, 4, a019729. [Google Scholar] [CrossRef] [PubMed]
- Tsui, C.; Kong, E.F.; Jabra-Rizk, M.A. Pathogenesis of Candida albicans biofilm. Pathog. Dis. 2016, 74, ftw018. [Google Scholar] [CrossRef]
- Xin, J.; Guo, Q.-S.; Zhang, H.-Y.; Zhang, Z.-Y.; Talmy, T.; Han, Y.-Z.; Xie, Y.; Zhong, Q.; Zhou, S.R.; Li, Y. Candidal periprosthetic joint infection after primary total knee arthroplasty combined with ipsilateral intertrochanteric fracture: A case report. World J. Clin. Cases 2020, 8, 5401–5408. [Google Scholar] [CrossRef]
- Pereira, R.; Santos Fontenelle, R.O.; Brito, E.H.S.; Morais, S.M. Biofilm of Candida albicans: Formation, regulation and resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Brum, R.S.; Labes, L.G.; Volpato, C.Â.M.; Benfatti, C.A.M.; Pimenta, A.d.L. Strategies to Reduce Biofilm Formation in PEEK Materials Applied to Implant Dentistry—A Comprehensive Review. Antibiotics 2020, 9, 609. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q.; Zhang, Y.; He, H.; Xiong, S.; Chen, P.; Li, C.; Wang, L.; Lu, G.; Xu, Y. A dual-functional PEEK implant coating for anti-bacterial and accelerated osseointegration. Colloids Surf. B Biointerfaces 2023, 224, 113196. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sharma, N.; Xu, Z.; Krajewski, S.; Li, P.; Spintzyk, S.; Lv, L.; Zhou, Y.; Thieringer, F.M.; Rupp, F. A balance of biocompatibility and antibacterial capability of 3D printed PEEK implants with natural totarol coating. Dent. Mater. 2024, 40, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Kranjec, C.; Mathew, J.P.; Ovchinnikov, K.; Fadayomi, I.; Yang, Y.; Kjos, M.; Li, W.W. A bacteriocin-based coating strategy to prevent vancomycin-resistant Enterococcus faecium biofilm formation on materials of interest for indwelling medical devices. Biofilm 2024, 8, 100211. [Google Scholar] [CrossRef]
- Costa-Orlandi, C.; Sardi, J.; Pitangui, N.; De Oliveira, H.; Scorzoni, L.; Galeane, M.; Medina-Alarcón, K.P.; Melo, W.C.M.A.; Marcelino, M.Y.; Braz, J.D.; et al. Fungal Biofilms and Polymicrobial Diseases. J. Fungi 2017, 3, 22. [Google Scholar] [CrossRef]
Study Case | Velocity Displacement | Prosthesis | Stop Criterion |
---|---|---|---|
1 | 2 mm/min | Without LC | Load of 1500 N |
2 | 2 mm/min | Without LC | Load of 2500 N |
3 | 2 mm/min | PO | Load of 3000 N |
4 | 2 mm/min | SM | Load of 3000 N |
5 | 2 mm/min | PO | Load of 3000 N |
6 | 2 mm/min | SM | Load of 3000 N |
7 | 2 mm/min | Without LC | Until material fail |
8 | 2 mm/min | Without LC | Load of 1500 N |
9 | 2 mm/min | Without LC | Until material fail |
10 | 2 mm/min | Without LC | Load of 2000 N |
11 | 2 mm/min | SM | Until material fail |
12 | 2 mm/min | SM | Load of 2000 N |
13 | 2 mm/min | SM | Until material fail |
14 | 2 mm/min | PO | Load of 2000 N |
15 | 2 mm/min | PO | Until material fail |
16 | 2 mm/min | PO | Load of 2000 N |
Assignment | ||
---|---|---|
97 | vw | Phonon ϕ-O-ϕ |
135 | vw | Phonon ϕ-CO-ϕ |
632 | w, sh | γCO |
646 | w | γC−H |
669 | w | γC−H |
680 | vw | γC−H |
731 | vw | γC−H |
772 | w | γC−H |
808 | s | γC−H |
825 | w, sh | γC−H |
882 | w | γC−H or ring mode |
932 | w | γC−H, or symmetric νϕ−CO−ϕ |
934 | vw | γC−H |
968 | vw | γC−H |
1010 | vw | Ring stretching mode, or δC−H |
1065 | vw | γC−H |
1096 | vw, sh | δϕ |
1114 | vw | δC−H or νC−O |
1146 | vs | Symmetric νC−O−C |
1161 | w, sh | δC−H or ϕ − O and ϕ − CO modes |
1173 | w, sh | δC−H |
1201 | m | νϕ−O |
1288 | w | νϕ−CO−ϕ or ring mode |
1307 | w | Ring mode |
1414 | vw | ν−CO−, νC−O−C |
1499 | vw | Ring stretching mode |
1576 | w, sh | νC=C |
1595 | vs | νC=C |
1607 | s, sh | νC=C |
1644 | m | νC=O crystalline |
1651 | m, sh | νC=O amorphous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcántara-Arreola, E.A.; Rodríguez-Tovas, A.V.; Hernández-Benítez, J.A.; Torres-SanMiguel, C.R. Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications. Materials 2025, 18, 679. https://doi.org/10.3390/ma18030679
Alcántara-Arreola EA, Rodríguez-Tovas AV, Hernández-Benítez JA, Torres-SanMiguel CR. Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications. Materials. 2025; 18(3):679. https://doi.org/10.3390/ma18030679
Chicago/Turabian StyleAlcántara-Arreola, Elliot Alonso, Aida Verónica Rodríguez-Tovas, José Alejandro Hernández-Benítez, and Christopher René Torres-SanMiguel. 2025. "Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications" Materials 18, no. 3: 679. https://doi.org/10.3390/ma18030679
APA StyleAlcántara-Arreola, E. A., Rodríguez-Tovas, A. V., Hernández-Benítez, J. A., & Torres-SanMiguel, C. R. (2025). Microscopic and Biomechanical Analysis of PEEK Interspinous Spacers for Spinal Fusion Applications. Materials, 18(3), 679. https://doi.org/10.3390/ma18030679