Characterisation of Electro-Brush Plated Nickel Coatings on P-Type (Zr,Ti)Co(Sn,Sb) Half-Heusler Thermoelectric Materials for Stable Contact Layers
Abstract
1. Introduction
| Coating Material | Substrate Material | Production Method | Temperature (°C) | Coating Thickness (µm) | Advancements / Limitations | Ref. |
|---|---|---|---|---|---|---|
| Ti | Bi2Te3-based | Magnetron Sputtering | 250 | 0.015 | High thermal stability, low contact resistance/high working temperature, high cost | [37] |
| Ni/Co | Bi2Te3-based | Chemical | 98 | 8–12 | Uniform coating/requires deposition of the sublayer via sputtering | [29] |
| Ni/Cu | Mg2Si-based | Magnetron Sputtering | RT | 0.2 | Good adhesion, low contact resistance/high cost | [38] |
| Ni | Bi2Te3-based | Electro- chemical | 90 | 0.3 | Good adhesion strength, sufficient electrical properties/high working temperature, high cost | [39] |
| Ni | Bi2Te3-based | Arc-spraying | 300 (ageing) | 50 | Good bonding strength, high thermal resistance/Ni reacted with the substrate | [40] |
| Ni | Half- Heusler | Electro-brush Plating | Room Temperature | 5.5 | Good adhesion, low sheet resistance, high thermal stability, low cost/flat substrate surface requirement | This Study |
2. Materials and Methods
2.1. Materials
2.2. Electro-Brush Plating Ni Coating Process
2.3. Thermal Stability Testing
2.4. General Characterisation
3. Results
3.1. Ni Coatings on Stainless Steel
3.1.1. Depth Profiling
3.1.2. Coatings Microstructure
3.1.3. Phase Constitution Change
3.1.4. Surface Roughness
3.1.5. Mechanical Properties of the Ni Coatings
3.1.6. Sheet Resistance and Electrical Conductivity
3.2. Ni Coating on the P-Type (Zr,Ti)Co(Sn,Sb) TE Material
3.2.1. Coating Structure
3.2.2. Thermal Stability of Ni Coating on the P-Type (Zr,Ti)Co(Sn,Sb) TE Materials
4. Discussion
5. Conclusions
- The electro-brush plating technique successfully deposited the Ni coating on both SS and P-type thermoelectric material. An applied voltage (6 V), providing a medium-rate deposition, was critical for achieving a high-quality layer without degradation or peeling during the plating.
- The plated Ni coating has conductivity higher than that of the bulk TE material, which is beneficial in improving charge transport at the interface.
- The microstructure of the Ni coating deposited on the P-type material was consistent with that observed on the SS. The coating adhered well to the TE material, forming a dense and uniform multilayered structure.
- The Ni layer provided microstructural stability to the TE materials after oxidation, highlighting its protective role against oxidation and sublimation at 500 °C. The formation of a very thin nickel oxide layer on the coating surface effectively suppressed oxygen diffusion, thereby preventing further oxidation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DC | Direct current |
| EDX | Energy-dispersive X-ray spectroscopy |
| FCC | Face-centred cubic |
| FWHM | Full width at half maximum |
| GDOES | Glow discharge optical emission spectroscopy |
| HH | Half Heusler |
| min. | Minute(s) |
| SEM | Scanning electron microscopy |
| SiC | Silicon carbide |
| SS | Stainless steel |
| TE | Thermoelectric |
| V | Volt |
| XRD | X-ray diffraction |
| zT | Figure of merit |
References
- Ganechari, S.; Kate, S. Alternative Energy Sources; Springer: Berlin/Heidelberg, Germany, 2005; Volume 5. [Google Scholar]
- Bobokulova, M. Alternative energy sources and their use. Med. Pedagog. Technol. Theory Pract. 2024, 2, 282–291. [Google Scholar]
- Liu, W.; Hu, J.; Zhang, S.; Deng, M.; Han, C.-G.; Liu, Y. New trends, strategies and opportunities in thermoelectric materials: A perspective. Mater. Today Phys. 2017, 1, 50–60. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, J.; Song, P.; Zhang, M.; Yang, L.; Ma, J.; Liu, W.; Yang, F.; Wang, X. Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci. Semicond. Process. 2021, 121, 105303. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642–12704. [Google Scholar] [CrossRef]
- Han, H.; Zhao, L.; Wu, X.; Zuo, B.; Bian, S.; Li, T.; Liu, X.; Jiang, Y.; Chen, C.; Bi, J. Advancements in thermoelectric materials: Optimization strategies for enhancing energy conversion. J. Mater. Chem. A 2024, 12, 24041–24083. [Google Scholar] [CrossRef]
- Moshwan, R.; Shi, X.-L.; Liu, W.-D.; Liu, J.; Chen, Z.-G. Entropy engineering: An innovative strategy for designing high-performance thermoelectric materials and devices. Nano Today 2024, 58, 102475. [Google Scholar] [CrossRef]
- Kumar, A.; Bano, S.; Govind, B.; Bhardwaj, A.; Bhatt, K.; Misra, D. A review on fundamentals, design and optimization to high ZT of thermoelectric materials for application to thermoelectric technology. J. Electron. Mater. 2021, 50, 6037–6059. [Google Scholar] [CrossRef]
- Snyder, G.J.; Snyder, A.H. Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 2017, 10, 2280–2283. [Google Scholar] [CrossRef]
- He, Q.; Yang, D.; Xia, S.; Song, H. Ultra-low thermal conductivity and improved thermoelectric performance in La2O3-dispersed Bi2Sr2Co2Oy ceramics. Mater. Sci. Eng. B 2024, 299, 116976. [Google Scholar] [CrossRef]
- Lim, K.H.; Li, M.; Zhang, Y.; Wu, Y.; Zhou, Q.; Wang, Q.; Yang, X.; Liu, P.; Wang, W.-J.; Wong, K.W. Modulation doping of P-type Cu12Sb4S13 toward improving thermoelectric performance. J. Mater. Sci. Technol. 2024, 171, 71–79. [Google Scholar] [CrossRef]
- Yu, J.; Xing, Y.; Hu, C.; Huang, Z.; Qiu, Q.; Wang, C.; Xia, K.; Wang, Z.; Bai, S.; Zhao, X. Half-Heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy Mater. 2020, 10, 2000888. [Google Scholar] [CrossRef]
- Schierning, G.; Chavez, R.; Schmechel, R.; Balke, B.; Rogl, G.; Rogl, P. Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: A review of selected materials and basic considerations of module design. Transl. Mater. Res. 2015, 2, 025001. [Google Scholar] [CrossRef]
- Rebellon, H.E.; Henao, O.F.P.; Gutierrez-Velasquez, E.I.; Amell, A.A.; Colorado, H.A. Thermoelectric modules: Applications and opportunities in building environments for sustainable energy generation: From biomass, municipal waste, and other sources. Eng. Sci. 2024, 29, 1164. [Google Scholar] [CrossRef]
- Sun, W.; Sui, R.; Yuan, G.; Zheng, H.; Zeng, Z.; Xie, P.; Yuan, L.; Ren, Z.; Cai, F.; Zhang, Q. Thermoelectric module design to improve lifetime and output power density. Mater. Today Phys. 2021, 18, 100391. [Google Scholar] [CrossRef]
- Zhao, J.; Kuang, Z.; Long, R.; Liu, Z.; Liu, W. Impacts of thermal and electric contact resistance on the material design in segmented thermoelectric generators. Energy Storage Sav. 2024, 3, 5–15. [Google Scholar] [CrossRef]
- Tian, Y.; Ren, G.-K.; Wei, Z.; Zheng, Z.; Deng, S.; Ma, L.; Li, Y.; Zhou, Z.; Chen, X.; Shi, Y. Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond. Renew. Energy 2024, 226, 120443. [Google Scholar] [CrossRef]
- Wederni, A.; Daza, J.; Ben Mbarek, W.; Saurina, J.; Escoda, L.; Suñol, J.-J. Crystal structure and properties of Heusler alloys: A comprehensive review. Metals 2024, 14, 688. [Google Scholar] [CrossRef]
- Soltanbek, N.S.; Merali, N.; Sagatov, N.E.; Abuova, F.U.; Elsts, E.; Abuova, A.U.; Khovaylo, V.; Inerbaev, T.; Konuhova, M.; Popov, A.I. Ab initio investigation of the stability, electronic, mechanical, and transport properties of a new double Half-Heusler alloys Ti2Pt2ZSb (Z = Al, Ga, In). Metals 2025, 15, 329. [Google Scholar] [CrossRef]
- Kawasaki, J.K.; Chatterjee, S.; Canfield, P.C.; Editors, G. Full and half-Heusler compounds. MRS Bull. 2022, 47, 555–558. [Google Scholar] [CrossRef]
- Gurunani, B.; Ghosh, S.; Gupta, D.C. Comprehensive investigation of half Heusler alloy: Unveiling structural, electronic, magnetic, mechanical, thermodynamic, and transport properties. Intermetallics 2024, 170, 108311. [Google Scholar] [CrossRef]
- Li, W.; Ghosh, S.; Liu, N.; Poudel, B. Half-Heusler thermoelectrics: Advances from materials fundamental to device engineering. Joule 2024, 8, 1274–1311. [Google Scholar] [CrossRef]
- Chen, R.; Kang, H.; Min, R.; Chen, Z.; Guo, E.; Yang, X.; Wang, T. Thermoelectric properties of half-Heusler alloys. Int. Mater. Rev. 2024, 69, 83–106. [Google Scholar] [CrossRef]
- Le, W.; Yang, W.; Sheng, W.; Shuai, J. Research progress of interfacial design between thermoelectric materials and electrode materials. ACS Appl. Mater. Interfaces 2023, 15, 12611–12621. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, Y.; Luo, D.; Wang, X.; Yan, Y. Impacts of distributed thermal and electric contact resistance on performance and geometric optimization of thermoelectric generators. Appl. Therm. Eng. 2024, 246, 122873. [Google Scholar] [CrossRef]
- Shtern, Y.; Mironov, R.; Shtern, M.; Sherchenkov, A.; Rogachev, M. Technology and investigation of ohmic contacts to thermoelectric materials. Acta Phys. Pol. A 2016, 129, 785–787. [Google Scholar] [CrossRef]
- Zhang, Z.; Gurtaran, M.; Dong, H. Low-Cost Magnesium-Based Thermoelectric Materials: Progress, Challenges, and Enhancements. ACS Appl. Energy Mater. 2024, 7, 5629–5646. [Google Scholar] [CrossRef]
- Korchagin, E.; Shtern, M.; Petukhov, I.; Shtern, Y.; Rogachev, M.; Kozlov, A.; Mustafoev, B. Contacts to thermoelectric materials obtained by chemical and electrochemical deposition of Ni and Co. J. Electron. Mater. 2022, 51, 5744–5758. [Google Scholar] [CrossRef]
- Korchagin, E.; Shtern, M.Y.; Petukhov, I.; Shtern, Y.I.; Rogachev, M.; Kozlov, A.; Mustafoev, B.; Dedkova, A. Formation and Properties of Nickel Contacts to Thermoelectric Materials Based on Bismuth and Antimony Chalcogenides. Russ. J. Appl. Chem. 2022, 95, 536–543. [Google Scholar] [CrossRef]
- Ayachi, S.; Castillo Hernandez, G.; Pham, N.H.; Farahi, N.; Müller, E.; de Boor, J. Developing Contacting Solutions for Mg2Si1–x Sn x-Based Thermoelectric Generators: Cu and Ni45Cu55 as Potential Contacting Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 40769–40780. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, P.; Zhou, C.; Li, L.; Nie, X.; Zhu, W.; Zhao, W. Improved contact performance and thermal stability of Co–Ni alloy barrier layer for bismuth telluride-based thermoelectric devices. J. Mater. Sci. Mater. Electron. 2024, 35, 727. [Google Scholar] [CrossRef]
- Basu, R. Thermoelectric modules: Key issues in architectural design and contact optimization. ChemNanoMat 2023, 9, e202200551. [Google Scholar] [CrossRef]
- Korchagin, E.; Shtern, Y.I.; Petukhov, I.; Shtern, M.Y.; Rogachev, M.; Sherchenkov, A.; Kozlov, A.; Ryazanov, R. Chemical Solution Deposition of Nickel and Cobalt Contacts on Catalytically Active Surfaces of Thermoelectric Materials. Inorg. Mater. 2024, 60, 1189–1196. [Google Scholar] [CrossRef]
- Kumari, N.; Dasgupta, T. Developing contacting solutions for n-type Mg3Sb1.5Bi0.5 based thermoelectric materials. J. Alloys Compd. 2023, 944, 169220. [Google Scholar] [CrossRef]
- Fang, C.; Chen, G.; Li, Z.; Wang, X.; Duan, B.; Feng, X.; Li, G.; Zhai, P. Mechanical bonding and metallurgical bonding synergistically optimize the shear properties of the Ni/Bi2Te3 joint interface. J. Mater. Sci. Mater. Electron. 2025, 36, 200. [Google Scholar] [CrossRef]
- Tan, M.; Liu, W.-D.; Shi, X.-L.; Sun, Q.; Chen, Z.-G. Minimization of the electrical contact resistance in thin-film thermoelectric device. Appl. Phys. Rev. 2023, 10, 021404. [Google Scholar] [CrossRef]
- Ioannou, P.; Mangelis, P.; Hadjipanteli, S.; Mina, M.; Søiland, A.; Giapintzakis, J.; Kyratsi, T. Development of silicide thermoelectric modules based on high purity Si and recycled Si-kerf: A contact resistance investigation. Mater. Today Energy 2025, 49, 101855. [Google Scholar] [CrossRef]
- Shtern, M.Y.; Sherchenkov, A.; Shtern, Y.I.; Rogachev, M.; Korchagin, E. Preparation of the Thermoelement Surfaces and Investigation of Ohmic Film Contacts Formed on Them by Different Methods. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2023, 17, 1207–1216. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, P.; Zhang, H.; Li, L.; Zhu, W.; Nie, X.; Zhao, W.; Zhang, Q. Enhanced contact performance and thermal tolerance of Ni/Bi2Te3 joints for Bi2Te3-based thermoelectric devices. ACS Appl. Mater. Interfaces 2023, 15, 22705–22713. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, N.; Zhan, Y.; Luo, Y.; Ye, N.; Tang, J.; Zhuo, H. Preparation and tribological performance of Ni-SiC composite coating on 304 stainless steel through brush plating. Surf. Coat. Technol. 2024, 494, 131491. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Shi, Z. Mechanisms and influences of electro-brush plating micro-force on coatings performances. J. Mater. Res. 2016, 31, 2337–2346. [Google Scholar] [CrossRef]
- Qi, S.; Li, X.; Dong, H. Reduced friction and wear of electro-brush plated nickel composite coatings reinforced by graphene oxide. Wear 2019, 426, 228–238. [Google Scholar] [CrossRef]
- Gurtaran, M.; Zhang, Z.; Li, X.; Dong, H. Cyclic oxidation behaviour of N-type (Zr, Ti) Ni (Sn, Sb) and P-type (Zr, Ti) Co (Sn, Sb) thermoelectric materials. J. Mater. Res. Technol. 2024, 30, 7476–7484. [Google Scholar] [CrossRef]
- Gurtaran, M.; Zhang, Z.; Li, X.; Dong, H. Developing advanced CrSi coatings for combatting surface degradation of N-type (Zr, Ti) Ni (Sn, Sb) and P-type (Zr, Ti) Co (Sn, Sb) half Heusler thermoelectric materials. J. Mater. Res. Technol. 2024, 32, 3288–3301. [Google Scholar] [CrossRef]











| C | Si | Mn | Cr | Ni | Mo | Fe | Other | |
|---|---|---|---|---|---|---|---|---|
| AISI 316 | 0.03 | 1.00 | 2.00 | 16.50–18.50 | 10.00–13.00 | 2.00–2.50 | Bal. | <1.00 |
| Zr | Ti | Co | Sn | Sb | |
|---|---|---|---|---|---|
| (Zr,Ti)Co(Sn,Sb) | 18.1 | 16.4 | 29.1 | 10.7 | 25.7 |
| Sample Codes | Substrate | Voltage (V) | Deposition Time (min) | Oxidation Test |
|---|---|---|---|---|
| N4 | SS | 4 | 30 | - |
| N5 | 5 | |||
| N6 | 6 | |||
| N7 | 7 | |||
| N8 | 8 | |||
| P6 | (Zr,Ti)Co(Sn,Sb) | 6 | 10 | - |
| P6-O5 | 500 °C/10 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurtaran, M.; Zhang, Z.; Li, X.; Dong, H. Characterisation of Electro-Brush Plated Nickel Coatings on P-Type (Zr,Ti)Co(Sn,Sb) Half-Heusler Thermoelectric Materials for Stable Contact Layers. Materials 2025, 18, 5108. https://doi.org/10.3390/ma18225108
Gurtaran M, Zhang Z, Li X, Dong H. Characterisation of Electro-Brush Plated Nickel Coatings on P-Type (Zr,Ti)Co(Sn,Sb) Half-Heusler Thermoelectric Materials for Stable Contact Layers. Materials. 2025; 18(22):5108. https://doi.org/10.3390/ma18225108
Chicago/Turabian StyleGurtaran, Mikdat, Zhenxue Zhang, Xiaoying Li, and Hanshan Dong. 2025. "Characterisation of Electro-Brush Plated Nickel Coatings on P-Type (Zr,Ti)Co(Sn,Sb) Half-Heusler Thermoelectric Materials for Stable Contact Layers" Materials 18, no. 22: 5108. https://doi.org/10.3390/ma18225108
APA StyleGurtaran, M., Zhang, Z., Li, X., & Dong, H. (2025). Characterisation of Electro-Brush Plated Nickel Coatings on P-Type (Zr,Ti)Co(Sn,Sb) Half-Heusler Thermoelectric Materials for Stable Contact Layers. Materials, 18(22), 5108. https://doi.org/10.3390/ma18225108

