The Influence of the Binder Phase on the Properties of High-Pressure Sintered Diamond Polycrystals or Composites for Cutting Tool Applications
Abstract
:1. Introduction
- -
- Excessive wear of the tool material as a result of physicochemical reactions between the materials (mainly diffusion phenomena);
- -
- Increased cutting resistance, causing excessive heat generation, leading to damage to the processed material and energy losses resulting from increased energy consumption by the machine tool;
- -
- Reduced surface quality of the processed material (high roughness of the processed surface).
- -
- Mechanical mixing of the binder phase with the diamond powder;
- -
- Application of coatings to the powder particles;
- -
- Infiltration from a substrate containing the binder metal or overlay infiltration using a disk prepared from the binder phase material.
2. Nickel, Cobalt, and Iron Binding Phases
2.1. PCD with a Cobalt Bonding Phase
2.2. Thermal Stability of PCD with a Cobalt Bonding Phase
3. Diamond Composites with Silicon
4. Diamond PCD with Other Metals
Diamond Composites with Ti Bonding Phase
5. Solid State Sintered Diamond Composite
5.1. Diamond–SiC
5.2. Diamond with TiC
Binding Phase | Content wt% | Stoichiometry of TiC After Sintering | Hardness HV1 | Compressive Strength MPa | Residual Stresses * |
---|---|---|---|---|---|
TiH2 | 5 | 0.85 | 58.9 ± 2.1 | - | TiC 358 |
CD 594 | |||||
TiC0.92 | 5 | 0.95 | 68.7 ± 1.8 | - | TiC 326 |
CD 556 | |||||
TiC0.92 | 20 | 0.95 | 56.9 ± 4.6 | 139 | - |
TiC0.92 | 30 | 0.95 | 47.8 ± 2.5 | 108 | TiC 289 |
CD 342 | |||||
TiC0.92 | 40 | 0.95 | 35.0 ± 2.5 | 53 | - |
5.3. Diamond Compact MAX Phases and with Silicides
5.4. Diamond Composites with a Boride Binding Phase
6. Alkaline Carbonate Binding Phases in Diamond Composites
7. Electrical and Thermal Conductivity of PCD and Composite Materials
8. Summary
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCD | polycrystalline diamond compacts |
HP-HT | High Pressure-High Temperature |
HP SPS | High Pressure Spark Plasma Sintering |
SHS | Self-Propagating High Temperature Synthesis |
PVD | physical vapor deposition |
References
- Bundy, F.P.; Bassett, W.A.; Weathers, M.S.; Hemley, R.J.; Mao, H.K.; Goncharov, A.F. The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated Through 1994. Carbon 1996, 34, 141–153. [Google Scholar] [CrossRef]
- Novikov, N.W.; Fedosejev, D.V.; Shul’zhenko, A.A.; Bogatyrieva, G.P. Diamond Synthesis/Sintez Almazov; Naukova Dumka: Kiev, Ukraine, 1989; pp. 68–85. [Google Scholar]
- Katzman, H.; Libby, W.F. Sintered diamond compacts with a cobalt binder. Science 1971, 172, 1132–1134. [Google Scholar] [CrossRef] [PubMed]
- Wentorf, H., Jr.; Rocco, W.A. Diamond Tools for Machining. U.S. Patent 3,745,623, 17 July 1973. [Google Scholar]
- Lima, F.T.C.; Bobrovinitchii, G.S.; Filgueira, M. Study of the Diamond 5%wt-Cobalt Sintering under the HPHT Lowest Limit. Mater. Sci. Forum 2005, 498–499, 225–230. [Google Scholar]
- Boyd, F.R.; England, J.L. Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750 °C. J. Geophys. Res. 1960, 65, 741–748. [Google Scholar] [CrossRef]
- Vlach, S.R.F.; Salazar-Naranjo, A.F.; Torres-Corredor, J.S.; de Carvalho, P.R.; Mallmann, G. Calibration of high-temperature furnace assemblies for experiments between 200 and 600 MPa with end-loaded piston-cylinder apparatuses. Braz. J. Geol. 2019, 49, e20180090. [Google Scholar] [CrossRef]
- Brey, G.P.; Weber, R.; Nickel, K.G. Calibrationof a Belt Apparatusto 1800 °C and 6 GPa. J. Geophys. Res. 1990, 95, 603–615, 610. [Google Scholar]
- Haberl, B.; Molaison, J.J.; Neuefeind, J.C.; Daemen, L.L.; Boehler, R. Modified Bridgman anvils for high pressure synthesis and neutron scattering. High Press. Res. 2019, 39, 426–437. [Google Scholar] [CrossRef]
- Liebermann, R.C. Multi-anvil, high pressure apparatus: A half-century of development and progress. High Press. Res. 2011, 31, 493–532. [Google Scholar] [CrossRef]
- Ishii, T.; Liu, Z.; Katsura, T. A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils. Engineering 2019, 5, 434–440. [Google Scholar] [CrossRef]
- Balima, F.; Bellin, F.; Michau, D.; Viraphong, O.; Poulon-Quintin, A.; Chung, U.-C.; Dourfaye, A.; Largeteau, A. High pressure pulsed electric current activated equipment (HP-SPS) for material processing. Mater. Des. 2018, 139, 541–548. [Google Scholar] [CrossRef]
- Jaworska, L.; Karolus, M.; Cygan, S.; Morgiel, J.; Cyboroń, J.; Laszkiewicz-Łukasik, J.; Putyra, P. Influence of pulsed current during high pressure sintering on crystallite size and phase composition of diamond with Ti-B bonding phase. Int. J. Refract. Met. Hard Mater. 2018, 70, 101–106. [Google Scholar] [CrossRef]
- Prakasam, M.; Balima, F.; Cygan, S.; Klimczyk, P.; Jaworska, L.; Largeteau, A. Ultrahigh pressure SPS (HP-SPS) as new syntheses and exploration tool in materials science. In Spark Plasma Sintering: Current Status, New Developments And Challenges A Review of the Current Trends in SPS, 1st ed.; Cao, G., Estournès, C., Garay, J., Orrù, R., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Chapter 9. [Google Scholar]
- Hall, H.T. Sintered diamond: A synthetic carbonado. Science 1970, 169, 868–869. [Google Scholar] [CrossRef] [PubMed]
- Irifune, T.; Kurio, A.; Sakamoto, S.; Inoue, T.; Sumiya, H.; Funakoshi, K. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys. Earth Planet. Inter. 2004, 143–144, 593–600. [Google Scholar] [CrossRef]
- Sumiya, H.; Irifune, T.; Kurio, A.; Sakamoto, S.; Inoue, T. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J. Mater. Sci. 2004, 39, 445–450. [Google Scholar] [CrossRef]
- Shul’zhenko, A.A.; Gargin, V.G.; Shishkin, V.A.; Bochechka, A.A. Diamond-Based Polycrystalline Materials/Polikristaličeskie Materialy na Osnove Almaza; Naukova Dumka: Kiev, Ukraine, 1989; pp. 101–114. [Google Scholar]
- Brooks, C.A. The Properties of Diamond. In The Properties of Diamond; Field, J.E., Ed.; Academic Press: New York, NY, USA, 1979; p. 383. [Google Scholar]
- Savvides, N.; Bell, T.J. Hardness and elastic modulus of diamond and diamond-like carbon films. Thin Solid Films 1993, 228, 289–292. [Google Scholar] [CrossRef]
- Ozbayraktar, S. Polycrystalline diamond and cubic boron nitride. In Handbook of Ceramic Hard Materials; Riedel, R., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2000; Volume 2, p. 212. [Google Scholar]
- Russell, A.M.; Lee, K.L. Structure–Property Relations in Nonferrous Metals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; Chapter 17; pp. 290–302. [Google Scholar]
- Shul’zhenko, A.A. Application of High Pressure to the Structure and Properties of Superficial Materials/VIijanie Vysokich Davlenij na Strukturu i Svojstva Sverchtverdych Materialov. Sbornik Naučnych Trudov; AN USSR: Kiev, Ukraine, 1985; pp. 8–12. [Google Scholar]
- Strong, H.M.; Hanneman, R.E. Crystallization of diamond and graphite. J. Chem. Phys. 1967, 9, 3668–3676. [Google Scholar] [CrossRef]
- Bochechka, A.A.; Gargin, V.G.; Shulzhenko, A.A. The study of HP-HT interaction between Co-base melts and diamond powders. Process Technol. Proc. 1996, 12, 457–462. [Google Scholar]
- Akaishi, M.; Kanda, H.; Sato, Y.; Setaka, N.; Ohsawa, T.; Fukunaga, O. Sintering behavior of the diamond-cobalt system at high temperature and pressure. J. Mater. Sci. 1982, 17, 193–198. [Google Scholar] [CrossRef]
- Park, J.K.; Akaishi, M.; Yamaoka, S.; Fukunaga, O.; Eun, K.Y.; Yoon, D.N. Formation of bridges between diamond particles during sintering in molten cobalt matrix. J. Mater. Sci. 1992, 27, 4695–4697. [Google Scholar] [CrossRef]
- Molinari, A.; Marchetti, F.; Gialanella, S.; Scardi, P.; Tiziani, A. Study of the diamond-matrix interface in hot pressed cobalt-based tools. Mater. Sci. Eng. A 1990, 130, 257–262. [Google Scholar] [CrossRef]
- Zhigadlo, N.D. Spontaneous growth of diamond from MnNi solvent catalyst using opposed anvil type high pressure apparatus. J. Cryst. Growth 2014, 395, 1–4. [Google Scholar] [CrossRef]
- Novikov, N.V. Physical Properties of Diamond: Guide. Fizičeskie Svojstva Almaza: Spravočnik; Naukova Dumka: Kiev, Ukraine, 1987. [Google Scholar]
- Westraadt, J.E.; Sigalas, I.; Neethling, J.H. Characterisation of thermally degraded polycrystalline diamond. Int. J. Refract. Met. Hard Mater. 2015, 48, 286–292. [Google Scholar] [CrossRef]
- Li, G.; Rahim, M.Z.; Pan, W.; Wen, C.; Ding, S. The manufacturing and the application of polycrystalline diamond tools—A comprehensive review. J. Manuf. Process. 2020, 56 Pt A, 400–416. [Google Scholar] [CrossRef]
- Suh, M.; Thompson, C.M.; Brorby, G.P.; Mittal, L.; Proctor, D.M. Inhalation cancer risk assessment of cobalt metal. Regul. Toxicol. Pharmacol. 2016, 79, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Akaishi, M.; Yamaoka, S.; Tanaka, J.; Ohsawa, T. Synthesis of sintered diamond with a high electrical resistivity and high hardness. Mater. Sci. Eng. A 1988, 105–106, 517–523. [Google Scholar] [CrossRef]
- German, R.M. Sintering window and sintering mechanism for diamond. Int. J. Refract. Met. Hard Mater. 2023, 117, 106401. [Google Scholar] [CrossRef]
- Tu, J.; Wang, X.; Zhang, H.; Liu, B. HPHT sintering and performance investigation of PDC with different interfacial geometry substrates for trimodal diamond particle size. Ceram. Int. 2024, 50 Pt A, 19074–19083. [Google Scholar] [CrossRef]
- Roberts, S.G.; Warren, P.D.; Hirsch, P.B. Hardness anisotropies: A new approach. Mater. Sci. Eng. A 1988, 105–106 Pt 1, 19–28. [Google Scholar] [CrossRef]
- Yahiaoui, M.; Gerbaud, L.; Dourfaye, A. A study on PDC drill bits quality. Wear 2013, 298, 32–41. [Google Scholar] [CrossRef]
- Cui, J.; Fang, X.; Dong, X.; Mei, X.; Xu, K.; Fan, Z.; Sun, Z.; Wang, W. Fabrication of PCD Skiving Cutter by UV Nanosecond Laser. Materials 2021, 14, 4027. [Google Scholar] [CrossRef]
- Brecher, C.; Emonts, M.; Hermani, J.-P.; Storms, T. Laser Roughing of PCD. Phys. Procedia 2014, 56, 1107–1114. [Google Scholar] [CrossRef]
- McNamara, D.; Alveen, P.; Carolan, D.; Murphy, N.; Ivanković, A. Fracture toughness evaluation of polycrystalline diamond as a function of microstructure. Eng. Fract. Mech. 2015, 143, 1–16. [Google Scholar] [CrossRef]
- Kim, J.-W.; Baek, M.-S.; Park, H.-S.; Cho, J.-H.; Lee, K.-A. Effect of Diamond Particle Size on the Thermal Shock Property of High Pressure High Temperature Sintered Polycrystalline Diamond Compact. J. Korean Powder Metall. 2016, 23, 364–371. [Google Scholar] [CrossRef]
- Miess, D.; Rai, G. Fracture toughness and thermal resistance of polycrystalline diamond compacts. Mater. Sci. Eng. A 1996, 209, 270–276. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, Z.; Fan, G.; Ji, G.; Zhang, J.; Xu, R.; Shan, A.; Li, Z.; Zhang, D. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Mater. Des. 2016, 90, 845–851. [Google Scholar] [CrossRef]
- Jacobson, P.; Stoupin, S. Thermal expansion coefficient of diamond in a wide temperature range. Diam. Relat. Mater. 2019, 97, 107469. [Google Scholar] [CrossRef]
- Mehan, R.L.; Hibbs, L.E. Thermal degradation of sintering diamond compacts. J. Mater. Sci. 1989, 24, 942–950. [Google Scholar]
- Gu, J.; Huang, K. Role of cobalt of polycrystalline diamond compact (PDC) in drilling process. Diam. Relat. Mater. 2016, 66, 8–101. [Google Scholar] [CrossRef]
- Jaworska, L.; Szutkowska, M.; Klimczyk, P.; Sitarz, M.; Bucko, M.; Rutkowski, P.; Figiel, P.; Lojewska, J. Oxidation, graphitization and thermal resistance of PCD materials with the various bonding phases of up to 800 °C. Int. J. Refract. Met. Hard Mater. 2014, 45, 109–116. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Gippius, A.A. Transformation of diamond to graphite under heat treatment at low pressure. Phase Transit. 2013, 87, 175–192. [Google Scholar]
- Li, J.; Yue, W.; Wang, C. Microstructures and thermal damage mechanisms of sintered polycrystalline diamond compact annealing under ambient air and vacuum conditions. Int. J. Refract. Met. Hard Mater. 2016, 54, 138–147. [Google Scholar] [CrossRef]
- Evans, T.; Sauter, D.H. Etching of diamond surfaces with gases. Philos. Mag.-J. Theor. Exp. Appl. Phys. 1961, 6, 429–440. [Google Scholar] [CrossRef]
- Jaworska, L.; Olszowka-Myalska, A.; Cygan, S.; Figiel, P.; Karolus, M.; Cyboron, J. The influence of tungsten carbide contamination from the milling process on PCD materials oxidation. Int. J. Refract. Met. Hard Mater. 2017, 64, 60–65. [Google Scholar] [CrossRef]
- Wang, X.; Tu, J.; Liu, B. Effects of initial diamond particle on the comprehensive mechanical properties of PDC. Ceram. Int. 2024, in press. [Google Scholar] [CrossRef]
- Wang, B.F.; Wang, S.Y.; Cheng, L.Q. Mechanism of the effect of adhesive Co on the thermal stability of polycrystalline diamond compact. Miner. Metall. Eng. 2009, 29, 90–93. [Google Scholar]
- Wang, S.; Zhang, H.T. Study on mechanism of thermal damage on PCD compacts induced by induction heating. Mater. Sci. Technol. 1997, 13, 492–495. [Google Scholar]
- Chengliang Liu, C.; Kou, Z.; He, D.; Chen, Y.; Wang, X.; Hui, B.; Zhang, R.; Wang, Y. Effect of removing internal residual metallic phases on wear resistance of polycrystalline diamond compacts. Int. J. Refract. Met. Hard Mater. 2012, 31, 187–191. [Google Scholar]
- Kießling, F.; Stopic, S.; Gürmen, S.; Friedrich, B. Recovery of Diamond and Cobalt Powders from Polycrystalline Drawing Die Blanks via Ultrasound Assisted Leaching Process—Part 2: Kinetics and Mechanisms. Metals 2020, 10, 741. [Google Scholar] [CrossRef]
- Zheng, K.; Deng, F.; Sun, J.; Cai, Q.; Guo, Z.; Chen, L.; Lei, Q. Study on cobalt removal process of polycrystalline diamond compact with high efficiency and environmental protection. Int. J. Refract. Met. Hard Mater. 2023, 110, 106029. [Google Scholar] [CrossRef]
- Guo, Z.; Li, C.; Ma, Z.; Deng, F. Preparation, wear resistance, and impact toughness of homoepitaxial diamond film deposited on polycrystalline diamond compact by HFCVD method. Fuller. Nanotub. Carbon Nanostructures 2014, 33, 294–302. [Google Scholar] [CrossRef]
- Hao, C.; Deng, F.-M.; Guo, Z.; Bo, X.; Wang, S. Study of preparation and cutting performance of a chemical vapor deposition diamond coated cutting tool. Thin Solid. Film. 2023, 771, 139801. [Google Scholar]
- Hao, C.; Liu, G. The Influence of Site of Co and Holes in PCD Substrate on Adhesive Strength of Diamond Coating with PCD Substrate. Coatings 2024, 14, 1. [Google Scholar] [CrossRef]
- Ringwood, A.E. Diamond Compacts. US Patent 4985051-A, 15 January 1991. [Google Scholar]
- Voronin, G.A.; Zerda, T.W.; Qian, J.; Zhao, Y.; He, D.; Dub, S.N. Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diam. Relat. Mater. 2003, 12, 1477–1481. [Google Scholar] [CrossRef]
- Osipov, O.S.; Diegues-Skury, A.L.; Bobrovnitchii, G.S. Influence of high pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites. Mater. Res. 2004, 7, 335–337. [Google Scholar] [CrossRef]
- Mlungwane, K.; Sigalas, I.J.; Hermann, M. The development of a diamond—Silicon carbide composite material. IDR 2005, 4, 62–65. [Google Scholar]
- Ekimov, E.A.; Gavriliuk, A.G.; Palosz, B.; Gierlotka, S.; Dluzewski, P.; Tatianin, E.; Kluev, Y.; Naletov, A.M.; Presz, A. High-pressure, high-temperature synthesis of SiC–diamond nanocrystalline ceramics. Appl. Phys. Lett. 2000, 77, 954–956. [Google Scholar] [CrossRef]
- Matthey, B.; Kunze, S.; Hörner, M.; Blug, B.; van Geldern, M.; Michaelis, A.; Herrmann, M. SiC-bonded diamond materials produced by pressureless silicon infiltration. Mater. Res. 2017, 32, 3362–3371. [Google Scholar] [CrossRef]
- Zhu, C.; Lang, J.; Ma, N. Preparation of Si–diamond–SiC composites by in-situ reactive sintering and their thermal properties. Ceram. Int. 2012, 38, 6131–6136. [Google Scholar] [CrossRef]
- Meng, D.; Yan, G.; Yue, W.; Lin, F.; Wang, C. Thermal damage mechanisms of Si-coated diamond powder based polycrystalline diamond. J. Eur. Ceram. Soc. 2018, 38, 4338–4345. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Qi, X.; Huang, H.; Zang, J. Structure and characteristics of Si-coated diamond grits. Diam. Abras. Eng. 2005, 1150, 13–15. [Google Scholar]
- Sun, R.; Wei, X.; Hu, W.; Ying, P.; Wu, Y.; Wang, L.; Chen, S.; Zhang, X.; Ma, M.; Yu, D.; et al. Nanocrystalline Cubic Silicon Carbide: A Route to Superhardness. Small 2022, 18, 2201212. [Google Scholar] [CrossRef] [PubMed]
- Peterson, W.; Davis, P.R.; Hack, H. PCD engineered for the demands of high speed milling. Ind. Diam. Q. 2009, 1, 28–30. [Google Scholar]
- Boland, J.N.; Li, X.S. Microstructural Characterization and Wear Behaviour of Diamond Composite Materials. Materials 2010, 3, 1390–1419. [Google Scholar] [CrossRef]
- Qian, J.; Zhao, Y. Diamond-Silicon Carbide Composite and Method for Preparation Thereof. US6939506, 6 September 2005. [Google Scholar]
- Shul’zhenko, A.A.; Jaworska, L.; Sokolov, A.N.; Gargin, V.G.; Petasyuk, G.A.; Belyavina, N.N.; Zakora, A.P.; Suprun, M.V.; Tkach, V.N. Novel Wear Resistant Superhard Diamond Composite Polycrystalline Material. J. Superhard Mater. 2018, 40, 1–7. [Google Scholar] [CrossRef]
- Novikov, N.V. Synthetic Superhard Materials. Composite Instrumental Superhard Materials/Sintetičeskie Sverchtverdye Materialy. Kompozicionnye Instrumental’nye Sverchtverdye Materialy; Naukova Dumka: Kiev, Ukraine, 1986; Part 2; pp. 26–30. [Google Scholar]
- Gonçalves Laurindo, Q.M.; Medeiros Borges Rosa, J.; da Silva Guimarães, R.; Rainho Teixeira, S.; Silva Lima, L.; Xing, Y.; Filgueira, M. Polycrystalline diamond obtained in the diamond-Mo system with enhanced thermal stability sintered by HPHT, International. Int. J. Refract. Met. Hard Mater. 2024, 118, 106464. [Google Scholar] [CrossRef]
- Gonçalves Laurindo, Q.M.; Medeiros Borges Rosa, J.; da Silva Guimarães, R.; Rafael Delorence Lugon, R.D.; Xing, Y.; Silva Lima, L.; Filgueira, M. Molybdenum as a new binder for polycrystalline diamond (PCD) prepared by HPHT sintering. Ceram. Int. 2023, 49 Pt A, 17313–17322. [Google Scholar] [CrossRef]
- Gonçalves Laurindo, Q.M.; Medeiros Borges Rosa, J.; da Silva Guimarães, R.; Xing, Y.; Franceschini Filho, D.F.; de Andrade, M.C.; Fortulan, C.A.; Silva Lima, L.; de Carvalho, E.A.; Rainho Teixeira, S.; et al. Processing a new diamond composite by high pressure and high temperature with improved thermostability using Mo as a binder. Ceram. Int. 2024, 50 Pt B, 42256–42263. [Google Scholar] [CrossRef]
- Gurgel, D.P.; de Oliveira Rodrigues, M.A.L.; Mashhadikarimi, M.; de Paiva Barreto, L.P.; Filgueira, M.; Bichler, L.; Gomes, U.U. Niobium as a new binder for polycrystalline diamond (PCD) sintered via high pressure-high temperature (HPHT). Int. J. Refract. Met. Hard Mater. 2020, 90, 105234. [Google Scholar] [CrossRef]
- Barreto, L.P.P.; Mashhadikarimi, M.; Rodrigues, M.A.L.O.; Gurgel, D.P.; Gomes, U.U.; Filgueira, M.; Medeiros, R.B.D. Preparation and characterization of sintered polycrystalline diamond (PCD) with 15 wt% Nb binder. Diam. Relat. Mater. 2020, 106, 107867. [Google Scholar] [CrossRef]
- Mashhadikarimi, M.; Medeiros, R.B.D.; Barreto, L.P.P.; Gurgel, D.P.; Gomes, U.U.; Filgueira, M. Development of a novel triple-layer polycrystalline diamond compact. Diam. Relat. Mater. 2020, 111, 108182. [Google Scholar] [CrossRef]
- Medeiros, R.B.D.; Paiva Barreto, L.P.; Gurgel, D.P.; Mashhadikarimi, M.; Silva Guimarães, R.; Filgueira, M.; Gomes, U.U. Study of tantalum as an alternative binder of polycrystalline diamond. Int. J. Refract. Met. Hard Mater. 2021, 99, 105587. [Google Scholar] [CrossRef]
- Stasjuk, L.F. Diamond-titanium interactions at high pressure/Vzaimodejstvie almaza s titanom pri vysokom davlenii. Superhard Mater. 1984, 4, 33. [Google Scholar]
- Jaworska, L.; Gibas, T. Influence of Metal Addition on Diamond Compacts Properties. Powder Metallurgy Word Congress: Paris, France, 1994; Volume 1, pp. 275–278. [Google Scholar]
- Jaworska, L.; Gibas, T.; Królicka, B.; Morgiel, J.; Skrzypek, S.J. Reactions and stresses in polycrystalline diamond-metal and diamond-carbide compacts. High Press. Res. 2000, 18, 271–277. [Google Scholar] [CrossRef]
- Jaworska, L. Selection of the Metallic Binding Phase and the Method of Its Introduction into the Diamond-Metal Composite/Dobór Metalicznej Fazy Wiążącej i Sposobu jej Wprowadzania do Kompozytu Dimentowo-Metalowego; Scientific Papers No. 77; The Institute of Metal Cutting: Krakow, Poland, 1994; pp. 49–88. ISSN 0020-4528. [Google Scholar]
- Wang, Y.H.; Zang, J.B.; Wang, M.Z.; Guan, Y.; Zheng, Y.Z. Properties and applications of Ti-coated diamond grits. J. Mater. Process. Technol. 2002, 129, 369–372. [Google Scholar] [CrossRef]
- Jaworska, L. High-Pressure Sintering of Diamond Powders/Wysokociśnieniowe Spiekanie Proszków Diamentowych; Scientific Papers No. 82; The Institute of Metal Cutting: Krakow, Poland, 2002; pp. 47–98. ISSN 0020-4528. [Google Scholar]
- Lengauer, W. Carbides: Transition-Metal Solid-State Chemistry Update. In Encyclopedia of Inorganic Chemistry, 2nd ed.; Scott, R.A., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2012; p. 2. [Google Scholar]
- Ko, Y.S.; Tsurumi, T.; Fukunaga, O.; Yano, T. High pressure sintering of diamond-SiC composite. J. Mater. Sci. 2001, 36, 469–475. [Google Scholar] [CrossRef]
- Jaworska, L. Diamond composites with TiC, SiC and Ti3SiC2 bonding phase. High Press. Res. 2002, 22, 531–533. [Google Scholar] [CrossRef]
- Jaworska, L. Diamond–Ceramic Bonding Phase Composites for Application in Cutting Tools. Mater. Ceram. 2011, 63, 131–137. [Google Scholar]
- Jaworska, L.; Gibas, T.; Walter, J.; Królicka, B. Study of the diamond—Titanium reaction in PCD materials. In Ceramics: Getting into the 2000’s—Part C, Proceedings of the 9th CIMTEC World Congress, Florence, Italy, 14–19 June 1999; Vincenzini, P., Ed.; Techna Srl.: Florence, Italy, 1999; pp. 419–426. [Google Scholar]
- Hong, S.-M.; Akaishi, M.; Yamaoka, S. High-pressure synthesis of heat-resistant diamond composite using a diamond-TiC0.6 powder mixture. J. Am. Ceram. Soc. 2004, 82, 2497–2501. [Google Scholar] [CrossRef]
- Cygan, S.; Jaworska, L.; Putyra, P.; Ratuszek, W.; Cyboron, J.; Klimczyk, P. Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase. J. Mater. Eng. Perform. 2017, 26, 2593–2598. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Raghy, T.E.L. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996, 79, 1953. [Google Scholar] [CrossRef]
- Barsoum, M.W. MN+1AXN phases: New classes of solids thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Jaworska, L.; Szutkowska, M.; Morgiel, J.; Stobierski, L.; Lis, J. Ti3SiC2 as a bonding phase in diamond composites. J. Mater. Sci. Lett. 2001, 20, 1783–1786. [Google Scholar] [CrossRef]
- Al Nasiri, N.; Patra, N.; Ni, N.; Jayaseelan, D.D.; Lee, W.E. Oxidation Behaviour of SiC/SiC Ceramic Matrix Composites in Air. J. Eur. Ceram. Soc. 2016, 36, 3293–3302. [Google Scholar] [CrossRef]
- Roy, J.; Chandra, S.; Das, S.; Maitra, S. Oxidation Behaviour of Silicon Carbide—A Review. Rev. Adv. Mater. Sci. 2014, 38, 29–39. [Google Scholar]
- Toboła, D.; Czechowski, K.; Laszkiewicz Łukasik, J.; Cygan, S. Burnishing of PM tool steels using diamond composite material. In Proceedings of the Euro PM 2015: International Power Metallurgy Congress and Exhibition, Reims, France, 4–7 October 2015. [Google Scholar]
- Toboła, D.; Rusek, P.; Czechowski, K.; Miller, T.; Duda, K. New indicators of burnished surface evaluation—Reasons of application. Metrol. Meas. Syst. 2015, 22, 263–274. [Google Scholar] [CrossRef]
- Bednarski, P.; Biało, D.; Brostow, W.; Czechowski, K.; Polowski, W.; Rusek, P.; Toboła, D. Improvement of tribological properties of metal matrix composites by means of slide burnishing. Medziagotyra 2013, 19, 367–372. [Google Scholar] [CrossRef]
- Jaworska, L.; Zebala, W.; Rutkowski, P.; Cygan, S.; Klimczyk, P.; Putyra, P. Temperatures during the dry cutting of titanium alloy using diamond composites with ceramic bonding phases. J. Superhard Mater. 2017, 39, 49–56. [Google Scholar] [CrossRef]
- Szutkowska, M.; Jaworska, L.; Boniecki, M.; Stobierski, L.; Rozmus, M. Mechanical behavior of diamond matrix composites with ceramic Ti3(Si, Ge)C2 bonding phase. Int. J. Refract. Met. Hard Mater. 2015, 49, 302–306. [Google Scholar] [CrossRef]
- Tian, W.; Wang, P.; Zhang, G.; Kan, Y.; Li, Y.; Yan, D. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr. Mater. 2005, 54, 841. [Google Scholar] [CrossRef]
- Putyra, P.; Jaworska, L.; Stobierski, L.; Morgiel, J.; Bućko, M.; Rozmus, M.; Wyżga, P. Sintering of diamond composites with SHS-prepared bonding phases. J. Achiev. Mater. Manuf. Eng. 2013, 61, 268–273. [Google Scholar]
- Cherniack, G.B.; Elliot, A.G. High-Temperature Behavior of MoSi2 and Mo5Si3. J. Am. Ceram. Soc. 1964, 47, 136–141. [Google Scholar] [CrossRef]
- Jaworska, L.; Morgiel, J.; Stobierski, L.; Królicka, B.; Maziarz, W. Molybdenum silicides as a bonding phase in diamond composites. Mater. Sci. Forum 2005, 498–499, 587–592. [Google Scholar]
- Jaworska, L.; Stobierski, L.; Morgiel, J.; Królicka, B.; Maziarz, W. Silicides as a bonding phase for diamond compacts. Int. J. Self Propagating High Temp. Synth. 2003, 12, 121–127. [Google Scholar]
- Jaworska, L.; Morgiel, J.; Gibas, T.; Królicka, B. Silicon Compounds as a bonding phase in diamond composites. In Proceedings of the 2000 Powder Metallurgy World Congress, Nagai, Japan, 12–16 November 2000; Kosuge, H.K., Ed.; Part 2. pp. 1332–1335. [Google Scholar]
- Yao, B.; Wang, A.M.; Ding, B.Z.; Hu, Z.Q.; Geng, Y.Z.; Lou, T.P.; Suez, G.L. Study on structure of a new binding phase in polycrystalline diamond. J. Mater. Sci. Lett. 1995, 14, 931–933. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Refractory Carbides and Nitrides, Properties, Characteristics, Processing and Applications; Noyes Publications: Park Ridge, NJ, USA, 1996. [Google Scholar]
- Munro, R.G. Material Properties of Titanium Diboride. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 709. [Google Scholar] [CrossRef]
- Szutkowska, M.; Jaworska, L.; Rozmus, M.; Klimczyk, P.; Kalinka, A. Diamond composites with titanium diboride bonding phase. J. Aust. Ceram. Soc. 2012, 48, 141–143. [Google Scholar]
- Koh, Y.H.; Lee, S.Y.; Kim, H.E. Oxidation behavior of titanium boride at elevated temperatures. J. Am. Ceram. Soc. 2001, 84, 239–241. [Google Scholar] [CrossRef]
- Zakhariev, Z. New Superhard Ternary Borides in Composite Materials. In Metal, Ceramic and Polymeric Composites for Various Uses; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Jaworska, L.; Klimczyk, P.; Szutkowska, M.; Putyra, P.P.; Sitarz, M.; Cygan, S.; Rutkowski, P. Thermal resistance of PCD materials with borides bonding phase. J. Superhard Mater. 2015, 37, 155–165. [Google Scholar] [CrossRef]
- Jivanji, M.; Forbes, R.P.; Sithebe, H.; Westraadt, J.E. Effect of ZrB2 additions on the thermal stability of polycrystalline diamond. arXiv 2023, arXiv:2302.03464. [Google Scholar] [CrossRef]
- Sha, X.; Yue, W.; Zhang, H.; Qin, W.; She, D.; Wang, C. Thermal stability of polycrystalline diamond compact sintered with boron-coated diamond particles. Diam. Relat. Mater. 2020, 104, 107753. [Google Scholar] [CrossRef]
- Akaishi, M.; Kanda, H.; Yamaoka, S. Synthesis of diamond from graphite-carbonate system under very high temperature and pressure. J. Cryst. Growth 1990, 104, 578–581. [Google Scholar] [CrossRef]
- Taniguchi, T.; Dobson, D.; Jones, A.P.; Rabe, R.; Milledge, H.J. Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)2 systems at high pressure of 9–10 GPa region. Mater. Res. 1996, 11, 2622–2632. [Google Scholar] [CrossRef]
- Pal’yanov, Y.N.; Sokol, A.G.; Borzdov, Y.M.; Khokhryakov, A.F.; Shatsky, A.F.; Sobolev, N.V. The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent-catalysts at P = 7 GPa and T = 1700–1750 °C. Diam. Relat. Mater. 1999, 8, 1118–1124. [Google Scholar] [CrossRef]
- Katsura, T.; Ito, E. Melting and subsolidus relations in the MgSiO3–MgCO3 system at high pressures: Implications to evolution of the Earth’s atmosphere. Earth Planet. Sci. Lett. 1990, 99, 110–117. [Google Scholar] [CrossRef]
- Westraadt, J.E.; Dubrovinskaia, N.; Neethling, J.H.; Sigalas, I. Thermally stable polycrystalline diamond sintered with calcium carbonate. Diam. Relat. Mater. 2007, 16, 1929–1935. [Google Scholar] [CrossRef]
- Akaishi, M.; Yamaoka, S.; Ueda, F.; Ohashi, T. Synthesis of polycrystalline diamond compact with magnesium carbonate and its physical properties. Diam. Relat. Mater. 1996, 5, 2–7. [Google Scholar] [CrossRef]
- Qian, J.; McMurray, C.E.; Mukhopadhyay, D.K.; Wiggins, J.K.; Vail, M.A.; Bertagnolli, K.E. Polycrystalline diamond cutters sintered with magnesium carbonate in cubic anvil press. Int. J. Refract. Met. Hard Mater. 2012, 31, 71–75. [Google Scholar] [CrossRef]
- Suito, K.; Namba, J.; Horikawa, T.; Taniguchi, Y.; Sakurai, N.; Kobayashi, M.; Onodera, A.; Shimomura, O.; Kikegawa, T. Phase relations of CaCO3 at high pressure and high temperature. Am. Mineral. 2001, 86, 997–1002. [Google Scholar] [CrossRef]
- Osipov, A.S.; Klimczyk, P.; Cygan, S.; Melniychuk, Y.A.; Petrusha, I.A.; Jaworska, L.; Bykov, A.I. Diamond-CaCO3 and diamond-Li2CO3 materials sintered using the HPHT method. J. Eur. Ceram. 2017, 37, 2553–2558. [Google Scholar] [CrossRef]
- Shul, A.A.; Jaworska, L.; Sokolov, A.N.; Gargin, V.G.; Belyavina, N.N. Phase Transformations of n-Layer Graphenes into Diamond at High Pressures and Temperatures. J. Superhard Mater. 2017, 39, 75–82. [Google Scholar]
- Shul’zhenko, A.A.; Jaworska, L.; Sokolov, A.N.; Gargin, V.G.; Romanko, L.A. Electrically conductive polycrystalline superhard material based on diamond and n-layer graphenes. Chem. Technol. 2016, 59, 69–74. [Google Scholar]
- Shul’zhenko, A.A.; Jaworska, L.; Gargin, V.G.; Sokolov, A.N.; Nikolenko, A.S.; Strelchuk, V.V. Dry mixing of diamond and n-layered graphene powders substantially different in density and particle size. High Press. Res. 2017, 38, 53–61. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, D.; Wang, S.; Dai, W.; Li, S.; Zhu, Y.; Liu, B. Effects of graphene addition on mechanical properties of polycrystalline diamond compact. Ceram. Int. 2020, 46, 11255–11260. [Google Scholar] [CrossRef]
Diamond and the Sintering Conditions | Hardness * | Reference |
---|---|---|
Natural diamond (111) | HV 110 GPa | [19] |
Diamond 6 wt% Co 7 GPa/2000 °C/1 h | HV 80 GPa | [35] |
Diamond + 10% Co + 2%WC | HV 77 GPa | Commercially available material |
Diamond 7 wt% Co + 1.5 wt% W 7.7 GPa/1500 °C/15 min | HV 61.60 GPa | [36] |
Diamond 5 wt% Co 7 GPa/1500 °C/30 s | HV 42 GPa | [5] |
Binding Phase | Hardness HV1 GPa | Young’s Modulus GPa |
---|---|---|
30 wt% NbC | 26.1 ± 2.1 | 323.0 |
30 wt% TaC | 34.5 ± 1.4 | 289.0 |
30 wt% TiC | 47.8 ± 2.4 | 504.5 |
30 wt% SiC | 32.6 ± 4.3 | 366.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworska, L. The Influence of the Binder Phase on the Properties of High-Pressure Sintered Diamond Polycrystals or Composites for Cutting Tool Applications. Materials 2025, 18, 634. https://doi.org/10.3390/ma18030634
Jaworska L. The Influence of the Binder Phase on the Properties of High-Pressure Sintered Diamond Polycrystals or Composites for Cutting Tool Applications. Materials. 2025; 18(3):634. https://doi.org/10.3390/ma18030634
Chicago/Turabian StyleJaworska, Lucyna. 2025. "The Influence of the Binder Phase on the Properties of High-Pressure Sintered Diamond Polycrystals or Composites for Cutting Tool Applications" Materials 18, no. 3: 634. https://doi.org/10.3390/ma18030634
APA StyleJaworska, L. (2025). The Influence of the Binder Phase on the Properties of High-Pressure Sintered Diamond Polycrystals or Composites for Cutting Tool Applications. Materials, 18(3), 634. https://doi.org/10.3390/ma18030634