Flash Lamp Sintering and Optoelectronic Performance of Silver Nanowire Transparent Conductive Films
Highlights
- Single-pulse flash lamp sintering was employed to achieve millisecond-level rapid sintering and enhance the quality of silver nanowire transparent conductive films (AgNW TCFs).
- The influence mechanism of the inherent properties of AgNW TCFs, such as sheet resistance and nanowire diameter, on flash lamp sintering was explored and elucidated.
- The morphological changes of AgNWs during the sintering process were characterized and discussed, revealing a potential intrinsic link between these changes and their crystal structure transformation.
Abstract
1. Introduction
2. Materials and Methods
2.1. Flash Lamp Sintering Process
2.2. Characterization
3. Results and Discussion
3.1. Optimization of Flash Lamp Sintering Parameters
3.2. Effect of AgNW TCFs’ Inherent Characteristics for Flash Lamp Sintering
3.3. Effect of AgNW TCFs’ Inherent Characteristics for Flash Lamp Sintering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S.L.; Ko, H. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens. ACS Nano 2017, 11, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, S.; Lee, J.; Won, P.; Ko, S.; Lee, D. Fabrication of Transparent Conductive Film with Flexible Silver Nanowires Using Roll-to-Roll Slot-Die Coating and Calendering and Its Application to Resistive Touch Panel. Adv. Elect. Mater. 2018, 4, 1800243. [Google Scholar] [CrossRef]
- Liang, G.; Hu, H.; Liao, L.; He, Y.; Ye, C. Highly Flexible and Bright Electroluminescent Devices Based on Ag Nanowire Electrodes and Top-Emission Structure. Adv. Elect. Mater. 2017, 3, 1600535. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, B. Ag Nanowire Electrode with Patterned Dry Film Photoresist Insulator for Flexible Organic Light-Emitting Diode with Various Designs. Mater. Des. 2018, 160, 572–577. [Google Scholar] [CrossRef]
- Xie, M.; Lu, H.; Zhang, L.; Wang, J.; Luo, Q.; Lin, J.; Ba, L.; Liu, H.; Shen, W.; Shi, L.; et al. Fully Solution-Processed Semi-Transparent Perovskite Solar Cells With Ink-Jet Printed Silver Nanowires Top Electrode. Sol. RRL 2018, 2, 1700184. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Chen, T.-J.; Hsiao, L.-J.; Kang, Y.L.; Xu, W.-F.; Tu, W.-C.; Wei, P.-K.; Chu, C.-W. Flexible Indium Tin Oxide-Free Polymer Solar Cells with Silver Nanowire Electrodes. J. Nanoelectron. Optoelectron. 2017, 12, 839–843. [Google Scholar] [CrossRef]
- Lan, W.; Chen, Y.; Yang, Z.; Han, W.; Zhou, J.; Zhang, Y.; Wang, J.; Tang, G.; Wei, Y.; Dou, W.; et al. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads. ACS Appl. Mater. Interfaces 2017, 9, 6644–6651. [Google Scholar] [CrossRef]
- Goak, J.C.; Kim, T.Y.; Kim, D.U.; Chang, K.S.; Lee, C.S.; Lee, N. Stable Heating Performance of Carbon Nanotube/Silver Nanowire Transparent Heaters. Appl. Surf. Sci. 2020, 510, 145445. [Google Scholar] [CrossRef]
- Gao, M.; Xue, D.; Job, R.; De-Sheng, X.; Fahrner, W.R. Thickness Dependence of Resistivity and Optical Reflectance of ITO Films. Chin. Phys. Lett. 2008, 25, 1380–1383. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Z.; Du, X.; Logan, J.M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.R.; Tanner, D.B.; Hebard, A.F.; et al. Transparent, Conductive Carbon Nanotube Films. Science 2004, 305, 1273–1276. [Google Scholar] [CrossRef]
- Zheng, Q.B.; Gudarzi, M.M.; Wang, S.J.; Geng, Y.; Li, Z.; Kim, J.-K. Improved Electrical and Optical Characteristics of Transparent Graphene Thin Films Produced by Acid and Doping Treatments. Carbon 2011, 49, 2905–2916. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Chen, H.; Xue, J. Transparent Electrodes for Organic Optoelectronic Devices: A Review. J. Photon. Energy 2014, 4, 040990. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheun, H.; Choi, S.; Fuentes-Hernandez, C.; Kippelen, B. Optimization of a Polymer Top Electrode for Inverted Semitransparent Organic Solar Cells. Org. Electron. 2011, 12, 827–831. [Google Scholar] [CrossRef]
- Aliprandi, A.; Moreira, T.; Anichini, C.; Stoeckel, M.; Eredia, M.; Sassi, U.; Bruna, M.; Pinheiro, C.; Laia, C.A.T.; Bonacchi, S.; et al. Hybrid Copper-Nanowire–Reduced-Graphene-Oxide Coatings: A “Green Solution” Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto) Electronics. Adv. Mater. 2017, 29, 1703225. [Google Scholar] [CrossRef]
- Zhang, X.; Öberg, V.A.; Du, J.; Liu, J.; Johansson, E.M.J. Extremely Lightweight and Ultra-Flexible Infrared Light-Converting Quantum Dot Solar Cells with High Power-per-Weight Output Using a Solution-Processed Bending Durable Silver Nanowire-Based Electrode. Energy Environ. Sci. 2018, 11, 354–364. [Google Scholar] [CrossRef]
- Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv. Mater. 2011, 23, 1482–1513. [Google Scholar] [CrossRef]
- Papanastasiou, D.T.; Schultheiss, A.; Muñoz-Rojas, D.; Celle, C.; Carella, A.; Simonato, J.; Bellet, D. Transparent Heaters: A Review. Adv. Funct. Mater. 2020, 30, 1910225. [Google Scholar] [CrossRef]
- Hu, L.; Kim, H.S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955–2963. [Google Scholar] [CrossRef]
- Kang, H.; Song, S.-J.; Sul, Y.E.; An, B.-S.; Yin, Z.; Choi, Y.; Pu, L.; Yang, C.-W.; Kim, Y.S.; Cho, S.M.; et al. Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes. ACS Nano 2018, 12, 4894–4902. [Google Scholar] [CrossRef]
- Liu, J.; Guo, L.; Liu, Z.; Shen, Q.; Gao, X.; Zhang, Z.; Liu, X.; Cheng, K.; Du, Z. Improved Thermal/Chemical Stability of Flexible Ag NWs/Chitosan Composite Electrode Integrated by Chemical Welding and Sequential Protection for Better PV Performance. Nanotechnology 2021, 32, 415206. [Google Scholar] [CrossRef]
- Langley, D.P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N.D.; Bellet, D. Metallic Nanowire Networks: Effects of Thermal Annealing on Electrical Resistance. Nanoscale 2014, 6, 13535–13543. [Google Scholar] [CrossRef]
- Song, T.-B.; Chen, Y.; Chung, C.-H.; Yang, Y.; Bob, B.; Duan, H.-S.; Li, G.; Tu, K.-N.; Huang, Y.; Yang, Y. Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts. ACS Nano 2014, 8, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh Khaligh, H.; Goldthorpe, I.A. Hot-Rolling Nanowire Transparent Electrodes for Surface Roughness Minimization. Nanoscale Res. Lett. 2014, 9, 310. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, H.-Y.; Ye, D.; Yu, Y.; Liu, L.; Wu, Y. Nanowelding and Patterning of Silver Nanowires via Mask-Free Atmospheric Cold Plasma-Jet Scanning. Nanotechnology 2017, 28, 225301. [Google Scholar] [CrossRef]
- Liu, G.-S.; Wang, T.; Wang, Y.; Zheng, H.; Chen, Y.; Zeng, Z.; Chen, L.; Chen, Y.; Yang, B.-R.; Luo, Y.; et al. One-Step Plasmonic Welding and Photolithographic Patterning of Silver Nanowire Network by UV-Programable Surface Atom Diffusion. Nano Res. 2022, 15, 2582–2591. [Google Scholar] [CrossRef]
- Li, W.; Yarali, E.; Bakytbekov, A.; Anthopoulos, T.D.; Shamim, A. Highly Transparent and Conductive Electrodes Enabled by Scalable Printing-and-Sintering of Silver Nanowires. Nanotechnology 2020, 31, 395201. [Google Scholar] [CrossRef]
- Sannicolo, T.; Charvin, N.; Flandin, L.; Kraus, S.; Papanastasiou, D.T.; Celle, C.; Simonato, J.-P.; Muñoz-Rojas, D.; Jiménez, C.; Bellet, D. Electrical Mapping of Silver Nanowire Networks: A Versatile Tool for Imaging Network Homogeneity and Degradation Dynamics during Failure. ACS Nano 2018, 12, 4648–4659. [Google Scholar] [CrossRef]
- Kang, H.; Yi, G.-R.; Kim, Y.J.; Cho, J.H. Junction Welding Techniques for Metal Nanowire Network Electrodes. Macromol. Res. 2018, 26, 1066–1073. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, Y.-H.; Kim, J.K.; Baik, H.; Park, J.H.; Lee, J.; Nam, J.; Park, J.H.; Lee, T.-W.; Yi, G.-R.; et al. A Roll-to-Roll Welding Process for Planarized Silver Nanowire Electrodes. Nanoscale 2014, 6, 11828–11834. [Google Scholar] [CrossRef]
- Kim, D.-J.; Shin, H.-I.; Ko, E.-H.; Kim, K.-H.; Kim, T.-W.; Kim, H.-K. Roll-to-Roll Slot-Die Coating of 400 Mm Wide, Flexible, Transparent Ag Nanowire Films for Flexible Touch Screen Panels. Sci. Rep. 2016, 6, 34322. [Google Scholar] [CrossRef]
- Madaria, A.R.; Kumar, A.; Ishikawa, F.N.; Zhou, C. Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique. Nano Res. 2010, 3, 564–573. [Google Scholar] [CrossRef]
- Chung, W.-H.; Kim, S.-H.; Kim, H.-S. Welding of Silver Nanowire Networks via Flash White Light and UV-C Irradiation for Highly Conductive and Reliable Transparent Electrodes. Sci. Rep. 2016, 6, 32086. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.C.; Cai, W.; Cha, J.J.; Mahmood, F.; Connor, S.T.; Greyson Christoforo, M.; Cui, Y.; McGehee, M.D.; Brongersma, M.L. Self-Limited Plasmonic Welding of Silver Nanowire Junctions. Nat. Mater. 2012, 11, 241–249. [Google Scholar] [CrossRef]
- Perelaer, J.; Abbel, R.; Wünscher, S.; Jani, R.; Van Lammeren, T.; Schubert, U.S. Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure: From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds. Adv. Mater. 2012, 24, 2620–2625. [Google Scholar] [CrossRef]
- Park, J.H.; Hwang, G.; Kim, S.; Seo, J.; Park, H.; Yu, K.; Kim, T.; Lee, K.J. Flash-Induced Self-Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester. Adv. Mater. 2017, 29, 1603473. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Hong, Y.; Wang, H.; Cui, K.; Ding, J.; Guo, X. Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating. Coatings 2025, 15, 95. [Google Scholar] [CrossRef]
- Li, L.; Gao, S.; Zhang, Z.; Tang, Y.; Yang, P. Effect of Thermal Shock on ZnO/Ag/ZnO Nano-Multilayers: Photoelectric Property Degradation. Sol. Energy 2024, 269, 112331. [Google Scholar] [CrossRef]
- Wehbe, H.; Schmidt, L.O.; Kandula, M.W.; Dilger, K. Investigation of the Effects of Pulse Width Modulation on the Laser Sintering of LATP for All-Solid-State Batteries. Appl. Phys. A 2022, 128, 889. [Google Scholar] [CrossRef]
- Holm, R. Electric Contacts: Theory and Applications; Reprint of the Fourth Completely Rewritten ed. 1967, 3rd printing 2000; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 978-3-540-03875-7. [Google Scholar]
- Ergun, R.; Amit, I.; Gallant, A.J.; Atkinson, D.; Zeze, D.A. Understanding the Relevance of Percolation on Charge Transport in Random ZnO Nanowire Networks. Adv. Elect. Mate. 2025, 11, e00242. [Google Scholar] [CrossRef]
- Chung, W.-H.; Park, S.-H.; Joo, S.-J.; Kim, H.-S. UV-Assisted Flash Light Welding Process to Fabricate Silver Nanowire/Graphene on a PET Substrate for Transparent Electrodes. Nano Res. 2018, 11, 2190–2203. [Google Scholar] [CrossRef]
- Kim, J.; Nam, Y.S.; Song, M.H.; Park, H.W. Large Pulsed Electron Beam Welded Percolation Networks of Silver Nanowires for Transparent and Flexible Electrodes. ACS Appl. Mater. Interfaces 2016, 8, 20938–20945. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Yeh, W.-Y.; Chen, P.-C. Highly Foldable Transparent Conductive Films Composed of Silver Nanowire Junctions Prepared by Chemical Metal Reduction. Nanotechnology 2014, 25, 285601. [Google Scholar] [CrossRef]
- Kong, T.; Kang, B.; Wang, W.; Deckert-Gaudig, T.; Zhang, Z.; Deckert, V. Thermal-Effect Dominated Plasmonic Catalysis on Silver Nanoislands. Nanoscale 2024, 16, 10745–10750. [Google Scholar] [CrossRef]
- Wei, Y.; Fan, X.; Chen, D.; Zhu, X.; Yao, L.; Zhao, X.; Tang, X.; Wang, J.; Zhang, Y.; Qiu, T.; et al. Probing Oxidation Mechanisms in Plasmonic Catalysis: Unraveling the Role of Reactive Oxygen Species. Nano Lett. 2024, 24, 2110–2117. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Yu, H.; Zhang, H.; Liu, L.; Shi, Y.; Tian, H.; Xie, S.; Li, J. Structural Properties of Silver Nanorods with Fivefold Symmetry. Micron 2004, 35, 469–474. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Zhang, H.; Liu, L.; Yu, H.; Tian, H.; Xie, S.; Li, J. Transmission-Electron-Microscopy Study on Fivefold Twinned Silver Nanorods. J. Phys. Chem. B 2004, 108, 12038–12043. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, J.; Hong, Y.; Cui, K.; Xiao, Y.; Guo, X. Flash Lamp Sintering and Optoelectronic Performance of Silver Nanowire Transparent Conductive Films. Materials 2025, 18, 5456. https://doi.org/10.3390/ma18235456
Shan J, Hong Y, Cui K, Xiao Y, Guo X. Flash Lamp Sintering and Optoelectronic Performance of Silver Nanowire Transparent Conductive Films. Materials. 2025; 18(23):5456. https://doi.org/10.3390/ma18235456
Chicago/Turabian StyleShan, Jiaqi, Ye Hong, Kaixuan Cui, Yifan Xiao, and Xingzhong Guo. 2025. "Flash Lamp Sintering and Optoelectronic Performance of Silver Nanowire Transparent Conductive Films" Materials 18, no. 23: 5456. https://doi.org/10.3390/ma18235456
APA StyleShan, J., Hong, Y., Cui, K., Xiao, Y., & Guo, X. (2025). Flash Lamp Sintering and Optoelectronic Performance of Silver Nanowire Transparent Conductive Films. Materials, 18(23), 5456. https://doi.org/10.3390/ma18235456

