Ultrasound-Induced Structural Modification of Cellulose in Poplar Wood: Effects on Crystallinity and Enzymatic Hydrolysis Efficiency
Highlights
- Ultrasound did not increase glucose yield after enzymatic hydrolysis of raw wood.
- Short-term ultrasound may enhance early hydrolysis of cellulose.
- Prolonged ultrasonication reduced enzyme activity and final glucose yield.
- Cellulose crystallinity was not significantly altered by ultrasound.
- Ultrasound alone is ineffective for saccharifying untreated woody biomass.
- Enzyme deactivation limits the benefits of long ultrasonication.
- Process optimisation is key for ultrasound integration in biorefineries.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasound-Assisted Enzymatic Hydrolysis of Cellulose in Wood
2.3. Ultrasound-Assisted Enzymatic Hydrolysis of Cellulose Isolated from Wood
2.4. Ultrasound Treatment of Cellulose Isolated from Wood
2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6. Enzyme Activity
2.7. HPLC Analysis
- C—glucose concentration/(mg/cm3);
- A—peak area.
2.8. Calculation of Glucose Yield After Enzymatic Hydrolysis
3. Results and Discussion
3.1. Ultrasound-Assisted Enzymatic Hydrolysis of Wood
3.2. Ultrasound-Assisted Enzymatic Hydrolysis of Cellulose Isolated from Wood—Cellulose as the Model Substrate
3.3. Enzyme Stability Under Ultrasound
3.4. Effect of Ultrasound on Cellulose Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosales-Calderon, O.; Arantes, V. A Review on Commercial-Scale High-Value Products That Can Be Produced alongside Cellulosic Ethanol. Biotechnol. Biofuels 2019, 12, 240. [Google Scholar] [CrossRef]
- Yang, B.; Dai, Z.; Ding, S.-Y.; Wyman, C.E. Enzymatic Hydrolysis of Cellulosic Biomass. Biofuels 2011, 2, 421–449. [Google Scholar] [CrossRef]
- Prasad, R.K.; Chatterjee, S.; Mazumder, P.B.; Gupta, S.K.; Sharma, S.; Vairale, M.G.; Datta, S.; Dwivedi, S.K.; Gupta, D.K. Bioethanol Production from Waste Lignocelluloses: A Review on Microbial Degradation Potential. Chemosphere 2019, 231, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.; Reyes-Sosa, F.M.; Díez, B. Enzymatic Hydrolysis of Biomass from Wood. Microb. Biotechnol. 2016, 9, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Modenbach, A.A.; Nokes, S.E. Enzymatic Hydrolysis of Biomass at High-Solids Loadings—A Review. Biomass Bioenergy 2013, 56, 526–544. [Google Scholar] [CrossRef]
- Manzanares, P. The Role of Biorefinering Research in the Development of a Modern Bioeconomy. Acta Innov. 2020, 37, 47–56. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef]
- Pan, X.; Gilkes, N.; Saddler, J.N. Effect of Acetyl Groups on Enzymatic Hydrolysis of Cellulosic Substrates. Holzforschung 2006, 60, 398–401. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Haghighi Mood, S.; Hossein Golfeshan, A.; Tabatabaei, M.; Salehi Jouzani, G.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic Biomass to Bioethanol, a Comprehensive Review with a Focus on Pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Ioelovich, M.; Morag, E. Effect of Cellulose Structure on Enzymatic Hydrolysis. Bioresources 2011, 6, 2818–2835. [Google Scholar] [CrossRef]
- Torget, R.; Himmel, M.E.; Grohmann, K. Dilute Sulfuric Acid Pretreatment of Hardwood Bark. Bioresour. Technol. 1991, 35, 239–246. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Wang, G.S.; Pan, X.J.; Gleisner, R. Specific Surface to Evaluate the Efficiencies of Milling and Pretreatment of Wood for Enzymatic Saccharification. Chem. Eng. Sci. 2009, 64, 474–485. [Google Scholar] [CrossRef]
- Bay, M.S.; Karimi, K.; Esfahany, M.N.; Kumar, R. Structural Modification of Pine and Poplar Wood by Alkali Pretreatment to Improve Ethanol Production. Ind. Crops Prod. 2020, 152, 112506. [Google Scholar] [CrossRef]
- Kučerová, V.; Výbohová, E.; Hönig, V.; Čabalová, I. Chemical Changes within Solids during Liquid Hot Water Pretreatment of Wood. Bioresources 2020, 15, 38–48. [Google Scholar] [CrossRef]
- Gałązka, A.; Szadkowski, J. Enzymatic Hydrolysis of Fast-Growing Poplar Wood after Pretreatment by Steam Explosion. Cellul. Chem. Technol. 2021, 55, 637–647. [Google Scholar] [CrossRef]
- Maceiras, R.; Alfonsín, V.; Seguí, L.; González, J.F. Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol. Energies 2021, 14, 5891. [Google Scholar] [CrossRef]
- Sjulander, N.; Kikas, T. Two-Step Pretreatment of Lignocellulosic Biomass for High-Sugar Recovery from the Structural Plant Polymers Cellulose and Hemicellulose. Energies 2022, 15, 8898. [Google Scholar] [CrossRef]
- Szadkowski, J.; Výbohová, E.; Kučerová, V.; Čabalová, I.; Antczak, A.; Szadkowska, D.; Drożdżek, M.; Zawadzki, J. Effect of Steam Explosion Pretreatment of Fast-Growing Poplar (Populus deltoides x maximowiczii) Wood on Selected Properties of Structural Substances. Wood Sci. Technol. 2024, 58, 441–458. [Google Scholar]
- Hadar, Y. Sources for Lignocellulosic Raw Materials for the Production of Ethanol. In Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–38. [Google Scholar]
- Xu, C.; Liao, B.; Shi, W. Organosolv Pretreatment of Pine Sawdust for Bio-Ethanol Production. In Pretreatment Techniques for Biofuels and Biorefineries; Springer: Berlin/Heidelberg, Germany, 2013; pp. 435–457. [Google Scholar]
- Séguin, A. How Could Forest Trees Play an Important Role as Feedstock for Bioenergy Production? Curr. Opin. Environ. Sustain. 2011, 3, 90–94. [Google Scholar] [CrossRef]
- Putra, N.R.; Veza, I.; Irianto, I. Harnessing Wood Waste for Sustainable Biofuel: A Bibliometric Analysis and Review of Valorisation Strategies. Waste Manag. Bull. 2024, 2, 209–222. [Google Scholar] [CrossRef]
- Easson, M.W.; Condon, B.; Dien, B.S.; Iten, L.; Slopek, R.; Yoshioka-Tarver, M.; Lambert, A.; Smith, J. The Application of Ultrasound in the Enzymatic Hydrolysis of Switchgrass. Appl. Biochem. Biotechnol. 2011, 165, 1322–1331. [Google Scholar] [CrossRef]
- Subhedar, P.B.; Gogate, P.R. Enhancing the Activity of Cellulase Enzyme Using Ultrasonic Irradiations. J. Mol. Catal. B Enzym. 2014, 101, 108–114. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Riesz, P.; Berdahl, D.; Christman, C. Free Radical Generation by Ultrasound in Aqueous and Nonaqueous Solutions. Environ. Health Perspect. 1985, 64, 233–252. [Google Scholar] [CrossRef]
- Menkus, J. Badanie Wpływu Czynników Mechanicznych Na Strukturę Mezoporowatą Drewna Topoli (Populus sp.). Ph.D. Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2011. [Google Scholar]
- Bussemaker, M.J.; Zhang, D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Ind. Eng. Chem. Res. 2013, 52, 3563–3580. [Google Scholar] [CrossRef]
- Tang Siah Ying and Sivakumar, M. Ultrasound as a Green Processing Technology for Pretreatment and Conversion of Biomass into Biofuels. In Production of Biofuels and Chemicals with Ultrasound; Fang, Z., Smith, R.L., Jr., Qi, X., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 189–207. ISBN 978-94-017-9624-8. [Google Scholar]
- Wang, Z.; Lin, X.; Li, P.; Zhang, J.; Wang, S.; Ma, H. Effects of Low Intensity Ultrasound on Cellulase Pretreatment. Bioresour. Technol. 2012, 117, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Wongjewboot, I.; Kangsadan, T.; Kongruang, S.; Burapatana, V.; Pripanapong, P. Ethanol Production from Rice Straw Using Ultrasonic Pretreatment. In Proceedings of the 2010 International Conference on Chemistry and Chemical Engineering, Kyoto, Japa, 1–3 August 2010; IEEE: New York, NY, USA, 2010; pp. 16–19. [Google Scholar]
- Yachmenev, V.; Condon, B.; Klasson, T.; Lambert, A. Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound. J. Biobased Mater. Bioenergy 2009, 3, 25–31. [Google Scholar] [CrossRef]
- Revin, V.; Atykyan, N.; Zakharkin, D. Enzymatic Hydrolysis and Fermentation of Ultradispersed Wood Particles after Ultrasonic Pretreatment. Electron. J. Biotechnol. 2016, 19, 14–19. [Google Scholar] [CrossRef]
- Wang, D.; Yan, L.; Ma, X.; Wang, W.; Zou, M.; Zhong, J.; Ding, T.; Ye, X.; Liu, D. Ultrasound Promotes Enzymatic Reactions by Acting on Different Targets: Enzymes, Substrates and Enzymatic Reaction Systems. Int. J. Biol. Macromol. 2018, 119, 453–461. [Google Scholar] [CrossRef]
- Kürschner, K.; Hoffer, A. Ein Neues Verfahren Zur Bestimmung Der Cellulose in Hölzern Und Zellstoffen. Tech. Chem. Pap. Zellst. Fabr. 1929, 26, 125–129. [Google Scholar]
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Latticed Type. Part I. Spectra of Lattice Types I, II, III and of Amorphous Cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Adney, B.; Baker, J. Measurement of Cellulase Activities; Laboratory Analytical Procedure (LAP); Technical Report; NREL/TP-510-42628 NREL; National Renewable Energy Laboratory: Golden, CO, USA, 1996. [Google Scholar]
- Wu, H.; Dai, X.; Zhou, S.-L.; Gan, Y.-Y.; Xiong, Z.-Y.; Qin, Y.-H.; Ma, J.; Yang, L.; Wu, Z.-K.; Wang, T.-L.; et al. Ultrasound-Assisted Alkaline Pretreatment for Enhancing the Enzymatic Hydrolysis of Rice Straw by Using the Heat Energy Dissipated from Ultrasonication. Bioresour. Technol. 2017, 241, 70–74. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Fang, T.J. Combination of Ultrasonic Irradiation with Ionic Liquid Pretreatment for Enzymatic Hydrolysis of Rice Straw. Bioresour. Technol. 2014, 164, 198–202. [Google Scholar] [CrossRef]
- Yu, X.; Bao, X.; Zhou, C.; Zhang, L.; Yagoub, A.E.-G.A.; Yang, H.; Ma, H. Ultrasound-Ionic Liquid Enhanced Enzymatic and Acid Hydrolysis of Biomass Cellulose. Ultrason. Sonochem 2018, 41, 410–418. [Google Scholar] [CrossRef]
- Luzzi, S.C.; Artifon, W.; Piovesan, B.; Tozetto, E.; Mulinari, J.; Kuhn, G.d.O.; Mazutti, M.A.; Priamo, W.L.; Mossi, A.J.; Silva, M.F.; et al. Pretreatment of Lignocellulosic Biomass Using Ultrasound Aiming at Obtaining Fermentable Sugar. Biocatal. Biotransform. 2017, 35, 161–167. [Google Scholar] [CrossRef]
- Gavrila, A.I.; Vartolomei, A.; Calinescu, I.; Vinatoru, M.; Parvulescu, O.C.; Psenovschi, G.; Chipurici, P.; Trifan, A. Ultrasound-Assisted Alkaline Pretreatment of Biomass to Enhance the Extraction Yield of Valuable Chemicals. Agronomy 2024, 14, 903. [Google Scholar] [CrossRef]
- Szabó, O.E.; Csiszár, E. The Effect of Low-Frequency Ultrasound on the Activity and Efficiency of a Commercial Cellulase Enzyme. Carbohydr. Polym. 2013, 98, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Mawson, R.; Gamage, M.; Terefe, N.S.; Knoerzer, K. Ultrasound in Enzyme Activation and Inactivation. In Ultrasound Technologies for Food and Bioprocessing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 369–404. [Google Scholar]


| 3-Year-Old P. trichocarpa | 5-Year-Old P. deltoides × maximowiczii | |
|---|---|---|
| without US | (10.1 ± 0.8)% | (9.9 ± 0.3)% |
| with US | (10.0 ± 0.8)% | (8.1 ± 1.2)% * |
| Treatment Type | Enzyme Blend Activity/(FPU/cm3) |
|---|---|
| none | 129 ± 6.0 |
| 50 °C for 4 h | 127 ± 5.6 |
| ultrasounds 40 kHz at 50 °C for 4 h | 93 ± 1.7 * |
| Pretreatment Type | Time | TCI |
|---|---|---|
| reference | 0 | 0.31 ± 0.03 |
| T | 0.5 | 0.35 ± 0.03 |
| 1 | 0.33 ± 0.03 | |
| 2 | 0.36 ± 0.04 | |
| 4 | 0.34 ± 0.03 | |
| 8 | 0.34 ± 0.04 | |
| 24 | 0.32 ± 0.05 | |
| US | 0.5 | 0.34 ± 0.01 |
| 1 | 0.35 ± 0.03 | |
| 2 | 0.34 ± 0.03 | |
| 4 | 0.37 ± 0.03 * | |
| 8 | 0.35 ± 0.02 * | |
| 24 | 0.36 ± 0.03 * |
| Pretreatment Type | Time/h | LOI |
|---|---|---|
| reference | 0 | 1.56 ± 0.14 |
| T | 0.5 | 1.62 ± 0.09 |
| 1 | 1.60 ± 0.10 | |
| 2 | 1.60 ± 0.07 | |
| 4 | 1.60 ± 0.06 | |
| 8 | 1.58 ± 0.04 | |
| 24 | 1.54 ± 0.07 | |
| US | 0.5 | 1.60 ± 0.07 |
| 1 | 1.61 ± 0.06 | |
| 2 | 1.59 ± 0.03 | |
| 4 | 1.51 ± 0.05 | |
| 8 | 1.56 ± 0.10 | |
| 24 | 1.59 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchwicka, M.; Výbohová, E.; Radomski, A. Ultrasound-Induced Structural Modification of Cellulose in Poplar Wood: Effects on Crystallinity and Enzymatic Hydrolysis Efficiency. Materials 2025, 18, 5156. https://doi.org/10.3390/ma18225156
Marchwicka M, Výbohová E, Radomski A. Ultrasound-Induced Structural Modification of Cellulose in Poplar Wood: Effects on Crystallinity and Enzymatic Hydrolysis Efficiency. Materials. 2025; 18(22):5156. https://doi.org/10.3390/ma18225156
Chicago/Turabian StyleMarchwicka, Monika, Eva Výbohová, and Andrzej Radomski. 2025. "Ultrasound-Induced Structural Modification of Cellulose in Poplar Wood: Effects on Crystallinity and Enzymatic Hydrolysis Efficiency" Materials 18, no. 22: 5156. https://doi.org/10.3390/ma18225156
APA StyleMarchwicka, M., Výbohová, E., & Radomski, A. (2025). Ultrasound-Induced Structural Modification of Cellulose in Poplar Wood: Effects on Crystallinity and Enzymatic Hydrolysis Efficiency. Materials, 18(22), 5156. https://doi.org/10.3390/ma18225156

