ι-Carrageenan Manganese Oxide Bionanocomposites as a Promising Solution to Agricultural Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Manganese-Containing Nanocomposites
2.2. Physicochemical Measurements
2.3. Bacterial Culture
2.4. Bactericidal and Bacteriostatic Effect of ι-CG-Mn
3. Results
3.1. Synthesis and Spectroscopic Characterization of the ι-CG-Mn Bionanocomposites
3.2. Thermal Analysis of the Nanocomposite ι-CG-Mn
3.3. Structural Features of the ι-CG-Mn Bionanocomposites
3.4. Antibacterial Activity of ι-CG-Mn Against Cms Phytopathogen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ochsner, A.; Shokuhfar, A. New Frontiers of Nanoparticles and Nanocomposite Materials. Novel Principles and Techniques; Springer: Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Ben Amor, I.; Hemmami, H.; Grara, N.; Aidat, O.; Ben Amor, A.; Zeghoud, S.; Bellucci, S. Chitosan: A green approach to metallic nanoparticle/nanocomposite synthesis and applications. Polymers 2024, 16, 2662. [Google Scholar] [CrossRef] [PubMed]
- Pozdnyakov, A.S.; Emel’yanov, A.I.; Kuznetsova, N.P.; Ermakova, T.G.; Korzhova, S.A.; Khutsishvili, S.S.; Vakul’skaya, T.I.; Prozorova, G.F. Synthesis and characterization of silver containing nanocomposites based on 1-vinyl-1,2,4-triazole and acrylonitrile copolymer. J. Nanomater. 2019, 2019, 4895192. [Google Scholar] [CrossRef]
- Rozenberg, B.A.; Tenne, R. Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112. [Google Scholar] [CrossRef]
- Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review. Polymers 2017, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Mavelil-Sam, R.; Ouseph, E.M.; Morreale, M.; Scaffaro, R.; Thomas, S. Recent developments and formulations for hydrophobic modification of carrageenan bionanocomposites. Polymers 2023, 15, 1650. [Google Scholar] [CrossRef] [PubMed]
- Perfileva, A.I.; Nozhkina, O.A.; Ganenko, T.V.; Graskova, I.A.; Sukhov, B.G.; Artem’ev, A.V.; Trofimov, B.A.; Krutovsky, K.V. Selenium nanocomposites in natural matrices as potato recovery agent. Int. J. Mol. Sci. 2021, 22, 4576. [Google Scholar] [CrossRef]
- Nandini, B.; Mawale, K.S.; Giridhar, P. Nanomaterials in agriculture for plant health and food safety: A comprehensive review on the current state of agro-nanoscience. 3 Biotech 2023, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-based MRI contrast agents: Past, present and future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar] [CrossRef]
- Mahlangeni, N.T.; Moodley, R. Biosynthesis of manganese oxide nanoparticles using Urginea sanguinea and their effects on cytotoxicity and antioxidant activity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2021, 12, 015015. [Google Scholar] [CrossRef]
- Bravo, A.; Anacona, J.R. Metal complexes of the flavonoid quercetin: Antibacterial properties. Transit. Met. Chem. 2001, 26, 20–23. [Google Scholar] [CrossRef]
- Khutsishvili, S.S.; Perfileva, A.I.; Nozhkina, O.A.; Ganenko, T.V.; Krutovsky, K.V. Novel nanobiocomposites based on natural polysaccharides as universal trophic low-dose micronutrients. Int. J. Mol. Sci. 2021, 22, 12006. [Google Scholar] [CrossRef] [PubMed]
- Burnell, J.N. The biochemistry of manganese in plants. In Manganese in Soils and Plants. Developments in Plant and Soil Sciences; Graham, R.D., Hannam, R.J., Uren, N.C., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volume 33. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Jensen, P.E.; Husted, S. Manganese deficiency in plants: The impact on photosystem II. Trends Plant Sci. 2016, 21, 622–632. [Google Scholar] [CrossRef]
- Wallace, T. The diagnosis of mineral deficiencies in plants by visual symptoms a colour atlas and guide. Nature 1943, 152, 709. [Google Scholar] [CrossRef]
- Khutsishvili, S.S.; Perfileva, A.I.; Nozhkina, O.A.; Dyrkach, A.Y. EPR Study of accumulation and toxic effect of iron and copper during the development of Solanum tuberosum L. in vitro. J. Appl. Spectr. 2022, 89, 288–295. [Google Scholar] [CrossRef]
- Trono, G.C., Jr.; Lluisma, A.O. Differences in biomass production and carrageenan yields among four strains of farmed carrageenophytes in Northern Bohol, Philippines. Hydrobiologia 1992, 247, 223–227. [Google Scholar] [CrossRef]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Toumi, S.; Yahoum, M.M.; Lefnaoui, S.; Hadjsadok, A.; Sid, A.N.E.H.; Hassein-Bey, A.H.; Amrane, A.; Zhang, J.; Assadi, A.A.; Mouni, L. Development of new alkylated carrageenan derivatives: Physicochemical, rheological, and emulsification properties assessment. Sustainability 2023, 15, 6473. [Google Scholar] [CrossRef]
- Tuvikene, R. Carrageenans. In Handbook of Hydrocolloids, 3rd ed.; Phillips, G.O., Williams, P.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 767–804. [Google Scholar]
- Khutsishvili, S.S.; Perfileva, A.I.; Kon’kova, T.V.; Lobanova, N.A.; Sadykov, E.K.; Sukhov, B.G. Copper-containing bionanocomposites based on natural raw arabinogalactan as effective vegetation stimulators and agents against phytopathogens. Polymers 2024, 16, 716. [Google Scholar] [CrossRef] [PubMed]
- Eichenlaub, R.; Gartemann, K.-H. The Clavibacter michiganensis subspecies: Molecular investigation of gramm-positive bacterial plant pathogens. Annu. Rev. Phytopathol. 2011, 49, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tambong, J.; Yuan, K.X.; Chen, W.; Xu, H.; Lévesque, C.A.; De Boer, S.H. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses. Int. J. Syst. Evol. Microbiol. 2018, 68, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Khutsishvili, S.S.; Ganenko, T.V.; Sukhov, B.G. Formation and paramagnetic properties of manganese-containing bionanocomposites based on natural polysaccharide matrices. J. Carbohydr. Chem. 2021, 40, 211–225. [Google Scholar] [CrossRef]
- Irawan, V.; Masaki, T.; Toshiyuki, I. Apatite coating of iron oxide nanoparticles by alternate addition of calcium and phosphate solutions: A calcium and carboxylate (Ca-COO) complex-mediated apatite deposition. J. Inorg. Organomet. Polym. 2020, 30, 1132–1140. [Google Scholar] [CrossRef]
- Sadunishvili, T.; Węgierek-Maciejewska, A.; Arseniuk, E.; Gaganidze, D.; Amashukeli, N.; Sturua, N.; Amiranashvili, L.; Kharadze, S.; Kvesitadzeet, G. Molecular, morphological and pathogenic characterization of Clavibacter michiganensis subsp. sepedonicus strains of different geographic origins in Georgia. Eur. J. Plant Pathol. 2020, 158, 195–209. [Google Scholar] [CrossRef]
- Roozen, N.J.M.; Van Vuurde, J.W.L. Development of a semi-selective medium and an immunofluorescence colony-staining procedure for the detection of Clavibacter michiganensis subsp. sepedonicus in cattle manure slurry. Neth. J. Plant Pathol. 1991, 97, 321–334. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Nozhkina, O.A.; Graskova, I.A.; Sukhov, B.G.; Trofimov, B.A. Carrageenan as polymer matrix for selenium nanocomposites. Russ. Chem. Bull. 2020, 4, 876–878. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Nozhkina, O.A.; Graskova, I.A.; Sidorov, A.V.; Lesnichaya, M.V.; Aleksandrova, G.P.; Dolmaa, G.; Klimenkov, I.V.; Sukhov, B.G. Synthesis of selenium and silver nanobiocomposites and their influence on phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus. Russ. Chem. Bull. 2018, 67, 157–163. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Tsivileva, O.M.; Nozhkina, O.A.; Karepova, M.S.; Graskova, I.A.; Ganenko, T.V.; Sukhov, B.G.; Krutovsky, K.V. Effect of natural polysaccharide matrix-based selenium nanocomposites on Phytophthora cactorum and rhizospheric microorganisms. Nanomaterials 2021, 11, 2274. [Google Scholar] [CrossRef]
- Sagdic, O.; Aksoy, A.; Ozkan, G. Evaluation of the antibacterial and antioxidant potentials of gilaburu (Viburnum opulus L.) fruit extract. Acta Aliment. 2006, 35, 487–492. [Google Scholar] [CrossRef]
- Dhital, S.; Amatya, S.P.; Aryal, S.; Neupane, P.; Parajuli, N.; Tamang, M.; Thanait, P. Synthesis of manganese oxide nanoparticles using co-precipitation method and its antimicrobial activity. Int. J. New. Chem. 2024, 11, 243–253. [Google Scholar] [CrossRef]
- Lesnichaya, M.V.; Sukhov, B.G.; Aleksandrova, G.P.; Gasilova, E.R.; Vakul’skaya, T.I.; Khutsishvili, S.S.; Sapozhnikov, A.N.; Klimenkov, I.V.; Trofimov, B.A. Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan. Carbohydr. Polym. 2017, 175, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Khutsishvili, S.S.; Vakul’skaya, T.I.; Aleksandrova, G.P.; Sukhov, B.G. Strong stabilization properties of humic substance matrixes for silver bionanocomposites. Micro Nano Lett. 2017, 12, 418–421. [Google Scholar] [CrossRef]
- Zaafarany, I.; Gobouri, A.; Hassan, R. Oxidation of some sulfated carbohydrates: Kinetics and mechanism of oxidation of chondroitin-4-sulfate by alkaline permanganate with novel synthesis of coordination biopolymer precursor. J. Mater. Sci. Res. 2013, 2, 23–36. [Google Scholar] [CrossRef]
- Kusumaningrum, R.; Widayatno, W.B.; Wismogroho, A.S.; Nugroho, D.W.; Rochman, N.T.; Amal, M.I.; Noviyanto, A. Reactivity of manganese sulphate from Sumbawa manganese ore with precipitating agent: Theoretical and experimental evaluation. J. Phys. Conf. Ser. 2019, 1191, 012052. [Google Scholar] [CrossRef]
- Chitra, R.; Sathya, P.; Selvasekarapandian, S.; Monisha, S.; Moniha, V.; Meyvel, S. Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 2019, 25, 2147–2157. [Google Scholar] [CrossRef]
- Tajmir-Riahi, H.A. Carbohydrate metal ion complexes. Interaction of D-glucono-1,5-lactone with Zn(II), Cd(II), and Hg(II) ions in the solid and aqueous solution, studied by 13C-NMR, FT-IR, and X-ray powder diffraction measurements. Can. J. Chem. 1989, 67, 651–654. [Google Scholar] [CrossRef]
- De Souza, R.F.V.; De Giovani, W.F. Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochim. Acta A 2005, 61, 1985–1990. [Google Scholar] [CrossRef]
- Nikolić, G.S.; Cakić, M.D. Analysis of bioactive oligosaccharide-metal complexes by modern FTIR spectroscopy: Copper complexes. In Fourier Transforms—New Analytical Aproaches and FTIR Strategies; Nikolić, G.S., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Morsy, M.; Gomaa, I.; Abd Elhamid, A.E.M.; Shawkey, H.; Aly, M.A.S.; Elzwawy, A. Ternary nanocomposite comprising MnO2, GQDs, and PANI as a potential structure for humidity sensing applications. Sci. Rep. 2023, 13, 21742. [Google Scholar] [CrossRef]
- Lis, T.; Matuszewski, J. Manganese(II) malonate dihydrate: A reinvestigation. ActaCryst. B 1979, 35, 2212–2214. [Google Scholar] [CrossRef]
- Pereira, L.; Amado, A.M.; Critchley, A.T.; Van de Velde, F.; Ribeiro-Claro, P.J. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll. 2009, 23, 1903–1909. [Google Scholar] [CrossRef]
- Mahardika, A.; Susanto, A.B.; Pramesti, R.; Matsuyoshi, H.; Andriana, B.B.; Matsuda, Y.; Sato, H. Application of imaging Raman spectroscopy to study the distribution of Kappa carrageenan in the seaweed Kappaphycus alvarezii. J. Appl. Phycol. 2019, 31, 1383–1390. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Y.; Cai, L.; Hao, Y.; Zhao, C. Determination of copper, zinc, cadmium and lead in water using co-precipitation method and Raman spectroscopy. J. Innov. Opt. Health Sci. 2013, 6, 1350021. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313. [Google Scholar] [CrossRef]
- Souri, M.; Hoseinpour, V.; Ghaemi, N.; Shakeri, A. Procedure optimization for green synthesis of manganese dioxide nanoparticles by Yucca gloriosa leaf extract. Int. Nano Lett. 2019, 9, 73–81. [Google Scholar] [CrossRef]
- Corrales, J.; Acosta, J.; Castro, S.; Riascos, H.; Serna-Galvis, E.; Torres-Palma, R.A.; Ávila-Torres, Y. Manganese dioxide nanoparticles prepared by laser ablation as materials with interesting electronic, electrochemical, and disinfecting properties in both colloidal suspensions and deposited on fluorine-doped tin oxide. Nanomaterials 2022, 12, 4061. [Google Scholar] [CrossRef]
- Mozaffari, H.; Mahdieh, M.H. Enhancement of ablation rate and production of colloidal nanoparticles by irradiation of metals with nanosecond pulsed laser in presence of external electric field. Phys. Lett. A 2019, 383, 646–654. [Google Scholar] [CrossRef]
- Ingram, D.J.E. Biologycal and Biochemical Applications of Electron Spin Resonance; Adam Hilder Ltd.: London, UK, 1969. [Google Scholar]
- Möncke, D.; Ehrt, D.; Kamitsos, E.I. Spectroscopic study of manganese-containing borate and borosilicate glasses: Cluster formation and phase separation. Phys. Chem. Glasses B 2013, 54, 42–51. [Google Scholar]
- Galyametdinov, Y.G.; Sagdeev, D.O.; Sukhanov, A.A.; Voronkova, V.K.; Shamilov, R.R. Monitoring of the mechanism of Mn ions incorporation into quantum dots by optical and EPR spectroscopy. Photonics 2019, 6, 107. [Google Scholar] [CrossRef]
- Anderson, P.W.; Weiss, P.R. Exchange narrowing in paramagnetic resonance. Rev. Mod. Phys. 1953, 25, 269–276. [Google Scholar] [CrossRef]
- Elsi, S.; Pushpanathan, K. Role of Cu and Mn dopants on d0 ferromagnetism of ZnS nanoparticles. J. Mater. Sci. Mater. 2019, 30, 10792–10807. [Google Scholar] [CrossRef]
- Dumanlı, A.G.; Windle, A.H. Carbon fibres from cellulosic precursors: A review. J Mater Sci. 2012, 47, 4236–4250. [Google Scholar] [CrossRef]
- Huang, X. Fabrication and properties of carbon fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Mishra, D.K.; Tripathy, J.; Behari, K. Synthesis of graft copolymer (κ-carrageenan-g-N,N-dimethylacrylamide) and studies of metal ion uptake, swelling capacity and flocculation properties. Carbohydr. Polym. 2008, 71, 524–534. [Google Scholar] [CrossRef]
- Freile-Pelegrin, Y.; Azamar, J.A.; Robledo, D. Preliminary characterization of carrageenan from the red seaweed Halymenia floresii. J. Aqua. Food Prod. Technol. 2011, 20, 73–83. [Google Scholar] [CrossRef]
- Ma, S.; Chen, L.; Liu, X.; Li, D.; Ye, N.; Wang, L. Thermal behaviour of carrageenan: Kinetic and characteristic studies. Int. J. Green Energy 2012, 9, 13–21. [Google Scholar] [CrossRef]
- Mahmood, W.A.K.; Khan, M.M.R.; Teow, T.C. Effects of reaction temperature on the synthesis and thermal properties of carrageenan ester. J. Phys. Sci. 2014, 25, 123–138. [Google Scholar]
- Huang, Q.; Jin, Y.; Zhang, L.; Cheung, P.C.K.; Kennedy, J.F. Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohydr. Polym. 2007, 70, 324–333. [Google Scholar] [CrossRef]
- Tong, H.; Xia, F.; Feng, K.; Sun, G.; Gao, X.; Sun, L.; Jiang, R.; Tian, D.; Sun, X. Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour. Technol. 2009, 100, 1682–1686. [Google Scholar] [CrossRef]
- Moradali, M.-F.; Mostafavi, H.; Ghods, S.; Hedjaroude, G.-A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int. Immunopharm. 2007, 7, 701–724. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A received medium for rapid growth and bio assays with tobacco tissue culture. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Riggs, P.J.; Chelius, M.K.; Iniguez, A.L.; Kaeppler, S.M.; Triplett, E.W. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 2001, 29, 829–836. [Google Scholar] [CrossRef]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Lesnichaya, M.; Perfileva, A.; Nozhkina, O.; Gazizova, A.; Graskova, I. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles. J. Trace Elem. Med. Biol. 2022, 69, 126904. [Google Scholar] [CrossRef] [PubMed]
- Schefer, L.; Adamcik, J.; Mezzenga, R. Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy. Angew. Chem. Int. Ed. 2014, 53, 5376–5379. [Google Scholar] [CrossRef] [PubMed]
- Rendleman, J.A. Metal-polysaccharide complexes—Part I. Food Chem. 1978, 3, 47–79. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Topuz, F.; Bajer, D.; Mohebi, Z.; Shafieiuon, M.; Heydari, H.; Rawal, S.; Sathiyaseelan, A.; Wang, M.-H.; Khursheed, R.; et al. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes. Biomed. Pharmacother. 2023, 168, 115695. [Google Scholar] [CrossRef]
- Maciel, D.J.; Ferreira, I.L.M.; da Costa, G.M.; da Silva, M.R. Nanocomposite hydrogels based on iota-carrageenan and maghemite: Morphological, thermal and magnetic properties. Eur. Polym. J. 2016, 76, 147–155. [Google Scholar] [CrossRef]
- Aleksandrova, G.P.; Prozorova, G.F.; Klimenkov, I.V.; Sukhov, B.G.; Trofimov, B.A. Effect of metal nanoparticles on the thermal stability and conductivity of nanocomposites. Bull. Russ. Acad. Sci. Phys. 2016, 80, 49–54. [Google Scholar] [CrossRef]
- Khutsishvili, S.S.; Tikhonov, N.I.; Pavlov, D.V.; Vakul’skaya, T.I.; Penzik, M.V.; Kozlov, A.N.; Lesnichaya, M.V.; Aleksandrova, G.P.; Sukhov, B.G. Gold- and silver-containing bionanocomposites based on humic substances extracted from coals: A thermal analysis study. J. Therm. Anal. Calorim. 2019, 137, 1181–1188. [Google Scholar] [CrossRef]
- Medvedeva, A.S.; Safronova, L.P.; Ganenko, T.V.; Sukhov, B.G.; Larina, L.I.; Kon’shina, T.M.; Kotegov, V.P. Synthesis of water-soluble bioconjugate piroxicam-arabinogalactan sulfate. Russ. Chem. Bull. 2014, 63, 2136–2141. [Google Scholar] [CrossRef]
- Ganenko, T.V.; Tantsyrev, A.P.; Sapozhnikov, A.N.; Khutsishvili, S.S.; Vakul’skaya, T.I.; Fadeeva, T.V.; Sukhov, B.G.; Trofimov, B.A. Nanocomposites of silver with arabinogalactan sulfate: Preparation, structure, and antimicrobial activity. Russ. J. Gen. Chem. 2015, 85, 477–484. [Google Scholar] [CrossRef]
- Rónavári, A.; Ochirkhuyag, A.; Igaz, N.; Szerencsés, B.; Ballai, G.; Huliák, I.; Bocz, C.; Kovács, A.; Pfeiffer, I.; Kiricsi, M.; et al. Preparation, characterization and in vitro evaluation of the antimicrobial and antitumor activity of MnOx nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133528. [Google Scholar] [CrossRef]
- Saod, W.M.; Hamid, L.L.; Alaallah, N.J.; Ramizy, A. Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract. Biotechnol. Rep. 2022, 34, e00729. [Google Scholar] [CrossRef]
- Du, T.; Chen, S.; Zhang, J.; Li, T.; Li, P.; Liu, J.; Du, X.; Wang, S. Antibacterial activity of manganese dioxide nanosheets by ROS-mediated pathways and destroying membrane integrity. Nanomaterials 2020, 10, 1545. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Moty’leva, S.M.; Klimenkov, I.V.; Arsent’ev, K.Y.; Graskova, A.I.; Sukhov, B.G.; Trofimov, B.A. Development of antimicrobial nano-selenium biocomposite for protecting potatoes from bacterial phytopathogens. Nanotechnol. Russ. 2017, 12, 553–558. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khutsishvili, S.S.; Gagelidze, N.; Tsokolakyan, A.S.; Yeranosyan, M.A.; Tkesheliadze, E.; Sargsyan, V.A.; Dughashvili, D.; Dzebisashvili, N.; Aronia, K.; Benashvili, A.; et al. ι-Carrageenan Manganese Oxide Bionanocomposites as a Promising Solution to Agricultural Challenges. Materials 2025, 18, 495. https://doi.org/10.3390/ma18030495
Khutsishvili SS, Gagelidze N, Tsokolakyan AS, Yeranosyan MA, Tkesheliadze E, Sargsyan VA, Dughashvili D, Dzebisashvili N, Aronia K, Benashvili A, et al. ι-Carrageenan Manganese Oxide Bionanocomposites as a Promising Solution to Agricultural Challenges. Materials. 2025; 18(3):495. https://doi.org/10.3390/ma18030495
Chicago/Turabian StyleKhutsishvili, Spartak S., Nino Gagelidze, Astghik S. Tsokolakyan, Mkrtich A. Yeranosyan, Eteri Tkesheliadze, Vardan A. Sargsyan, Darejan Dughashvili, Natela Dzebisashvili, Keso Aronia, Archil Benashvili, and et al. 2025. "ι-Carrageenan Manganese Oxide Bionanocomposites as a Promising Solution to Agricultural Challenges" Materials 18, no. 3: 495. https://doi.org/10.3390/ma18030495
APA StyleKhutsishvili, S. S., Gagelidze, N., Tsokolakyan, A. S., Yeranosyan, M. A., Tkesheliadze, E., Sargsyan, V. A., Dughashvili, D., Dzebisashvili, N., Aronia, K., Benashvili, A., Dzanashvili, D., Gurgenidze, I., Tatishvili, G., & Fraga-García, P. (2025). ι-Carrageenan Manganese Oxide Bionanocomposites as a Promising Solution to Agricultural Challenges. Materials, 18(3), 495. https://doi.org/10.3390/ma18030495