Phase Evolution by Annealing of Mechanically Activated Ni, Mn, and Sn Elemental Powders Mixture with the Ni2MnSn Heusler Compound Ratio
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Wederni, A.; Daza, J.; Mbarek, W.B.; Saurina, J.; Escoda, L.; Suñol, J. Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review. Metals 2024, 14, 688. [Google Scholar] [CrossRef]
- Graf, T.; Winterlik, J.; Müchler, L.; Fecher, G.H.; Felser, C.; Parkin, S.S.P. Magnetic Heusler Compounds. In Handbook of Magnetic Materials; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Tavares, S.; Yang, K.; Meyers, M.A. Heusler alloys: Past, properties, new alloys, and prospects. Prog. Mater. Sci. 2023, 132, 101017. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, H.; Xiang, H.; Jia, N.; Yang, B.; Li, Z.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Valence electron concentration and ferromagnetism govern precipitation in NiFeGa magnetic shape memory alloys. Acta Mater. 2024, 264, 119592. [Google Scholar] [CrossRef]
- Kulkova, S.E.; Eremeev, S.V.; Kakeshita, T.; Kulkov, S.S.; Rudenski, G.E. The Electronic Structure and Magnetic Properties of Full- and Half-Heusler Alloys. Mater. Trans. 2006, 47, 599–606. [Google Scholar] [CrossRef]
- Gupta, Y.; Sinha, M.M.; Verma, S.S. First-principles investigation on the electronic, mechanical and lattice dynamical properties of novel AlNiX (X = As and Sb) half-Heusler alloys. Mater. Today Commun. 2021, 26, 101885. [Google Scholar] [CrossRef]
- Ashraf, M.; Afaq, A.; Bakar, A. Physica B: Condensed Matter Band gap engineering and physical properties of half heusler alloy ScNiSb: A DFT insights. Phys. B Condens. Matter 2025, 720, 418005. [Google Scholar] [CrossRef]
- Zarkevich, N.A.; Singh, P.; Smirnov, A.V.; Johnson, D.D. Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys. Acta Mater. 2022, 225, 34–36. [Google Scholar] [CrossRef]
- Barton, L.S.; Lazott, R.T.; Marsten, E.R. Magnetic properties of full Heusler alloys Ni2MnGa1−xZx with Z = Sn or Zn. J. Appl. Phys. 2014, 115, 17A908. [Google Scholar] [CrossRef]
- Elhani, A.; Lafhal, A.; Mouhrach, T.; Choubabi, E.B.; El Bouziani, M. Co2MnGe ferromagnetic Heusler alloys: Magnetic characteristics and hysteretic behavior by mean field theory. Eur. Phys. J. B 2025, 98, 197. [Google Scholar] [CrossRef]
- Liu, G.D.; Dai, X.F.; Liu, H.Y.; Chen, J.L.; Li, Y.X.; Xiao, G.; Wu, G.H. Mn2CoZ (Z = Al,Ga,In,Si,Ge,Sn,Sb) compounds: Structural, electronic, and magnetic properties. Phys. Rev. B 2008, 77, 014424. [Google Scholar] [CrossRef]
- Brzoza, A.; Wierzbicka-Miernik, A.; Czeppe, T.; Cesari, E.; Szczerba, M.J. Composition dependence of martensitic transformation and crystal structure in Ni50Mn25Ga25-xCux Heusler alloys. Intermetallics 2019, 109, 157–161. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Ghomashchi, R.; Xie, Z.; Chen, L. Ferromagnetic shape memory Heusler materials: Synthesis, microstructure characterization and magnetostructural properties. Materials 2018, 11, 988. [Google Scholar] [CrossRef]
- Taylor, R.C.; Tsuei, C.C. Amorphous Heusler alloys the effect of annealing on structure and magnetic and transport properties. Solid State Commun. 1982, 41, 503–506. [Google Scholar] [CrossRef]
- Song, J.; Zhang, J. The structural, electronic, magnetic and elastic properties of the binary Heusler alloys Mn2Z (Z = As, Sb, Bi): A first-principles study. Mater. Res. Express 2017, 4, 116501. [Google Scholar] [CrossRef]
- Rabin, D.; Fuks, D.; Gelbstein, Y. Alloying effect on the lattice thermal conductivity of MNiSn half-Heusler alloys. Phys. Chem. Chem. Phys. 2023, 25, 520–528. [Google Scholar] [CrossRef]
- Popa, F.; Marinca, T.F.; Sechel, N.A.; Frunzӑ, D.I.; Chicinaș, I. Influence of Long Milling Time on the Electrical Resistivity of Nanocrystalline Ni2MnSn Heusler Alloy Obtained by Mechanosynthesis. Nanomaterials 2024, 14, 1156. [Google Scholar] [CrossRef] [PubMed]
- Popa, F.; Cebotari, V.; Marinca, T.F.; Isnard, O.; Chicinaș, I. Crystallographic and magnetic analysis of ordered-disordered Ni51Mn34Sn15 Heusler alloy obtained by mechanical alloying and annealing. J. Alloys Compd. 2023, 964, 171275. [Google Scholar] [CrossRef]
- Kamarád, J.; Kaštil, J.; Friák, M.; Turek, I.; Kubíčková, L.; Kaman, O.; Schneeweiss, O.; Arnold, Z. Magnetization and exchange-bias effect in powders of the Heusler Ni2MnSn-based alloys. J. Alloys Compd. 2024, 976, 173157. [Google Scholar] [CrossRef]
- Hakimi, M.; Kameli, P.; Salamati, H.; Mazaheri, Y. Evolution of microstructural and mechanical properties of nanocrystalline Co2FeAl Heusler alloy prepared by mechanical alloying. Powder Met. 2013, 56, 111–116. [Google Scholar] [CrossRef]
- Nazmunnahar, M.; Ryba, T.; Del Val, J.J.; Ipatov, M.; González, J.; Hašková, V.; Szabó, P.; Samuely, P.; Kravcak, J.; Vargova, Z.; et al. Half-metallic Ni2MnSn Heusler alloy prepared by rapid quenching. J. Magn. Magn. Mater. 2015, 386, 98–101. [Google Scholar] [CrossRef]
- Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler alloys for spintronic devices: Review on recent development and future perspectives. Sci. Technol. Adv. Mater. 2021, 22, 235–271. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, Y.; Sun, J.; Bai, J. Enhancing magnetocaloric performance of Ni50Mn35Sn15 Heusler alloys: Comparative analysis of arc melting and laser induced melting. Mater. Res. Express 2024, 11, 095008. [Google Scholar] [CrossRef]
- Chieda, Y.; Kanomata, T.; Fukushima, K.; Matsubayashi, K.; Uwatoko, Y.; Kainuma, R.; Oikawa, K.; Ishida, K.; Obara, K.; Shishido, T. Magnetic properties of Mn-rich Ni2MnSn Heusler alloys under pressure. J. Alloys Compd. 2009, 486, 51–54. [Google Scholar] [CrossRef]
- Helmholdt, R.B.; Buschow, K.H.J. Crystallographic and magnetic structure of Ni,MnSn and NiMnSn. J. Less-Common Met. 1987, 128, 167–171. [Google Scholar]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012, 11, 620–626. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Wassermann, E.F.; Moya, X.; Manosa, L.; Planes, A. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 2005, 4, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Cavazzini, G.; Cugini, F.; Gruner, M.E.; Bennati, C.; Righi, L.; Fabbrici, S.; Albertini, F.; Solzi, M. Tuning the magnetic and magnetocaloric properties of austenitic Ni-Mn-(In,Sn) Heuslers. Scr. Mater. 2019, 170, 48–51. [Google Scholar] [CrossRef]
- Dan, N.H.; Duc, N.H.; Yen, N.H.; Thanh, P.T.; Bau, L.V.; An, N.M.; Anh, D.T.K.; Bang, N.A.; Mai, N.T.; Anh, P.K.; et al. Magnetic properties and magnetocaloric effect in Ni-Mn-Sn alloys. J. Magn. Magn. Mater. 2015, 374, 372–375. [Google Scholar] [CrossRef]
- Bruno, N.M.; Huang, Y.J.; Dennis, C.L.; Li, J.G.; Shull, R.D.; Ross, J.H.; Chumlyakov, Y.I.; Karaman, I. Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons. J. Appl. Phys. 2016, 120, 075101. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials. Research 2019, 2019, 4219812. [Google Scholar] [CrossRef]
- Gaffet, E.; Le Caër, G. Mechanical Processing for Nanomaterials. In Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004. [Google Scholar]
- Dhanal, S.V.; Ghaste, A.; Akkimardi, V.G.; Kori, S.A. Study of the effect of mechanical alloying on the structure of Ni-Mn-Sn Heusler alloy. J. Mech. Sci. Technol. 2020, 34, 149–154. [Google Scholar] [CrossRef]
- Popa, F.; Chicinaş, H.F.; Marinca, T.F.; Chicinaş, I. Influence of mechanical alloying and heat treatment processing on the Ni2MnSn Heusler alloy structure. J. Alloys Compd. 2017, 716, 137–143. [Google Scholar] [CrossRef]
- Langford, J.I. The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition. In Proceedings of the International Conference Accuracy in Powder Diffraction II, Gaithersburg, MD, USA, 26–29 May 1992. [Google Scholar]
- Vives, S.; Gaffet, E.; Meunier, C. X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng. A 2004, 366, 229–238. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodríguez-Carvajal, J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001, 378–381, 118–123. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Phys. Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Dybkov, V.I. Effect of dissolution on the Ni3Sn4 growth kinetics at the interface of Ni and liquid Sn-base solders. Solid State Phenom. 2008, 138, 153–158. [Google Scholar] [CrossRef]
- Glibin, V.P.; Vorobyova, T.N.; Kuznetsov, B.V. New thermodynamic assessment of nickel-tin solid and liquid alloys. Thermochim. Acta 2010, 507–508, 35–44. [Google Scholar] [CrossRef]
- Panda, S.A.; Barala, S.; Hazra, A.; Gangopadhyay, S. Formation of All Tin Oxide p–n Junctions (SnO–SnO2) during Thermal Oxidation of Thin Sn Films. Phys. Status Solidi 2025, 2400698. [Google Scholar] [CrossRef]
- Liu, H.S.; Wang, J.; Jin, Z.P. Thermodynamic optimization of the Ni-Sn binary system, Calphad Comput. Coupling Phase Diagr. Thermochem. 2004, 28, 363–370. [Google Scholar] [CrossRef]
- Yin, M.; Nash, P.; Chen, W.; Chen, S. Standard enthalpies of formation of selected Ni2YZ Heusler compounds. J. Alloys Compd. 2016, 660, 258–265. [Google Scholar] [CrossRef]
- Tsai, M.H.; Chen, W.M.; Tsai, M.Y.; Kao, C.R. Sn concentration effect on the formation of intermetallic compounds in high-Pb/Ni reactions. J. Alloys Compd. 2010, 504, 341–344. [Google Scholar] [CrossRef]
- Tang, W.M.; He, A.Q.; Liu, Q.; Ivey, D.G. Solid state interfacial reactions in electrodeposited Ni/Sn couples. Int. J. Miner. Met. Mater. 2010, 17, 459–463. [Google Scholar] [CrossRef]















| Annealing Temperature (°C) | Ni (wt. %) | Sn (wt. %) | Mn (wt. %) | Ni2MnSn L21 (wt. %) | Ni3Sn4 (wt. %) | Ni3Sn2 (wt. %) | Ni3Sn (wt. %) |
|---|---|---|---|---|---|---|---|
| as mixed | 40.3 | 40.8 | 18.9 | ||||
| 230 | 10.9 | 1.7 | 27.6 | 30.0 | 29.8 | ||
| 330 | 5.8 | 14.2 | 55.6 | 2.8 | 18.4 | 3.2 | |
| 600 | 8.3 | 7.4 | 63.3 | 2.9 | 16.6 | 1.5 |
| Annealing Temperature (°C) | Ni (wt. %) | Sn (wt. %) | Mn (wt. %) | Ni2MnSn L21 (wt. %) | Ni3Sn4 (wt. %) | Ni3Sn2 (wt. %) | Ni3Sn (wt. %) | MnO (wt. %) | SnO (wt. %) |
|---|---|---|---|---|---|---|---|---|---|
| as milled | 53.2 | 27.4 | 15.3 | 1.7 | 2.7 | ||||
| 230 | 48.0 | 3.4 | 27.7 | 21.0 | |||||
| 330 | 32.3 | 15.1 | 0.9 | 24.2 | 22.0 | ||||
| 600 | 35.9 | 36.4 | 17.4 | 10.3 |
| Annealing Temperature (°C) | Ni (wt. %) | Mn (wt. %) | Ni2MnSn L21 (wt. %) | Ni3Sn4 (wt. %) | Ni3Sn2 (wt. %) | Ni3Sn (wt. %) | MnO (wt. %) |
|---|---|---|---|---|---|---|---|
| as milled | 43.4 | 22.9 | 33.7 | ||||
| 230 | 27.9 | 72.1 | |||||
| 330 | 23.2 | 76.8 | |||||
| 600 | 37.7 | 39.7 | 8.1 | 14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, F.; Man, A.T.A.; Marinca, T.F.; Chicinaș, I. Phase Evolution by Annealing of Mechanically Activated Ni, Mn, and Sn Elemental Powders Mixture with the Ni2MnSn Heusler Compound Ratio. Materials 2025, 18, 5642. https://doi.org/10.3390/ma18245642
Popa F, Man ATA, Marinca TF, Chicinaș I. Phase Evolution by Annealing of Mechanically Activated Ni, Mn, and Sn Elemental Powders Mixture with the Ni2MnSn Heusler Compound Ratio. Materials. 2025; 18(24):5642. https://doi.org/10.3390/ma18245642
Chicago/Turabian StylePopa, Florin, Andra Teodora Anastasia Man, Traian Florin Marinca, and Ionel Chicinaș. 2025. "Phase Evolution by Annealing of Mechanically Activated Ni, Mn, and Sn Elemental Powders Mixture with the Ni2MnSn Heusler Compound Ratio" Materials 18, no. 24: 5642. https://doi.org/10.3390/ma18245642
APA StylePopa, F., Man, A. T. A., Marinca, T. F., & Chicinaș, I. (2025). Phase Evolution by Annealing of Mechanically Activated Ni, Mn, and Sn Elemental Powders Mixture with the Ni2MnSn Heusler Compound Ratio. Materials, 18(24), 5642. https://doi.org/10.3390/ma18245642

