Carbon-Based Electrodes for Supercapacitors, with a Focus on Carbon Nanotubes—A Brief Overview
Abstract
1. Introduction
| Parameters | Electric Double-Layer Supercapacitor | Lithium-Ion Battery | Refs. |
|---|---|---|---|
| Charge capacity | 1–5000 F/3.04 Wh | 1000–100,000 F/12.1 Wh | [16,17] |
| Energy density [Wh/kg] | 1–20 | 20–300 | [14,15,16,17] |
| Power density [W/kg] | 2000–10,000 | 50–200 | [11,16] |
| Maximum power [W] | 7020 | 18 | [16] |
| Charge time [s] | 1–60 | 3600–18,000 | [16] |
| Self-discharge | 5–60% per two weeks | <4% per month | [18,19] |
| Nominal voltage [V] | 2.7–3.0 | 3.6 | [16,17] |
| Cycle life (charge–discharge cycles) | 500,000–1,000,000 | 250–1000 | [20,21] |
| Temperature range [°C] | −40 to 70 | −20 to 60 | [22,23] |
| Price per kWh [US-$] | 5000–10,000 | 100–1000 | [16,24] |
2. Supercapacitors—A Brief History
3. Principles of Supercapacitor Technology
3.1. Characteristics and Principles of Supercapacitors
3.2. Classification of Supercapacitors
3.3. Characteristics of Supercapacitors
4. Carbon-Based Electrode Materials for Supercapacitors
| Type of Electrode | Sample Name | Capacitance (F/g) | Energy Density (Wh/kg) | Power Density (kW/kg) | Retention/Cycles (%) | Ref. |
|---|---|---|---|---|---|---|
| Graphene | rGO | 585.44 | 81.31 | 62.64 | 94.14/5000 | [207] |
| NiO@srGO/CNT | 1605.82 | N/A | N/A | 71.56/10,000 | [197] | |
| NMGO//MWCNT | 90 | 28 | 0.75 | 88/6000 | [208] | |
| 4NG | 405 | 68.1 | 558.5 | 87.7/5000 | [209] | |
| Activated Carbon | RPC | 56 | 44 | 0.564 | N/A | [210] |
| HAC-WS | 225 | 72.2 | 1.547 | 88/2500 | [211] | |
| hCNC-5.0 | 281 | 153 | 1.000 | 93/100,000 | [212] | |
| Carbon Nanotubes | CNT Am-241 | 489.6 | 68 | 9.992 | 98.5/5000 | [213] |
| VACNT | 8 | 0.20 | 0.450 | 92/3000 | [154] | |
| Fe3O4/CNT | 187.1 | N/A | N/A | 80.2/1000 | [204] | |
| V2O5/VACNT | 284 | 32.3 | 0.118 | 76/5000 | [203] | |
| P3MT/VACNT | 170 | 52 | 10 | 95/19,000 | [202] | |
| PC-CNT | 248 | 8.42 | 0.250 | 97.3/3000 | [214] | |
| SWCNT/TiO2 | 144 | 20 | 10.000 | 95/50,000 | [215] | |
| CNT-SC | 375.4 | 75.1 | N/A | 93.1/100 | [216] | |
| CNT/TiNiW-SC | 549.1 | 336.7 | N/A | 95.4/100 | ||
| CNT-NF | 250.5 | 68.19 | 27.994 | 92.42/10,000 | [217] | |
| G/CNT-SP | 500.16 | 69.46 | N/A | 87/1000 | [218] | |
| MnO2@CNT | 219 | N/A | N/A | 88/7000 | [219] | |
| Carbon Nano-onions | Co3O4/CNO | 402.35 | N/A | N/A | 76/9000 | [220] |
| PEDOT-MoO3@CNO | 428 | N/A | N/A | 76/6000 | [131] | |
| RFM-CNO-C | 160 | 5 | 0.43 | 97/3000 | [221] |
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 1D | One-Dimensional |
| 2D | Two-Dimensional |
| 3D | Three-Dimensional |
| AC | Activated Carbon |
| Al | Aluminum |
| Au | Gold |
| CCVD | Catalyst-Supported Chemical Vapor Deposition |
| CNO | Carbon Nano-onion |
| CNT | Carbon Nanotube |
| CO2 | Carbon Dioxide |
| CT | Total Capacity |
| CV | Cyclic Voltammetry |
| CVD | Chemical Vapor Deposition |
| DC | Direct Current |
| DWCNT | Double-Walled Carbon Nanotube |
| EDL | Electric Double Layer |
| EDLC | Electric Double-Layer Capacitor |
| EIS | Electrochemical Impedance Spectroscopy |
| GCD | Galvanostatic Charge–Discharge |
| GO | Graphene Oxide |
| HAC | Hierarchical Activated Carbon |
| hCNC | Hierarchical Carbon Nanocages |
| H2SO4 | Sulfuric Acid |
| IHP | Inner Helmholtz Plane |
| KOH | Potassium Hydroxide |
| MnO2 | Manganese(IV) Dioxide |
| MWCNT | Multi-Walled Carbon Nanotube |
| Na2SO4 | Sodium Sulfate |
| Nb2O5 | Niobium Pentoxide |
| NEC | Nippon Electric Company |
| NG | Nitrogen Doped Graphene |
| NiO | Nickel(II) Oxide |
| OHP | Outer Helmholtz Plane |
| P3MT | Poly(3-Methylthiophene) |
| PC | Pseudocapacitor |
| RES | Equivalent Series Resistance |
| rGO | Reduced Graphene Oxide |
| RPC | Rose Petal-Derived Porous Carbons |
| RuO2 | Ruthenium(IV) Oxide |
| SC | Supercapacitor |
| SS | Stainless Steal |
| SWCNT | Single-Walled Carbon Nanotube |
| TEM | Transmission Electron Microscopy |
| Ti | Titanium |
| V2O5 | Vanadium(V) Oxide |
| VACNT | Vertically Aligned Carbon Nanotube |
| Vo | Operating Voltage |
References
- Sadiq, M.; Nawaz, M.A.; Chien, F.; Sharif, A.; Hanif, S. Enhancing Environmental Quality and Mitigating Climate Change: A Renewable Energy Policy Perspective Based on Evidence from Most Polluted European Countries. Gondwana Res. 2025, 148, 96–105. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y. Economic and Environmental Assessment of Different Energy Storage Methods for Hybrid Energy Systems. Sci. Rep. 2025, 15, 25592. [Google Scholar] [CrossRef] [PubMed]
- Sultanova, G.; Naser, H. Navigating Sustainability: How Export Diversification Influences Ecological Footprints in Developed and Developing Countries. Discov. Sustain. 2025, 6, 316. [Google Scholar] [CrossRef]
- Rezaei, S.; Hormaza Mejia, A.; Wu, Y.; Reed, J.; Brouwer, J. Global Warming Impacts of the Transition from Fossil Fuel Conversion and Infrastructure to Hydrogen. Appl. Energy 2025, 397, 126363. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, M.; Chen, X. Supercapacitors for Renewable Energy Applications: A Review. Micro Nano Eng. 2023, 21, 100229. [Google Scholar] [CrossRef]
- Argyrou, M.C.; Christodoulides, P.; Kalogirou, S.A. Energy Storage for Electricity Generation and Related Processes: Technologies Appraisal and Grid Scale Applications. Renew. Sustain. Energy Rev. 2018, 94, 804–821. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef]
- Huhn, E.; Braxtan, N.; Chen, S.-E.; Bombik, A.; Zhao, T.; Ma, L.; Sherman, J.; Roghani, S. Lithium-Ion Battery Thermal Runaway Suppression Using Water Spray Cooling. Energies 2025, 18, 2709. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, C.; Li, X.; Zhang, H.; Li, P. Energy Management Strategy of Fuel Cell/Battery/Supercapacitors Hybrid Storage System Based on Adaptive Real-Time Wavelets-Fuzzy Logic. IFAC-PapersOnLine 2024, 58, 373–378. [Google Scholar] [CrossRef]
- Akin, M.; Zhou, X. Recent Advances in Solid-state Supercapacitors: From Emerging Materials to Advanced Applications. Int. J. Energy Res. 2022, 46, 10389–10452. [Google Scholar] [CrossRef]
- Volfkovich, Y.M. High Power Supercapacitors. Review. J. Electroanal. Chem. 2024, 963, 118290. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Mahmood, A.; khan, Q.; Zhang, Y.; Ouyang, Z.; Guo, Z.; Zhang, H. Going Green with Batteries and Supercapacitor: Two Dimensional Materials and Their Nanocomposites Based Energy Storage Applications. Prog. Solid. State Chem. 2020, 58, 100254. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon Properties and Their Role in Supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Alla, R.R.; Kandipati, R.; Kotapati, A. Super Capacitors for Energy Storage: Progress, Applications and Challenges. J. Energy Storage 2022, 49, 104194. [Google Scholar] [CrossRef]
- Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N.R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater. 2021, 11, 2101126. [Google Scholar] [CrossRef]
- Libich, J.; Sedlaříková, M.; Máca, J.; Čudek, P.; Kazda, T.; Fafilek, G.; Rodríguez, J.J.S. Supercapacitors vs. Lithium-ion Batteries: Properties and Applications. Chem. Ing. Tech. 2024, 96, 279–285. [Google Scholar] [CrossRef]
- Jayananda, D.; Kularatna, N.; Steyn-Ross, D.A. Supercapacitor-assisted LED (SCALED) Technique for Renewable Energy Systems: A Very Low Frequency Design Approach with Short-term DC-UPS Capability Eliminating Battery Banks. IET Renew. Power Gener. 2020, 14, 1559–1570. [Google Scholar] [CrossRef]
- R-Smith, N.A.-Z.; Moertelmaier, M.; Gramse, G.; Kasper, M.; Ragulskis, M.; Groebmeyer, A.; Jurjovec, M.; Brorein, E.; Zollo, B.; Kienberger, F. Fast Method for Calibrated Self-Discharge Measurement of Lithium-Ion Batteries Including Temperature Effects and Comparison to Modelling. Energy Rep. 2023, 10, 3394–3401. [Google Scholar] [CrossRef]
- Kowal, J.; Avaroglu, E.; Chamekh, F.; Šenfelds, A.; Thien, T.; Wijaya, D.; Sauer, D.U. Detailed Analysis of the Self-Discharge of Supercapacitors. J. Power Sources 2011, 196, 573–579. [Google Scholar] [CrossRef]
- Lee, N.; Nee, C.H.; Yap, S.S.; Tham, K.K.; You, A.H.; Yap, S.L.; Mohd Arof, A.K.B. Capacity Sizing of Embedded Control Battery–Supercapacitor Hybrid Energy Storage System. Energies 2022, 15, 3783. [Google Scholar] [CrossRef]
- Ariyarathna, T.; Kularatna, N.; Gunawardane, K.; Jayananda, D.; Steyn-Ross, D.A. Development of Supercapacitor Technology and Its Potential Impact on New Power Converter Techniques for Renewable Energy. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 267–276. [Google Scholar] [CrossRef]
- Subasinghage, K.; Gunawardane, K.; Padmawansa, N.; Kularatna, N.; Moradian, M. Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications. Energies 2022, 15, 7752. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Singha Roy, P.K.; Karayaka, H.B.; He, J.; Yu, Y.-H. Economic Comparison between Battery and Supercapacitor for Hourly Dispatching Wave Energy Converter Power. In Proceedings of the 2020 52nd North American Power Symposium (NAPS), Tempe, AZ, USA, 11–13 April 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Liu, K.; Zhao, Q.; Liang, Q.; Zhang, M.; Si, C. Ultralight MXene/Carbon Nanotube Composite Aerogel for High-Performance Flexible Supercapacitor. Adv. Compos. Hybrid. Mater. 2023, 6, 108. [Google Scholar] [CrossRef]
- Loh, K.H.; Liew, J.; Liu, L.; Goh, Z.L.; Pershaanaa, M.; Kamarulazam, F.; Bashir, S.; Ramesh, K.; Ramesh, S. A Comprehensive Review on Fundamentals and Components of Zinc-Ion Hybrid Supercapacitors. J. Energy Storage 2024, 81, 110370. [Google Scholar] [CrossRef]
- Goikolea, E.; Mysyk, R. Nanotechnology in Electrochemical Capacitors. In Emerging Nanotechnologies in Rechargeable Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–169. [Google Scholar] [CrossRef]
- Dissanayake, K.; Kularatna-Abeywardana, D. A Review of Supercapacitors: Materials, Technology, Challenges, and Renewable Energy Applications. J. Energy Storage 2024, 96, 112563. [Google Scholar] [CrossRef]
- Pandya, D.J.; Muthu Pandian, P.; Kumar, I.; Parmar, A.; Sravanthi; Singh, N.; Abd Al-saheb, A.J.; Arun, V. Supercapacitors: Review of Materials and Fabrication Methods. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Behzadi pour, G.; Fekri aval, L.; Kianfar, E. Comparative Studies of Nanosheet-Based Supercapacitors: A Review of Advances in Electrodes Materials. Case Stud. Chem. Environ. Eng. 2024, 9, 100584. [Google Scholar] [CrossRef]
- Iversen, P.; Lacks, D.J. A Life of Its Own: The Tenuous Connection between Thales of Miletus and the Study of Electrostatic Charging. J. Electrost. 2012, 70, 309–311. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on Supercapacitors: Technologies and Materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Heilbron, J.L. Electricity in the 17th and 18th Centuries; University of California Press: Oakland, CA, USA, 1979. [Google Scholar] [CrossRef]
- Kurzweil, P.; Schottenbauer, J.; Schell, C. Past, Present and Future of Electrochemical Capacitors: Pseudocapacitance, Aging Mechanisms and Service Life Estimation. J. Energy Storage 2021, 35, 102311. [Google Scholar] [CrossRef]
- Rashid Khan, H.; Latif Ahmad, A. Supercapacitors: Overcoming Current Limitations and Charting the Course for next-Generation Energy Storage. J. Ind. Eng. Chem. 2025, 141, 46–66. [Google Scholar] [CrossRef]
- Miao, L.; Song, Z.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Recent Advances in Carbon-Based Supercapacitors. Mater. Adv. 2020, 1, 945–966. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Becker, H.I. Low Voltage Electrolytic Capacitor. U.S. Patent US2800616A, 23 June 1957. [Google Scholar]
- Pershaanaa, M.; Bashir, S.; Ramesh, S.; Ramesh, K. Every Bite of Supercap: A Brief Review on Construction and Enhancement of Supercapacitor. J. Energy Storage 2022, 50, 104599. [Google Scholar] [CrossRef]
- Khan, H.A.; Tawalbeh, M.; Aljawrneh, B.; Abuwatfa, W.; Al-Othman, A.; Sadeghifar, H.; Olabi, A.G. A Comprehensive Review on Supercapacitors: Their Promise to Flexibility, High Temperature, Materials, Design, and Challenges. Energy 2024, 295, 131043. [Google Scholar] [CrossRef]
- Spyker, R.L.; Nelms, R.M. Optimization of Double-Layer Capacitor Arrays. IEEE Trans. Ind. Appl. 2000, 36, 194–198. [Google Scholar] [CrossRef]
- Namisnyk, A.M.; Zhu, J.G. A Survey of Electrochemical Supercapacitor Technology. In Proceedings of the Australian Universities Power Engineering Conference, Christchurch, New Zealand, 28 September 2003; University of Canterbury: Christchurch, New Zealand, 2003; pp. 51–56. [Google Scholar]
- Conway, B.E. Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. J. Electrochem. Soc. 1991, 138, 1539–1548. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Liu, Y.; Shearing, P.R.; He, G.; Brett, D.J.L. Supercapacitors: History, Theory, Emerging Technologies, and Applications. In Advances in Sustainable Energy; Springer International Publishing: Cham, Switzerland, 2021; pp. 417–449. [Google Scholar] [CrossRef]
- Dutta, A.; Mitra, S.; Basak, M.; Banerjee, T. A Comprehensive Review on Batteries and Supercapacitors: Development and Challenges since Their Inception. Energy Storage 2023, 5, e339. [Google Scholar] [CrossRef]
- Yaseen, M.; Khattak, M.A.K.; Humayun, M.; Usman, M.; Shah, S.S.; Bibi, S.; Hasnain, B.S.U.; Ahmad, S.M.; Khan, A.; Shah, N.; et al. A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies 2021, 14, 7779. [Google Scholar] [CrossRef]
- Shah, S.S.; Niaz, F.; Ehsan, M.A.; Das, H.T.; Younas, M.; Khan, A.S.; Rahman, H.U.; Nayem, S.M.A.; Oyama, M.; Aziz, M.A. Advanced Strategies in Electrode Engineering and Nanomaterial Modifications for Supercapacitor Performance Enhancement: A Comprehensive Review. J. Energy Storage 2024, 79, 110152. [Google Scholar] [CrossRef]
- Huang, J.; Xie, Y.; You, Y.; Yuan, J.; Xu, Q.; Xie, H.; Chen, Y. Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Adv. Funct. Mater. 2023, 33, 2213095. [Google Scholar] [CrossRef]
- Ahmad, F.; Zahid, M.; Jamil, H.; Khan, M.A.; Atiq, S.; Bibi, M.; Shahbaz, K.; Adnan, M.; Danish, M.; Rasheed, F.; et al. Advances in Graphene-Based Electrode Materials for High-Performance Supercapacitors: A Review. J. Energy Storage 2023, 72, 108731. [Google Scholar] [CrossRef]
- Manfo, T.A.; Laaksonen, H. A Review of Carbon-Based Hybrid Materials for Supercapacitors. New Carbon. Mater. 2025, 40, 81–110. [Google Scholar] [CrossRef]
- Shah, S.S.; Aziz, M.A.; Ogawa, T.; Zada, L.; Marwat, M.A.; Abdullah, S.M.; Khan, A.J.; Usman, M.; Khan, I.; Said, Z.; et al. Revolutionary NiCo Layered Double Hydroxide Electrodes: Advances, Challenges, and Future Prospects for High-Performance Supercapacitors. Mater. Sci. Eng. R Rep. 2025, 166, 101041. [Google Scholar] [CrossRef]
- He, X.; Zhang, X. A Comprehensive Review of Supercapacitors: Properties, Electrodes, Electrolytes and Thermal Management Systems Based on Phase Change Materials. J. Energy Storage 2022, 56, 106023. [Google Scholar] [CrossRef]
- Czagany, M.; Hompoth, S.; Keshri, A.K.; Pandit, N.; Galambos, I.; Gacsi, Z.; Baumli, P. Supercapacitors: An Efficient Way for Energy Storage Application. Materials 2024, 17, 702. [Google Scholar] [CrossRef]
- Hwang, G.; Lee, K.; Kim, J.; Lee, K.-J.; Lee, S.; Kim, M. Energy Management Optimization of Series Hybrid Electric Bus Using an Ultra-Capacitor and Novel Efficiency Improvement Factors. Sustainability 2020, 12, 7354. [Google Scholar] [CrossRef]
- Varghese, A.M.; Pradhan, R.P. A Comprehensive Review and Research Agenda on the Adoption, Transition, and Procurement of Electric Bus Technologies into Public Transportation. Sustain. Energy Technol. Assess. 2025, 75, 104218. [Google Scholar] [CrossRef]
- Choi, Y.; Bhakta, S. Optimal Sizing of Grid-Tied Hybrid Solar Tracking Photovoltaic/Hydrogen Fuel Cell Energy Systems for Electric Vehicle Charging Stations in South Korea: A Techno-Economic Study. J. Clean. Prod. 2025, 486, 144511. [Google Scholar] [CrossRef]
- Tong, H.Y. Development of a Driving Cycle for a Supercapacitor Electric Bus Route in Hong Kong. Sustain. Cities Soc. 2019, 48, 101588. [Google Scholar] [CrossRef]
- Du, J.; Li, F.; Li, J.; Wu, X.; Song, Z.; Zou, Y.; Ouyang, M. Evaluating the Technological Evolution of Battery Electric Buses: China as a Case. Energy 2019, 176, 309–319. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, F.; Ouyang, M.G. Impact of Control Strategy on Battery Degradation for a Plug-in Hybrid Electric City Bus in China. Energy 2016, 116, 1020–1030. [Google Scholar] [CrossRef]
- Chemali, E.; Preindl, M.; Malysz, P.; Emadi, A. Electrochemical and Electrostatic Energy Storage and Management Systems for Electric Drive Vehicles: State-of-the-Art Review and Future Trends. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1117–1134. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feteira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhao, K.; Chi, H.-Y.; Shen, Y.; Song, S.; Hsu, K.-J.; Chevalier, M.; Shi, W.; Agrawal, K.V. Electrochemical-Repaired Porous Graphene Membranes for Precise Ion-Ion Separation. Nat. Commun. 2024, 15, 4006. [Google Scholar] [CrossRef]
- Umoru, S.E.; Osafile, O.E. A Comparative Study of the Electrochemical Performance of Spinels and Chalcogenides in Supercapacitors. Proc. Indian. Natl. Sci. Acad. 2025. [Google Scholar] [CrossRef]
- Berrueta, A.; Ursua, A.; Martin, I.S.; Eftekhari, A.; Sanchis, P. Supercapacitors: Electrical Characteristics, Modeling, Applications, and Future Trends. IEEE Access 2019, 7, 50869–50896. [Google Scholar] [CrossRef]
- Wayu, M. Manganese Oxide Carbon-Based Nanocomposite in Energy Storage Applications. Solids 2021, 2, 232–248. [Google Scholar] [CrossRef]
- Pameté, E.; Köps, L.; Kreth, F.A.; Pohlmann, S.; Varzi, A.; Brousse, T.; Balducci, A.; Presser, V. The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading. Adv. Energy Mater. 2023, 13, 2301008. [Google Scholar] [CrossRef]
- Dubey, P.; Shrivastav, V.; Maheshwari, P.H.; Sundriyal, S. Recent Advances in Biomass Derived Activated Carbon Electrodes for Hybrid Electrochemical Capacitor Applications: Challenges and Opportunities. Carbon 2020, 170, 1–29. [Google Scholar] [CrossRef]
- Ghosh, A.; Lee, Y.H. Carbon-Based Electrochemical Capacitors. ChemSusChem 2012, 5, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.V.T.; Bin Faheem, A.; Kwak, K.; Lee, K.-K. Propionitrile as a Single Organic Solvent for High Voltage Electric Double-Layer Capacitors. J. Power Sources 2020, 463, 228134. [Google Scholar] [CrossRef]
- Thakur, A.K.; Majumder, M.; Patole, A.S.; Patole, S.P. Commercial Aspects, Safety Regulations, Environmental and Health Impacts, and Recycling Strategies of Supercapacitors. In Low-Carbon Supercapacitors; Royal Society of Chemistry: London, UK, 2023; pp. 477–498. [Google Scholar] [CrossRef]
- Kharabati, S.; Saedodin, S. A Systematic Review of Thermal Management Techniques for Electric Vehicle Batteries. J. Energy Storage 2024, 75, 109586. [Google Scholar] [CrossRef]
- Chu, B.; Liu, S.; You, L.; Liu, D.; Huang, T.; Li, Y.; Yu, A. Enhancing the Cycling Stability of Ni-Rich LiNi0.6Co0.2Mn0.2O2 Cathode at a High Cutoff Voltage with Ta Doping. ACS Sustain. Chem. Eng. 2020, 8, 3082–3090. [Google Scholar] [CrossRef]
- Lobato-Peralta, D.R.; Okoye, P.U.; Alegre, C. A Review on Carbon Materials for Electrochemical Energy Storage Applications: State of the Art, Implementation, and Synergy with Metallic Compounds for Supercapacitor and Battery Electrodes. J. Power Sources 2024, 617, 235140. [Google Scholar] [CrossRef]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy Storage Systems: A Review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Querne, C.; Vignal, T.; Pinault, M.; Banet, P.; Mayne-L’Hermite, M.; Aubert, P.-H. A Comparative Study of High Density Vertically Aligned Carbon Nanotubes Grown onto Different Grades of Aluminum—Application to Supercapacitors. J. Power Sources 2023, 553, 232258. [Google Scholar] [CrossRef]
- Vessally, E.; Rzayev, R.M.; Niyazova, A.A.; Aggarwal, T.; Rahimova, K.E. Overview of Recent Developments in Carbon-Based Nanocomposites for Supercapacitor Applications. RSC Adv. 2024, 14, 40141–40159. [Google Scholar] [CrossRef]
- Şahin, M.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Waqas Hakim, M.; Fatima, S.; Rizwan, S.; Mahmood, A. Pseudo-Capacitors: Introduction, Controlling Factors and Future; Springer: Berlin/Heidelberg, Germany, 2022; pp. 53–70. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy Env. Sci. 2014, 7, 1597. [Google Scholar] [CrossRef]
- Huang, H.; Niederberger, M. Towards Fast-Charging Technologies in Li+/Na+ Storage: From the Perspectives of Pseudocapacitive Materials and Non-Aqueous Hybrid Capacitors. Nanoscale 2019, 11, 19225–19240. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Augustyn, V.; Dunn, B. The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5. Adv. Energy Mater. 2012, 2, 141–148. [Google Scholar] [CrossRef]
- Conway, B.E.; Angerstein-Kozlowska, H. The Electrochemical Study of Multiple-State Adsorption in Monolayers. Acc. Chem. Res. 1981, 14, 49–56. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Wu, J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem. Rev. 2022, 122, 10821–10859. [Google Scholar] [CrossRef]
- Beknalkar, S.A.; Teli, A.M.; Bhat, T.S.; Pawar, K.K.; Patil, S.S.; Harale, N.S.; Shin, J.C.; Patil, P.S. Mn3O4 Based Materials for Electrochemical Supercapacitors: Basic Principles, Charge Storage Mechanism, Progress, and Perspectives. J. Mater. Sci. Technol. 2022, 130, 227–248. [Google Scholar] [CrossRef]
- Panchu, S.J.; Raju, K.; Swart, H.C. Emerging Two–Dimensional Intercalation Pseudocapacitive Electrodes for Supercapacitors. ChemElectroChem 2024, 11, e202300810. [Google Scholar] [CrossRef]
- Gao, L.; Li, C.; Huang, W.; Mei, S.; Lin, H.; Ou, Q.; Zhang, Y.; Guo, J.; Zhang, F.; Xu, S.; et al. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020, 32, 1703–1747. [Google Scholar] [CrossRef]
- Tundwal, A.; Kumar, H.; Binoj, B.J.; Sharma, R.; Kumar, G.; Kumari, R.; Dhayal, A.; Yadav, A.; Singh, D.; Kumar, P. Developments in Conducting Polymer-, Metal Oxide-, and Carbon Nanotube-Based Composite Electrode Materials for Supercapacitors: A Review. RSC Adv. 2024, 14, 9406–9439. [Google Scholar] [CrossRef] [PubMed]
- Girirajan, M.; Bojarajan, A.K.; Pulidindi, I.N.; Hui, K.N.; Sangaraju, S. An Insight into the Nanoarchitecture of Electrode Materials on the Performance of Supercapacitors. Coord. Chem. Rev. 2024, 518, 216080. [Google Scholar] [CrossRef]
- Thomas, S.A.; Cherusseri, J.; Rajendran, D.N. 2D Nickel Sulfide Electrodes with Superior Electrochemical Thermal Stability along with Long Cyclic Stability for Supercapatteries. Energy Technol. 2024, 12, 2301641. [Google Scholar] [CrossRef]
- Maria Mahimai, B.; Li, E.; Pang, J.; Zhang, J.; Zhang, J. Interface Engineering in Conducting Polymers-Based Supercapacitor. J. Energy Storage 2024, 96, 112598. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Lipkin, M.S.; Shchegolkov, A.V. Preparation of WO3 Films on Titanium and Graphite Foil for Fuel Cell and Supercapacitor Applications by Electrochemical (Cathodic) Deposition Method. Russ. J. Gen. Chem. 2022, 92, 1161–1167. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S.S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Schoetz, T.; Gordon, L.W.; Ivanov, S.; Bund, A.; Mandler, D.; Messinger, R.J. Disentangling Faradaic, Pseudocapacitive, and Capacitive Charge Storage: A Tutorial for the Characterization of Batteries, Supercapacitors, and Hybrid Systems. Electrochim. Acta 2022, 412, 140072. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, R.; Joanni, E.; Singh, R.K.; Shim, J.-J. Advances in Pseudocapacitive and Battery-like Electrode Materials for High Performance Supercapacitors. J. Mater. Chem. A Mater. 2022, 10, 13190–13240. [Google Scholar] [CrossRef]
- Surendran, V.; Arya, R.S.; Vineesh, T.V.; Babu, B.; Shaijumon, M.M. Engineered Carbon Electrodes for High Performance Capacitive and Hybrid Energy Storage. J. Energy Storage 2021, 35, 102340. [Google Scholar] [CrossRef]
- Himadri Reddy, P.C.; Amalraj, J.; Ranganatha, S.; Patil, S.S.; Chandrasekaran, S. A Review on Effect of Conducting Polymers on Carbon-Based Electrode Materials for Electrochemical Supercapacitors. Synth. Met. 2023, 298, 117447. [Google Scholar] [CrossRef]
- Afif, A.; Rahman, S.M.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Kularatna, N.; Subasinghage, K.; Gunawardane, K.; Jayananda, D.; Ariyarathna, T. Supercapacitor-Assisted Techniques and Supercapacitor-Assisted Loss Management Concept: New Design Approaches to Change the Roadmap of Power Conversion Systems. Electronics 2021, 10, 1697. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices. Sustainability 2023, 15, 10891. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A. Importance and Challenges of Hydrothermal Technique for Synthesis of Transition Metal Oxides and Composites as Supercapacitor Electrode Materials. J. Energy Storage 2021, 44, 103295. [Google Scholar] [CrossRef]
- Hardianto, Y.P.; Shah, S.S.; Shuaibu, A.D.; Mohamed, M.; Sarker, S.; Alzahrani, A.S.; Aziz, M.A. Modeling Supercapacitors with the Simplified Randles Circuit: Analyzing Electrochemical Behavior through Cyclic Voltammetry and Galvanostatic Charge-Discharge. Electrochim. Acta 2025, 513, 145552. [Google Scholar] [CrossRef]
- Zeng, L.; Wu, T.; Ye, T.; Mo, T.; Qiao, R.; Feng, G. Modeling Galvanostatic Charge–Discharge of Nanoporous Supercapacitors. Nat. Comput. Sci. 2021, 1, 725–731. [Google Scholar] [CrossRef]
- Gaire, M.; Liang, K.; Luo, S.; Subedi, B.; Adireddy, S.; Schroder, K.; Farnsworth, S.; Chrisey, D.B. Nanostructured Manganese Oxides Electrode with Ultra-Long Lifetime for Electrochemical Capacitors. RSC Adv. 2020, 10, 16817–16825. [Google Scholar] [CrossRef]
- Permatasari, F.A.; Irham, M.A.; Bisri, S.Z.; Iskandar, F. Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials 2021, 11, 91. [Google Scholar] [CrossRef]
- Vivier, V.; Orazem, M.E. Impedance Analysis of Electrochemical Systems. Chem. Rev. 2022, 122, 11131–11168. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Balducci, A.; Belanger, D.; Brousse, T.; Long, J.W.; Sugimoto, W. Perspective—A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices. J. Electrochem. Soc. 2017, 164, A1487–A1488. [Google Scholar] [CrossRef]
- Noori, A.; El-Kady, M.F.; Rahmanifar, M.S.; Kaner, R.B.; Mousavi, M.F. Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chem. Soc. Rev. 2019, 48, 1272–1341. [Google Scholar] [CrossRef]
- Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21–25. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, N. Supercapacitors Performance Evaluation. Adv. Energy Mater. 2015, 5, 1401401. [Google Scholar] [CrossRef]
- Park, H.W.; Roh, K.C. Recent Advances in and Perspectives on Pseudocapacitive Materials for Supercapacitors–A Review. J. Power Sources 2023, 557, 232558. [Google Scholar] [CrossRef]
- Patel, A.; Patel, S.K.; Singh, R.S.; Patel, R.P. Review on Recent Advancements in the Role of Electrolytes and Electrode Materials on Supercapacitor Performances. Discov. Nano 2024, 19, 188. [Google Scholar] [CrossRef]
- Fialkov, A.S. Carbon Application in Chemical Power Sources. Russ. J. Electrochem. 2000, 36, 345–366. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef]
- Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-Doped Activated Carbon for a High Energy Hybrid Supercapacitor. Energy Env. Sci. 2016, 9, 102–106. [Google Scholar] [CrossRef]
- Gamby, J.; Taberna, P.L.; Simon, P.; Fauvarque, J.F.; Chesneau, M. Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. J. Power Sources 2001, 101, 109–116. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Rafat, M. Supercapacitor Performance of Activated Carbon Derived from Rotten Carrot in Aqueous, Organic and Ionic Liquid Based Electrolytes. J. Saudi Chem. Soc. 2018, 22, 993–1002. [Google Scholar] [CrossRef]
- Shamsuddin, M.S.; Yusoff, N.R.N.; Sulaiman, M.A. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 2016, 19, 558–565. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Balathanigaimani, M.S.; Shim, W.-G.; Lee, M.-J.; Kim, C.; Lee, J.-W.; Moon, H. Highly Porous Electrodes from Novel Corn Grains-Based Activated Carbons for Electrical Double Layer Capacitors. Electrochem. Commun. 2008, 10, 868–871. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Fernandes, M.; Rocha, G.J.M.; Órfão, J.J.M.; Teixeira, J.A.; Roberto, I.C. Production, Characterization and Application of Activated Carbon from Brewer’s Spent Grain Lignin. Bioresour. Technol. 2010, 101, 2450–2457. [Google Scholar] [CrossRef]
- Minakshi, M.; Mujeeb, A.; Whale, J.; Evans, R.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Shrestha, L.K. Synthesis of Porous Carbon Honeycomb Structures Derived from Hemp for Hybrid Supercapacitors with Improved Electrochemistry. Chempluschem 2024, 89, e202400408. [Google Scholar] [CrossRef]
- Rajasekaran, S.J.; Grace, A.N.; Jacob, G.; Alodhayb, A.; Pandiaraj, S.; Raghavan, V. Investigation of Different Aqueous Electrolytes for Biomass-Derived Activated Carbon-Based Supercapacitors. Catalysts 2023, 13, 286. [Google Scholar] [CrossRef]
- Temesgen, T.; Bekele, E.T.; Gonfa, B.A.; Tufa, L.T.; Sabir, F.K.; Tadesse, S.; Dessie, Y. Advancements in Biomass Derived Porous Carbon Materials and Their Surface Influence Effect on Electrode Electrochemical Performance for Sustainable Supercapacitors: A Review. J. Energy Storage 2023, 73, 109293. [Google Scholar] [CrossRef]
- Iijima, S. Direct Observation of the Tetrahedral Bonding in Graphitized Carbon Black by High Resolution Electron Microscopy. J. Cryst. Growth 1980, 50, 675–683. [Google Scholar] [CrossRef]
- Kaur, S.; Krishnan, A.; Chakraborty, S. Recent Advances and Challenges of Carbon Nano Onions (CNOs) for Application in Supercapacitor Devices (SCDs). J. Energy Storage 2023, 71, 107928. [Google Scholar] [CrossRef]
- Xiao, J.; Ouyang, G.; Liu, P.; Wang, C.X.; Yang, G.W. Reversible Nanodiamond-Carbon Onion Phase Transformations. Nano Lett. 2014, 14, 3645–3652. [Google Scholar] [CrossRef]
- Muduli, S.; Pani, T.K.; Garlapati, K.K.; Martha, S.K. Carbon Nano-Onions Triggering the Supercapacitive Performance of PEDOT-Wrapped MoO3 Microstructures in Hybrid Ultracapacitors. J. Energy Storage 2024, 95, 112396. [Google Scholar] [CrossRef]
- Almeida Gonzalez, H.D.; Hernandez Ojeda, J.; Corcho-Valdés, A.L.; Padron-Ramirez, I.; Perez Cruz, M.; Iriarte-Mesa, C.; Desdin-Garcia, L.F.; Gobbo, P.; Antuch, M. The Promise of Carbon Nano-Onions: Preparation, Characterization and Their Application in Electrochemical Sensing. Anal. Sens. 2025, 5, e202400035. [Google Scholar] [CrossRef]
- Pakpum, C.; Wongpanya, N.; Newyawong, P.; Saensuk, O.; Budkhod, P.; Butburee, P.; Wanachantararak, P.; Kanchiang, K. Synthesis and Characterization of Carbon Nano-Onions-like Structure Produced by C2H2 Microwave Plasma and Application in Bio-Imaging. Mater. Chem. Phys. 2025, 343, 131033. [Google Scholar] [CrossRef]
- Anjos, D.M.; McDonough, J.K.; Perre, E.; Brown, G.M.; Overbury, S.H.; Gogotsi, Y.; Presser, V. Pseudocapacitance and Performance Stability of Quinone-Coated Carbon Onions. Nano Energy 2013, 2, 702–712. [Google Scholar] [CrossRef]
- Matsumoto, N.; Kinoshita, H.; Choi, J.; Kato, T. Formation of Large Area Closely Packed Carbon Onions Film by Plasma-Based Ion Implantation. Sci. Rep. 2020, 10, 10037. [Google Scholar] [CrossRef]
- McDonough, J.K.; Gogotsi, Y. Carbon Onions: Synthesis and Electrochemical Applications. Interface Mag. 2013, 22, 61–66. [Google Scholar] [CrossRef]
- Pérez-Ojeda, M.E.; Castro, E.; Kröckel, C.; Lucherelli, M.A.; Ludacka, U.; Kotakoski, J.; Werbach, K.; Peterlik, H.; Melle-Franco, M.; Chacón-Torres, J.C.; et al. Carbon Nano-Onions: Potassium Intercalation and Reductive Covalent Functionalization. J. Am. Chem. Soc. 2021, 143, 18997–19007. [Google Scholar] [CrossRef]
- Mohamed, N.B.; El-Kady, M.F.; Kaner, R.B. Macroporous Graphene Frameworks for Sensing and Supercapacitor Applications. Adv. Funct. Mater. 2022, 32, 2203101. [Google Scholar] [CrossRef]
- Ran, J.; Liu, Y.; Feng, H.; Shi, H.; Ma, Q. A Review on Graphene-Based Electrode Materials for Supercapacitor. J. Ind. Eng. Chem. 2024, 137, 106–121. [Google Scholar] [CrossRef]
- Lakra, R.; Kumar, R.; Sahoo, P.K.; Thatoi, D.; Soam, A. A Mini-Review: Graphene Based Composites for Supercapacitor Application. Inorg. Chem. Commun. 2021, 133, 108929. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of Carbon Nanotubes Depends on Their Chemical Structures. Nat. Commun. 2019, 10, 3040. [Google Scholar] [CrossRef]
- Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J. Young’s Modulus of Single-Walled Nanotubes. Phys. Rev. B 1998, 58, 14013–14019. [Google Scholar] [CrossRef]
- Kaneko, K.; Li, M.; Noda, S. Appropriate Properties of Carbon Nanotubes for the Three-Dimensional Current Collector in Lithium-Ion Batteries. Carbon. Trends 2023, 10, 100245. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J. Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites. In Micromechanics and Nanomechanics of Composite Solids; Springer International Publishing: Cham, Switzerland, 2018; pp. 123–156. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Cai, N.; Liu, Q.; Wu, C.; Yang, H. Preparation of Easily-Stripped and High-Purity Carbon Nanotubes from Various Waste Plastics. J. Energy Inst. 2024, 116, 101740. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, X.; Gao, Z.; Hou, P.; Xu, L.; Shi, C.; Liang, Y.; Wang, Y.; Liu, C. Highly Conductive Double-Wall Carbon Nanotube Fibers Produced by Dry-Jet Wet Spinning. Adv. Funct. Mater. 2024, 34, 2404538. [Google Scholar] [CrossRef]
- Snarski, L.; Biran, I.; Bendikov, T.; Pinkas, I.; Iron, M.A.; Kaplan-Ashiri, I.; Weissman, H.; Rybtchinski, B. Highly Conductive Robust Carbon Nanotube Networks for Strong Buckypapers and Transparent Electrodes. Adv. Funct. Mater. 2024, 34, 2309742. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, B.; Zhu, H.; Yuan, G.; Li, B.; Guo, J.; Li, X.; Cong, Y.; Zhang, J. A Review of Aligned Carbon Nanotube Arrays and Carbon/Carbon Composites: Fabrication, Thermal Conduction Properties and Applications in Thermal Management. New Carbon. Mater. 2021, 36, 873–892. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes. Science (1979) 1996, 274, 1701–1703. [Google Scholar] [CrossRef]
- Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.N. Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science (1979) 1998, 282, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Nwanno, C.E.; Gotame, R.C.; Watt, J.; Kuo, W.; Li, W. Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors. Nanomaterials 2025, 15, 1506. [Google Scholar] [CrossRef]
- Zhan, Y.; Hu, Y.; Chen, Y.; Yang, Q.; Shi, Z.; Xiong, C. In-Situ Synthesis of Flexible Nanocellulose/Carbon Nanotube/Polypyrrole Hydrogels for High-Performance Solid-State Supercapacitors. Cellulose 2021, 28, 7097–7108. [Google Scholar] [CrossRef]
- Szabó, A.; Perri, C.; Csató, A.; Giordano, G.; Vuono, D.; Nagy, J.B. Synthesis Methods of Carbon Nanotubes and Related Materials. Materials 2010, 3, 3092–3140. [Google Scholar] [CrossRef]
- Quinton, B.T.; Barnes, P.N.; Varanasi, C.V.; Burke, J.; Tsao, B.-H.; Yost, K.J.; Mukhopadhyay, S.M. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films. J. Nanomater. 2013, 2013, 356259. [Google Scholar] [CrossRef]
- Szabó, A.; Nánai, L.; Tóth, Z.R.; Hernadi, K. Simplification of the CCVD Method Used in the Growth of Carbon Nanotube Forests on Titanium Substrate. Solid. State Sci. 2021, 117, 106648. [Google Scholar] [CrossRef]
- Goto, S.; Nakano, T.; Sugime, H.; Inoue, Y. Enhanced Growth of Ultra-High Density Carbon Nanotube Forests via Fe and Al Vapor Addition in a CVD Process. Carbon 2025, 243, 120537. [Google Scholar] [CrossRef]
- Thapa, A.; Guo, J.; Jungjohann, K.L.; Wang, X.; Li, W. Density Control of Vertically Aligned Carbon Nanotubes and Its Effect on Field Emission Properties. Mater. Today Commun. 2020, 22, 100761. [Google Scholar] [CrossRef]
- Hiraoka, T.; Yamada, T.; Hata, K.; Futaba, D.N.; Kurachi, H.; Uemura, S.; Yumura, M.; Iijima, S. Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils. J. Am. Chem. Soc. 2006, 128, 13338–13339. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Liu, H.; Wu, D.; Wang, H.; Jiang, J.; Wang, X.; Hu, P.; Liu, Y.; Zhu, D. Controllable Preparation of Patterns of Aligned Carbon Nanotubes on Metals and Metal-Coated Silicon Substrates. J. Mater. Chem. 2003, 13, 1124–1126. [Google Scholar] [CrossRef]
- Gao, L.; Peng, A.; Wang, Z.Y.; Zhang, H.; Shi, Z.; Gu, Z.; Cao, G.; Ding, B. Growth of Aligned Carbon Nanotube Arrays on Metallic Substrate and Its Application to Supercapacitors. Solid. State Commun. 2008, 146, 380–383. [Google Scholar] [CrossRef]
- Moyer-Vanderburgh, K.; Park, S.J.; Fornasiero, F. Growth of Carbon Nanotube Forests on Flexible Metal Substrates: Advances, Challenges, and Applications. Carbon 2023, 206, 402–421. [Google Scholar] [CrossRef]
- Lepró, X.; Lima, M.D.; Baughman, R.H. Spinnable Carbon Nanotube Forests Grown on Thin, Flexible Metallic Substrates. Carbon 2010, 48, 3621–3627. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, G.P.; Yang, Y.S. Using a Cut–Paste Method to Prepare a Carbon Nanotube Fur Electrode. Nanotechnology 2007, 18, 195607. [Google Scholar] [CrossRef]
- Liao, X.Z.; Serquis, A.; Jia, Q.X.; Peterson, D.E.; Zhu, Y.T.; Xu, H.F. Effect of Catalyst Composition on Carbon Nanotube Growth. Appl. Phys. Lett. 2003, 82, 2694–2696. [Google Scholar] [CrossRef]
- Sakurai, S.; Tsuji, T.; He, J.; Yamada, M.; Futaba, D.N. Double-Layer Support Strategy for Enhancing the Lifetime of Fe Catalyst Nanoparticles in Synthesis of Single-Walled Carbon Nanotubes. ACS Appl. Nano Mater. 2024, 7, 12745–12751. [Google Scholar] [CrossRef]
- Seman, R.N.A.R.; Azam, M.A.; Mohamed, M.A. Highly Efficient Growth of Vertically Aligned Carbon Nanotubes on Fe–Ni Based Metal Alloy Foils for Supercapacitors. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 045016. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kang, I.J.; Kim, S.M.; Kim, W.S. Influence of the Sulfur Content Catalyst on the Packing Density of Carbon Nanotube Forests. Nanomaterials 2019, 9, 889. [Google Scholar] [CrossRef]
- Yemini, R.; Muallem, M.; Sharabani, T.; Teblum, E.; Gofer, Y.; Nessim, G.D. Patterning of Forests of Carbon Nanotubes (CNTs) Using Copper Overlayers as Iron Catalyst Deactivators. J. Phys. Chem. C 2016, 120, 12242–12248. [Google Scholar] [CrossRef]
- Yemini, R.; Itzhak, A.; Gofer, Y.; Sharabani, T.; Drela, M.; Nessim, G.D. Nickel Overlayers Modify Precursor Gases To Pattern Forests of Carbon Nanotubes. J. Phys. Chem. C 2017, 121, 11765–11772. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Luo, B.; Wang, Q.; Attarilar, S. High-Performance Nanoscale Metallic Multilayer Composites: Techniques, Mechanical Properties and Applications. Materials 2024, 17, 2124. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, C.; Esconjauregui, S.; Xie, R.; Zhong, G.; Bhardwaj, S.; Cepek, C.; Robertson, J. Carbon Nanotube Forests Growth Using Catalysts from Atomic Layer Deposition. J. Appl. Phys. 2014, 115, 144303. [Google Scholar] [CrossRef]
- Bulyarskiy, S.; Dudin, A.; L’vov, P.; Grishin, T.; Volkova, L.; Poliakov, M.; Mikhailov, I.; Rudakov, G. Formation of Catalyst Particles for the CNT Growth from Thin Films: Experiment and Simulation. Chem. Phys. 2024, 579, 112202. [Google Scholar] [CrossRef]
- Chatterjee, K.; Kumar, V.; Agnihotri, P.K.; Basu, S.; Gupta, N. On the Importance of the Metal Catalyst Layer to the Performance of CNT-Based Supercapacitor Electrodes. IEEE Trans. Nanotechnol. 2025, 24, 48–53. [Google Scholar] [CrossRef]
- Hirsch, A.; Vostrowsky, O. Functionalization of Carbon Nanotubes. In Functional Molecular Nanostructures; Springer: Berlin/Heidelberg, Germany, 2005; pp. 193–237. [Google Scholar] [CrossRef]
- Van Hooijdonk, E.; Bittencourt, C.; Snyders, R.; Colomer, J.-F. Functionalization of Vertically Aligned Carbon Nanotubes. Beilstein J. Nanotechnol. 2013, 4, 129–152. [Google Scholar] [CrossRef] [PubMed]
- John, A.R.; Arumugam, P. Open Ended Nitrogen-Doped Carbon Nanotubes for the Electrochemical Storage of Energy in a Supercapacitor Electrode. J. Power Sources 2015, 277, 387–392. [Google Scholar] [CrossRef]
- Patiño, J.; López-Salas, N.; Gutiérrez, M.C.; Carriazo, D.; Ferrer, M.L.; del Monte, F. Phosphorus-Doped Carbon–Carbon Nanotube Hierarchical Monoliths as True Three-Dimensional Electrodes in Supercapacitor Cells. J. Mater. Chem. A Mater. 2016, 4, 1251–1263. [Google Scholar] [CrossRef]
- Nonomura, R.; Itoh, T.; Sato, Y.; Yokoyama, K.; Yamamoto, M.; Nishida, T.; Motomiya, K.; Tohji, K.; Sato, Y. Electrochemical Capacitors Using Nitrogen-Doped Vertically Aligned Multi-Walled Carbon Nanotube Electrodes Prepared by Defluorination. Carbon 2018, 132, 539–547. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. Nitrogen-Doped Core-Sheath Carbon Nanotube Array for Highly Stretchable Supercapacitor. Adv. Energy Mater. 2017, 7, 1601814. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X.W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Adv. Mater. 2012, 24, 5166–5180. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Vellacheri, R.; Lei, Y. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors. Adv. Sci. 2017, 4, 1700188. [Google Scholar] [CrossRef]
- Jha, S.; Qin, Y.; Chen, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Hydrogen-Bond-Guided Micellar Self-Assembly-Directed Carbon Superstructures for High-Energy and Ultralong-Life Zinc-Ion Hybrid Capacitors. J. Mater. Chem. A Mater. 2025, 13, 15101–15110. [Google Scholar] [CrossRef]
- Qin, Y.; Hu, C.; Huang, Q.; Lv, Y.; Song, Z.; Gan, L.; Liu, M. Hydrogen-Bonded Interfacial Super-Assembly of Spherical Carbon Superstructures for High-Performance Zinc Hybrid Capacitors. Nanomicro Lett. 2026, 18, 38. [Google Scholar] [CrossRef]
- Shi, T.; Song, Z.; Lv, Y.; Zhu, D.; Miao, L.; Gan, L.; Liu, M. Hierarchical Porous Carbon Guided by Constructing Organic-Inorganic Interpenetrating Polymer Networks to Facilitate Performance of Zinc Hybrid Supercapacitors. Chin. Chem. Lett. 2025, 36, 109559. [Google Scholar] [CrossRef]
- Zhou, Q.; Yao, H. Recent Development of Carbon Electrode Materials for Electrochemical Supercapacitors. Energy Rep. 2022, 8, 656–661. [Google Scholar] [CrossRef]
- Kim, T.; Subedi, S.; Dahal, B.; Chhetri, K.; Mukhiya, T.; Muthurasu, A.; Gautam, J.; Lohani, P.C.; Acharya, D.; Pathak, I.; et al. Homogeneous Elongation of N-Doped CNTs over Nano-Fibrillated Hollow-Carbon-Nanofiber: Mass and Charge Balance in Asymmetric Supercapacitors Is No Longer Problematic. Adv. Sci. 2022, 9, e2200650. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Wang, L.; Yang, X.; Yang, W.; Zheng, J.; Hou, H. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density. ACS Appl. Mater. Interfaces 2020, 12, 4777–4786. [Google Scholar] [CrossRef]
- Szabó, A.; Bakos, L.P.; Karajz, D.; Gyulavári, T.; Tóth, Z.-R.; Pap, Z.; Szilágyi, I.M.; Igricz, T.; Parditka, B.; Erdélyi, Z.; et al. Decoration of Vertically Aligned Carbon Nanotubes with Semiconductor Nanoparticles Using Atomic Layer Deposition. Materials 2019, 12, 1095. [Google Scholar] [CrossRef]
- Rahat, S.M.S.M.; Hasan, K.M.Z.; Mondol, M.M.H.; Mallik, A.K. A Comprehensive Review of Carbon Nanotube-Based Metal Oxide Nanocomposites for Supercapacitors. J. Energy Storage 2023, 73, 108847. [Google Scholar] [CrossRef]
- Chen, S.; Yang, G.; Jia, Y.; Zheng, H. Three-Dimensional NiCo2O4@NiWO4 Core–Shell Nanowire Arrays for High Performance Supercapacitors. J. Mater. Chem. A Mater. 2017, 5, 1028–1034. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Gowda, S.R.; Shaijumon, M.M.; Ajayan, P.M. Hybrid Nanostructures for Energy Storage Applications. Adv. Mater. 2012, 24, 5045–5064. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Li, T.; Ma, Y. Advancements in the Utilization of Nanocarbon Sphere Composites in Supercapacitor. Adv. Compos. Hybrid. Mater. 2025, 8, 103. [Google Scholar] [CrossRef]
- Younas, U.; Imtiaz, S.; Naz, S.; Anjam, M.N.; Saleem, A.; Ali, A.; Ali, F.; Khan, M.I.; Ashraf, A.; Pervaiz, M. Facile Synthesis of Zinc Aluminate (ZnAl2O4) Decorated CNTs as a Multi-Functional Material for Energy Storage and Photocatalysis. Diam. Relat. Mater. 2025, 157, 112557. [Google Scholar] [CrossRef]
- Jung, M.; Sivakumar, P.; Park, H.S. Carbon Nanotube Branch-Grown Nickel Nanoparticles/Graphene Composites for a High-Capacitance Electrode. J. Phys. Energy 2023, 5, 025005. [Google Scholar] [CrossRef]
- Bhagwan, J.; Han, J.I. Facile Synthesis of CdO/CdFe2O4/MWCNT Nanocomposite for Aqueous Hybrid Supercapacitor. J. Energy Storage 2025, 118, 116232. [Google Scholar] [CrossRef]
- Wu, X.; Han, Z.; Zheng, X.; Yao, S.; Yang, X.; Zhai, T. Core-Shell Structured Co3O4@NiCo2O4 Electrodes Grown on Flexible Carbon Fibers with Superior Electrochemical Properties. Nano Energy 2017, 31, 410–417. [Google Scholar] [CrossRef]
- Hwang, S.-G.; Ryu, S.-H.; Yun, S.-R.; Ko, J.M.; Kim, K.M.; Ryu, K.-S. Behavior of NiO–MnO2/MWCNT Composites for Use in a Supercapacitor. Mater. Chem. Phys. 2011, 130, 507–512. [Google Scholar] [CrossRef]
- Roguai, S.; Djelloul, A. Gold Coated Vertically Aligned Carbon Nanotubes as Electrode for Electrochemical Capacitors. Thin Solid. Film. 2023, 777, 139894. [Google Scholar] [CrossRef]
- Vignal, T.; Banet, P.; Pinault, M.; Lafourcade, R.; Descarpentries, J.; Darchy, L.; Hauf, H.; Reynaud, C.; Mayne-L’Hermite, M.; Aubert, P.-H. Electropolymerized Poly(3-Methylthiophene) onto High Density Vertically Aligned Carbon Nanotubes Directly Grown on Aluminum Substrate: Application to Electrochemical Capacitors. Electrochim. Acta 2020, 350, 136377. [Google Scholar] [CrossRef]
- Sun, G.; Ren, H.; Shi, Z.; Zhang, L.; Wang, Z.; Zhan, K.; Yan, Y.; Yang, J.; Zhao, B. V2O5/Vertically-Aligned Carbon Nanotubes as Negative Electrode for Asymmetric Supercapacitor in Neutral Aqueous Electrolyte. J. Colloid. Interface Sci. 2021, 588, 847–856. [Google Scholar] [CrossRef]
- Park, S.K.; Sure, J.; Vishnu, D.S.M.; Jo, S.J.; Lee, W.C.; Ahmad, I.A.; Kim, H.-K. Nano-Fe3O4/Carbon Nanotubes Composites by One-Pot Microwave Solvothermal Method for Supercapacitor Applications. Energies 2021, 14, 2908. [Google Scholar] [CrossRef]
- Abouali, S.; Akbari Garakani, M.; Xu, Z.-L.; Kim, J.-K. NiCo2O4/CNT Nanocomposites as Bi-Functional Electrodes for Li Ion Batteries and Supercapacitors. Carbon 2016, 102, 262–272. [Google Scholar] [CrossRef]
- Arsyad, A.; Saaid, F.I.; Najihah, M.Z.; Hisam, R.; Woo, H.J.; Tseng, T.-Y.; Winie, T. CNT-RGO-Wrapped FeCo2O4 for Asymmetric Supercapacitor with Enhanced Power Density and Rate Capability. J. Mater. Sci. Mater. Electron. 2024, 35, 2114. [Google Scholar] [CrossRef]
- Karaman, O.; Afşin Kariper, İ.; Korkmaz, S.; Karimi-Maleh, H.; Usta, M.; Karaman, C. Irradiated RGO Electrode-Based High-Performance Supercapacitors: Boosting Effect of GO/RGO Mixed Nanosheets on Electrochemical Performance. Fuel 2022, 328, 125298. [Google Scholar] [CrossRef]
- Arshad, N.; Usman, M.; Adnan, M.; Ahsan, M.T.; Rehman, M.R.; Javed, S.; Ali, Z.; Akram, M.A.; Demopoulos, G.P.; Mahmood, A. Nanoengineering of NiO/MnO2/GO Ternary Composite for Use in High-Energy Storage Asymmetric Supercapacitor and Oxygen Evolution Reaction (OER). Nanomaterials 2022, 13, 99. [Google Scholar] [CrossRef]
- Elessawy, N.A.; El Nady, J.; Wazeer, W.; Kashyout, A.B. Development of High-Performance Supercapacitor Based on a Novel Controllable Green Synthesis for 3D Nitrogen Doped Graphene. Sci. Rep. 2019, 9, 1129. [Google Scholar] [CrossRef]
- Xu, S.-W.; Zhang, M.-C.; Zhang, G.-Q.; Liu, J.-H.; Liu, X.-Z.; Zhang, X.; Zhao, D.-D.; Xu, C.-L.; Zhao, Y.-Q. Temperature-Dependent Performance of Carbon-Based Supercapacitors with Water-in-Salt Electrolyte. J. Power Sources 2019, 441, 227220. [Google Scholar] [CrossRef]
- Wei, H.; Wang, H.; Li, A.; Li, H.; Cui, D.; Dong, M.; Lin, J.; Fan, J.; Zhang, J.; Hou, H.; et al. Advanced Porous Hierarchical Activated Carbon Derived from Agricultural Wastes toward High Performance Supercapacitors. J. Alloys Compd. 2020, 820, 153111. [Google Scholar] [CrossRef]
- Li, G.; Chen, Y.; Yan, L.; Gong, Q.; Chen, G.; Yang, L.; Wu, Q.; Wang, X.; Hu, Z. The Composite-Template Method to Construct Hierarchical Carbon Nanocages for Supercapacitors with Ultrahigh Energy and Power Densities. Small 2022, 18, e2107082. [Google Scholar] [CrossRef]
- Kariper, İ.A.; Korkmaz, S.; Karaman, C.; Karaman, O. High Energy Supercapacitors Based on Functionalized Carbon Nanotubes: Effect of Atomic Oxygen Doping via Various Radiation Sources. Fuel 2022, 324, 124497. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Wang, H.; Zhao, P.; Liu, W.; Wang, Y.; Yang, J. N-Doped Porous Carbon Anchoring on Carbon Nanotubes Derived from ZIF-8/Polypyrrole Nanotubes for Superior Supercapacitor Electrodes. Appl. Surf. Sci. 2018, 457, 1018–1024. [Google Scholar] [CrossRef]
- Lal, M.S.; Badam, R.; Matsumi, N.; Ramaprabhu, S. Hydrothermal Synthesis of Single-Walled Carbon Nanotubes/TiO2 for Quasi-Solid-State Composite-Type Symmetric Hybrid Supercapacitors. J. Energy Storage 2021, 40, 102794. [Google Scholar] [CrossRef]
- Mendoza, R.; Al-Sardar, M.; Oliva, A.I.; Robledo-Trujillo, G.; Rodriguez-Gonzalez, V.; Zakhidov, A.; Oliva, J. Improving the Electrochemical Performance of Flexible Carbon Nanotubes Based Supercapacitors by Depositing Ni@TiO2:W Nanoparticles on Their Anodes. J. Phys. Chem. Solids 2021, 155, 110128. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Rathinam, Y.; Ganesan, R.; Velauthapillai, D. Direct Growth of Binder-Free CNTs on a Nickel Foam Substrate for Highly Efficient Symmetric Supercapacitors. ACS Omega 2023, 8, 11700–11708. [Google Scholar] [CrossRef]
- Ojeda, L.; Oliva, J.; Encinas, A.; Mtz-Enriquez, A.I.; del Castillo, P.C.H.; Quintero, J.P.; Muñoz-Sandoval, E. Increasing the Capacitance of Flexible Supercapacitors by Adding Spongy-like CNTs on Their Electrodes and Application of CNTs to Remove Oil/Microplastics from Tap Water. J. Appl. Electrochem. 2025. [Google Scholar] [CrossRef]
- Nepal, M.; Gudavalli, G.S.; Dhakal, T.P. MnO2 Nanoflowers Electrodeposited on Vertically Aligned CNTs as Binder-Free Electrodes for High-Rate Supercapacitors. ACS Omega 2025, 10, 3439–3448. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, F.; Wang, G.; Xiao, M.; Meng, Y.; Zhang, Y. Co3O4/Carbon Nano-Onions Composite as Supercapacitor Electrode and Its Excellent Electrochemical Performance. Int. J. Mater. Res. 2018, 109, 873–879. [Google Scholar] [CrossRef]
- Siemiaszko, G.; Breczko, J.; Hryniewicka, A.; Ilnicka, A.; Markiewicz, K.H.; Terzyk, A.P.; Plonska-Brzezinska, M.E. Composites Containing Resins and Carbon Nano-Onions as Efficient Porous Carbon Materials for Supercapacitors. Sci. Rep. 2023, 13, 6606. [Google Scholar] [CrossRef]
- Jiang, K.; Gerhardt, R.A. Fabrication and Supercapacitor Applications of Multiwall Carbon Nanotube Thin Films. C 2021, 7, 70. [Google Scholar] [CrossRef]
- Bu, F.; Zhou, W.; Xu, Y.; Du, Y.; Guan, C.; Huang, W. Recent Developments of Advanced Micro-Supercapacitors: Design, Fabrication and Applications. npj Flex. Electron. 2020, 4, 31. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, G.; Shi, X.; Qiao, Y.; Liu, J.; Liu, H.; Ganesh, A.; Li, L. Direct Graphene-Carbon Nanotube Composite Ink Writing All-Solid-State Flexible Microsupercapacitors with High Areal Energy Density. Adv. Funct. Mater. 2020, 30, 1907284. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Cao, Y.; Du, J.; Gu, J.; Liu, Q. Building Porous yet Robust Binders towards Fast-Rate Flexible Supercapacitors Based on Activated Carbons. Electrochim. Acta 2025, 538, 147030. [Google Scholar] [CrossRef]
- Boruah, B.D.; Nandi, S.; Misra, A. Layered Assembly of Reduced Graphene Oxide and Vanadium Oxide Heterostructure Supercapacitor Electrodes with Larger Surface Area for Efficient Energy-Storage Performance. ACS Appl. Energy Mater. 2018, 1, 1567–1574. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.; An, Z.; Wang, Z.; Toda, M.; Ono, T. Constructing In-Chip Micro-Supercapacitors of 3D Graphene Nanowall/Ruthenium Oxides Electrode through Silicon-Based Microfabrication Technique. J. Power Sources 2018, 401, 204–212. [Google Scholar] [CrossRef]
- Li, J.; Sollami Delekta, S.; Zhang, P.; Yang, S.; Lohe, M.R.; Zhuang, X.; Feng, X.; Östling, M. Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano 2017, 11, 8249–8256. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Wu, Y.; Chen, Y.; Zhang, Y.; Lai, W.; Huang, W. Inkjet-Printed High-Performance Flexible Micro-Supercapacitors with Porous Nanofiber-Like Electrode Structures. Small 2019, 15, 1901830. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Hajibagher, S.Z.; Méndez-Romero, U.; Thurakkal, S.; Li, Q.; Haque, M.; Azega, R.K.; Wang, E.; Zhang, X.; Lundgren, P.; et al. Spin-Coated Heterogenous Stacked Electrodes for Performance Enhancement in CMOS-Compatible On-Chip Microsupercapacitors. ACS Appl. Energy Mater. 2022, 5, 4221–4231. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Neff, T.; Day, A.; Krueger, A. Scalable Fabrication of Flexible Supercapacitor Electrodes Using Sustainable Water-Based Onion-Like Carbon Inks. Batter. Supercaps 2024, 7, e202400203. [Google Scholar] [CrossRef]








| Name of Company | Country of Origin | Rated Voltage (V) | Rated Capacitance (F) | Equivalent Series Resistance (mΩ) | Specific Energy (Wh/kg) | Specific Power (kW/kg) |
|---|---|---|---|---|---|---|
| Asahi Glass | Japan | 2.70 | 55–1350 | 2.50 | 10–100 | 0.1–2.0 |
| BatScap | France | 2.70–3.0 | 325–3000 | |||
| CapTop | Italy | 2.70–3.0 | 1–5000 | 0.11–3.96 | 4904 | 5–40 |
| CAP XX | Australia | 2.5–3.0 | 0.035–3000 | 24–1300 | N/A | N/A |
| Ioxus | USA | 2.85–3.0 | 1152–3000 | 0.20–0.32 | 5–30 | 7.8–26 |
| Kemet | Taiwan | 2.7 | 0.047–2000 | 4–100 | N/A | N/A |
| Maxwell | Republic of Korea | 2.3–3.0 | 3–3400 | 0.13–62 | 4–7 | 18 |
| Nesscap Energy | Republic of Korea | 2.7 | 3–100 | 12–55 | N/A | N/A |
| Nichicon | Malaysia | 2.7 | 1–4000 | 18–80 | 5–10 | |
| Panasonic | Japan | 2.1–2.7 | 3.3–100 | 0.08–30 | 5 | 0.29 |
| Skeleton | Estonia | 2.85–3.0 | 330–5000 | 0.47–1.0 | 5.82–11.1 | 19.9–80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nánai, L.; Hernadi, K. Carbon-Based Electrodes for Supercapacitors, with a Focus on Carbon Nanotubes—A Brief Overview. Materials 2025, 18, 5215. https://doi.org/10.3390/ma18225215
Nánai L, Hernadi K. Carbon-Based Electrodes for Supercapacitors, with a Focus on Carbon Nanotubes—A Brief Overview. Materials. 2025; 18(22):5215. https://doi.org/10.3390/ma18225215
Chicago/Turabian StyleNánai, Lilla, and Klara Hernadi. 2025. "Carbon-Based Electrodes for Supercapacitors, with a Focus on Carbon Nanotubes—A Brief Overview" Materials 18, no. 22: 5215. https://doi.org/10.3390/ma18225215
APA StyleNánai, L., & Hernadi, K. (2025). Carbon-Based Electrodes for Supercapacitors, with a Focus on Carbon Nanotubes—A Brief Overview. Materials, 18(22), 5215. https://doi.org/10.3390/ma18225215

