Engineering WO3 Nanostructures via Carboxylic Acid Anodization for Advanced Lithium-Ion Battery Anodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of WO3 Nanostructures
2.2. Physicochemical Characterization
2.3. Electrochemical Characterization
2.4. Application as Anodes in Lithium-Ion Batteries
3. Results and Discussion
3.1. On the Synthesis of the Nanostructures: Anodization Curves Profile
3.2. Physicochemical Characterization of the Nanostructures: Morphological Analysis and Structural Characterization
3.3. Electrochemical Characterization of the Nanostructures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BP. BP Statistical Review of World Energy 2022, 71st ed.; BP: London, UK, 2022; pp. 1–60. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 10 June 2025).
- Materiales Nanoestructurados Para Una Nueva Generación de Baterías Ion-Litio. Researchgate. Available online: https://www.researchgate.net/publication/286246514_Materiales_nanoestructurados_para_una_nueva_generacion_de_baterias_ion-litio (accessed on 10 June 2025).
- Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources 2014, 257, 421–443. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A Mater. 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Balogun, M.S.; Qiu, W.; Luo, Y.; Meng, H.; Mai, W.; Onasanya, A.; Olaniyi, T.K.; Tong, Y. A Review of the Development of Full Cell Lithium-Ion Batteries: The Impact of Nanostructured Anode Materials. Nano Res. 2016, 9, 2823–2851. [Google Scholar] [CrossRef]
- Qi, W.; Shapter, J.G.; Wu, Q.; Yin, T.; Gao, G.; Cui, D. Nanostructured Anode Materials for Lithium-Ion Batteries: Principle, Recent Progress and Future Perspectives. J. Mater. Chem. A Mater. 2017, 5, 19521–19540. [Google Scholar] [CrossRef]
- Sanati, S.; Rezvani, Z.; Habibi, B. The NiGa-LDH@NiWO4 Nanocomposite as an Electrode Material for Pseudocapacitors. New J. Chem. 2018, 42, 18426–18436. [Google Scholar] [CrossRef]
- Yu, L.P.; Zhou, X.H.; Lu, L.; Wu, X.L.; Wang, F.J. Recent Developments of Nanomaterials and Nanostructures for High-Rate Lithium Ion Batteries. ChemSusChem 2020, 13, 5361–5407. [Google Scholar] [CrossRef]
- Pan, Y.; Sanati, S.; Abazari, R.; Noveiri, V.N.; Gao, J.; Kirillov, A.M. Pillared-MOF@NiV-LDH Composite as a Remarkable Electrocatalyst for Water Oxidation. Inorg. Chem. 2022, 61, 20913–20922. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, H.; Wang, X. The Anode Materials for Lithium-Ion and Sodium-Ion Batteries Based on Conversion Reactions: A Review. ChemElectroChem 2023, 10, e202201151. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Wei, C.; Huang, X.; Zhang, X.; Wen, G. MoS2-Based Anode Materials for Lithium-Ion Batteries: Developments and Perspectives. Particuology 2024, 87, 240–270. [Google Scholar] [CrossRef]
- Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–5800. [Google Scholar] [CrossRef]
- Roy, J.J.; Cao, B.; Madhavi, S. A Review on the Recycling of Spent Lithium-Ion Batteries (LIBs) by the Bioleaching Approach. Chemosphere 2021, 282, 130944. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, X.; Liu, B.; Wang, Q.; Wang, Z.; Chen, D.; Shen, G. SnO2@TiO2 Heterojunction Nanostructures for Lithium-Ion Batteries and Self-Powered UV Photodetectors with Improved Performances. ChemElectroChem 2014, 1, 108–115. [Google Scholar] [CrossRef]
- Frenzel, B.; Kurzweil, P.; Rönnebeck, H. Electromobility Concept for Racing Cars Based on Lithium-Ion Batteries and Supercapacitors. J. Power Sources 2011, 196, 5364–5376. [Google Scholar] [CrossRef]
- Tan, D.; Liu, B.; Chen, D.; Shen, G. Si@SiO2 Nanowires/Carbon Textiles Cable-Type Anodes for High-Capacity Reversible Lithium-Ion Batteries. RSC Adv. 2014, 4, 18391–18396. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Nishi, Y. Lithium Ion Secondary Batteries; Past 10 Years and the Future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; García-García, D.M.; Cifre-Herrando, M.; Blasco-Tamarit, E.; García-Antón, J. Facile Preparation of Electrodes Based on WO3 Nanostructures Modified with C and S Used as Anode Materials for Li-Ion Batteries. J. Am. Ceram. Soc. 2023, 106, 2550–2566. [Google Scholar] [CrossRef]
- Rastgoo-Deylami, M.; Javanbakht, M.; Omidvar, H.; Hooshyari, K.; Salarizadeh, P.; Askari, M.B. Nickel-Doped Monoclinic WO3 as High Performance Anode Material for Rechargeable Lithium Ion Battery. J. Electroanal. Chem. 2021, 894, 115383. [Google Scholar] [CrossRef]
- Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, Z.; Ren, D.; Chen, J.; Liu, X.; Feng, X.; Wang, L.; Han, X.; Lu, L.; He, X.; et al. In-Depth Investigation of the Exothermic Reactions between Lithiated Graphite and Electrolyte in Lithium-Ion Battery. J. Energy Chem. 2022, 69, 593–600. [Google Scholar] [CrossRef]
- Du, J.; Li, Q.; Chai, J.; Jiang, L.; Zhang, Q.; Han, N.; Zhang, W.; Tang, B. Review of Metal Oxides as Anode Materials for Lithium-Ion Batteries. Dalton Trans. 2022, 51, 9584–9590. [Google Scholar] [CrossRef]
- Eftekhari, A. Low Voltage Anode Materials for Lithium-Ion Batteries. Energy Storage Mater. 2017, 7, 157–180. [Google Scholar] [CrossRef]
- Li, W.J.; Fu, Z.W. Nanostructured WO3 Thin Film as a New Anode Material for Lithium-Ion Batteries. Appl. Surf. Sci. 2010, 256, 2447–2452. [Google Scholar] [CrossRef]
- Bao, K.; Mao, W.; Liu, G.; Ye, L.; Xie, H.; Ji, S.; Wang, D.; Chen, C.; Li, Y. Preparation and Electrochemical Characterization of Ultrathin WO3−x/C Nanosheets as Anode Materials in Lithium Ion Batteries. Nano Res. 2016, 10, 1903–1911. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Solsona, B.; Erans, M.; Blasco-Tamarit, E.; Sánchez-Tovar, R. Green Biomediated Synthesis of Anodized WO3 Nanocatalysts Using Melia Azedarach Leaves Extract for the Energetic Transition: Solar Hydrogen and Li-Ion Batteries. J. Alloys Compd. 2024, 995, 174845. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Roselló-Márquez, G.; Sánchez-Tovar, R.; Cifre-Herrando, M.; García-Antón, J. Synthesis of WO3 Nanorods through Anodization in the Presence of Citric Acid: Formation Mechanism, Properties and Photoelectrocatalytic Performance. Surf. Coat. Technol. 2021, 422, 127489. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Lucas-Granados, B.; Roselló-Márquez, G.; García-Antón, J. A Simple Method to Fabricate High-Performance Nanostructured WO3 Photocatalysts with Adjusted Morphology in the Presence of Complexing Agents. Mater. Des. 2017, 116, 160–170. [Google Scholar] [CrossRef]
- Abazari, R.; Sanati, S. Room Temperature Synthesis of Tungsten (VI) Tri-Oxide Nanoparticles with One-Pot Multi-Component Reaction in Emulsion Nanoreactors Stabilized by Aerosol-OT. Mater. Lett. 2013, 107, 329–332. [Google Scholar] [CrossRef]
- Da Silva, E.; Estarelles, J.; Roselló-Márquez, G.; Solsona, B.; Fernández-Domene, R.M.; Sánchez-Tovar, R. WO3 Nanostructures for Photoelectrocatalytic Emerging Pollutants Degradation: Influence of Carboxylic Acids on Electrochemical Anodization. Ceram. Int. 2025, 51, 58219–58233. [Google Scholar] [CrossRef]
- Gateman, S.M.; Gharbi, O.; Gomes de Melo, H.; Ngo, K.; Turmine, M.; Vivier, V. On the Use of a Constant Phase Element (CPE) in Electrochemistry. Curr. Opin. Electrochem. 2022, 36, 101133. [Google Scholar] [CrossRef]
- Amano, F.; Koga, S. Electrochemical Impedance Spectroscopy of WO3 Photoanodes on Different Conductive Substrates: The Interfacial Charge Transport between Semiconductor Particles and Ti Surface. J. Electroanal. Chem. 2022, 921, 116685. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Pollet, B.G.; Seo, H. Insertion of Low-Valent Metal into Interstitial Sites of WO3 for Enhanced Photoelectrochemical Activity. Int. J. Hydrogen Energy 2025, 145, 119–128. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Dai, H.; Yu, C.; Wei, X. Impedance Investigation of Silicon/Graphite Anode during Cycling. Batteries 2023, 9, 242. [Google Scholar] [CrossRef]
- Guo, J.; Sun, A.; Chen, X.; Wang, C.; Manivannan, A. Cyclability Study of Silicon–Carbon Composite Anodes for Lithium-Ion Batteries Using Electrochemical Impedance Spectroscopy. Electrochim. Acta 2011, 56, 3981–3987. [Google Scholar] [CrossRef]
- Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M.R. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010, 22, E170–E192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, X.P.; Li, G.R.; Yan, T.Y.; Zhu, H.Y. Electrochemical Lithium Storage of Sodium Titanate Nanotubes and Nanorods. Electrochim. Acta 2008, 53, 7061–7068. [Google Scholar] [CrossRef]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The Success Story of Graphite as a Lithium-Ion Anode Material—Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Cui, L.F.; Hu, L.; Choi, J.W.; Cui, Y. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 2010, 4, 3671–3678. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Wu, X.L.; Guo, Y.G.; Wan, L.J. SnO2-Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries. J. Phys. Chem. C 2009, 113, 14213–14219. [Google Scholar] [CrossRef]
- Kang, C.; Baskaran, R.; Kim, W.G.; Sun, Y.K.; Choi, W. 3 Dimensional Carbon Nanostructures for Li-Ion Battery Anode. MRS Online Proc. Libr. 2013, 1505, 1748. [Google Scholar] [CrossRef]
- He, Y.; Gu, M.; Xiao, H.; Luo, L.; Shao, Y.; Gao, F.; Du, Y.; Mao, S.X.; Wang, C. Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca. Angew. Chem. Int. Ed. Engl. 2016, 55, 6244–6247. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.; Subba Rao, G.V.; Chowdari, B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev. 2013, 113, 5364–5457. [Google Scholar] [CrossRef] [PubMed]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, M.; Gunawardhana, N.; Yoshio, M.; Nakashima, K. WO3 Hollow Nanospheres for High-Lithium Storage Capacity and Good Cyclability. Nano Energy 2012, 1, 503–508. [Google Scholar] [CrossRef]
- Yoon, S.; Woo, S.G.; Jung, K.N.; Song, H. Conductive Surface Modification of Cauliflower-like WO3 and Its Electrochemical Properties for Lithium-Ion Batteries. J. Alloys Compd. 2014, 613, 187–192. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva, E.; Estarelles Nácher, J.; Sanchis, R.; González, V.; Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; Solsona, B. Engineering WO3 Nanostructures via Carboxylic Acid Anodization for Advanced Lithium-Ion Battery Anodes. Materials 2025, 18, 5602. https://doi.org/10.3390/ma18245602
Da Silva E, Estarelles Nácher J, Sanchis R, González V, Roselló-Márquez G, Fernández-Domene RM, Sánchez-Tovar R, Solsona B. Engineering WO3 Nanostructures via Carboxylic Acid Anodization for Advanced Lithium-Ion Battery Anodes. Materials. 2025; 18(24):5602. https://doi.org/10.3390/ma18245602
Chicago/Turabian StyleDa Silva, Elianny, Javier Estarelles Nácher, Rut Sanchis, Vicenta González, Gemma Roselló-Márquez, Ramon Manuel Fernández-Domene, Rita Sánchez-Tovar, and Benjamin Solsona. 2025. "Engineering WO3 Nanostructures via Carboxylic Acid Anodization for Advanced Lithium-Ion Battery Anodes" Materials 18, no. 24: 5602. https://doi.org/10.3390/ma18245602
APA StyleDa Silva, E., Estarelles Nácher, J., Sanchis, R., González, V., Roselló-Márquez, G., Fernández-Domene, R. M., Sánchez-Tovar, R., & Solsona, B. (2025). Engineering WO3 Nanostructures via Carboxylic Acid Anodization for Advanced Lithium-Ion Battery Anodes. Materials, 18(24), 5602. https://doi.org/10.3390/ma18245602

