Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure
Abstract
1. Introduction
2. Theoretical Framework and Governing Equations
2.1. Overall Framework of the Model
2.2. Hygro-Thermal Transport in Concrete
2.3. Multi-Ion Reactive Transport Under Coupled Environments
2.4. Electrochemistry Under Coupled Environments
2.5. Damage Fracture Mechanics Under Coupled Environments
2.6. Effect of Corrosion and Damage on Diffusion
3. Numerical Modeling Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure
3.1. Numerical Model and Parameters
3.2. Model Calibration and Validation
4. Results and Discussion
4.1. Result of Damage Evolution and Crack Propagation Path
4.2. Discussion
5. Conclusions
- Scientific Findings in Materials Science: The research effectively created and confirmed a thorough Hygro-Thermo-Electro-Chemo-Mechanical (HTECM) phase-field model. This model precisely elucidates the essential degradation mechanisms, highlighting the pivotal function of the damage-induced “transport-corrosion” positive feedback loop, wherein micro-cracking significantly accelerates local moisture and ion transport, resulting in a nonlinear escalation of deterioration.
- Engineering Applications and Resource Requirements: The model offers a precise numerical tool for actual engineering applications.
- 3.
- Future Development Prospects: This study provides a solid basis for subsequent research. The existing framework must be augmented to include additional long-term effects, such as concrete creep, bond–slip between rebar and concrete, and the interaction of freeze–thaw cycles, to improve its forecast precision for actual constructions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RC | Reinforced Concrete |
| PFM | Phase-Field Method |
| HTECM | Hygro-Thermo-Electro-Chemo-Mechanical |
| ITZ | Interfacial Transition Zone |
| PF-CZM | Phase-Field Regularized Cohesive Zone Model |
| FPZ | Fracture Process Zone |
| w/c | Water–Cement Ratio |
References
- Angst, U.M. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 2018, 51, 4. [Google Scholar] [CrossRef]
- Mi, T.; Wang, J.J.; McCague, C.; Bai, Y. Application of Raman Spectroscopy in the study of the corrosion of steel reinforcement in concrete: A critical review. Cem. Concr. Compos. 2023, 143, 105231. [Google Scholar] [CrossRef]
- Wang, X.; Qiao, H.; Zhang, Y.; Zhang, W.; Xue, C.; Mundia, M.M.; Zhang, L. Research on Enhancing the Corrosion Resistance of Concrete in a MgSO4 Corrosive Environment Using CTF Synergist. KSCE J. Civ. Eng. 2024, 28, 1440–1451. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, Y.; Zhu, M.; Lin, Y.; Zhou, Z. Retrofitting circular RC columns using UHPC jackets reinforced with stainless steel mesh in the plastic hinge region. J. Build. Eng. 2025, 99, 111592. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, W.; Wu, F.; Li, H.; Zhang, Y.; Xu, G. Influence of Initial Damage Degree on the Degradation of Concrete Under Sulfate Attack and Wetting–Drying Cycles. Int. J. Concr. Struct. Mater. 2020, 14, 47. [Google Scholar] [CrossRef]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Critical chloride content in reinforced concrete—A review. Cem. Concr. Res. 2009, 39, 1122–1138. [Google Scholar] [CrossRef]
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete—Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- Šauman, Z. Carbonization of porous concrete and its main binding components. Cem. Concr. Res. 1971, 1, 645–662. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Li, H.; Wang, K.; Zhang, C.; Jiang, Y.; Qiang, S. Corrosion mechanism and damage characteristic of steel fiber concrete under the effect of stray current and salt solution. Constr. Build. Mater. 2022, 314, 125618. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Q.; Wang, L.; Yao, Y.; Li, K. Corrosion of rebar in concrete under cyclic freeze–thaw and Chloride salt action. Constr. Build. Mater. 2014, 53, 40–47. [Google Scholar] [CrossRef]
- Wu, J.-Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 2017, 103, 72–99. [Google Scholar] [CrossRef]
- Wu, J.-Y. A geometrically regularized gradient-damage model with energetic equivalence. Comput. Methods Appl. Mech. Eng. 2018, 328, 612–637. [Google Scholar] [CrossRef]
- Chen, W.-X.; Wu, J.-Y. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics. Theor. Appl. Fract. Mech. 2022, 117, 103153. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Huang, Y.; Zhou, H.; Nguyen, V.P. Three-dimensional phase-field modeling of mode I + II/III failure in solids. Comput. Methods Appl. Mech. Eng. 2021, 373, 113537. [Google Scholar] [CrossRef]
- Mandal, T.K.; Nguyen, V.P.; Wu, J.-Y.; Nguyen-Thanh, C.; de Vaucorbeil, A. Fracture of thermo-elastic solids: Phase-field modeling and new results with an efficient monolithic solver. Comput. Methods Appl. Mech. Eng. 2021, 376, 113648. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Zhang, D.; Ding, R.; Xiong, C. Study on corrosion protection of NA/LDH for reinforced concrete under dry-wet cycles conditions of NaCl solution. J. Build. Eng. 2025, 111, 113297. [Google Scholar] [CrossRef]
- Shi, D.; Chen, X.; Shao, W. Modeling of bidirectional chloride convection-diffusion for corrosion initiation life prediction of RC square piles under drying-wetting cycle. Appl. Ocean Res. 2023, 141, 103789. [Google Scholar] [CrossRef]
- Yang, S.Y.; Wang, T.; Tang, Z.X.; Xu, N.Y.; Wu, P. Deterioration characteristics of uniaxial compression of concrete exposed to alternate environmental corrosion conditions of sulfate wet-dry and freeze-thaw cycles. J. Build. Eng. 2025, 110, 113110. [Google Scholar] [CrossRef]
- Su, L.; Ma, Z.; Niu, D.; Huang, D.; Sun, Z.; Zhang, Y.; Luo, Y. Corrosion characteristics of basalt-polypropylene hybrid fiber concrete under the compound salt and drying-wetting cycles. Constr. Build. Mater. 2024, 419, 135529. [Google Scholar] [CrossRef]
- Li, Q.; Lan, J.; Shen, L.; Yang, J.; Chen, C.; Jiang, Z.; Wang, C. A state-of-the-art review on monitoring technology and characterization of reinforcement corrosion in concrete. Case Stud. Constr. Mater. 2025, 22, e04780. [Google Scholar] [CrossRef]
- Mennaouy, F.E.; Ouadia, M.; Bybi, A.; Khanfri, C.; Nakach, I. Impact of corrosion on the bonding properties at the concrete-rebar interface in reinforced concrete structures. Results Eng. 2025, 26, 105615. [Google Scholar] [CrossRef]
- Sirico, A.; Palii, O.; Belletti, B.; Bernardi, P.; Pappalardo, M.; Sanchez, J.; Plaza, P.; Medina, C. Bond performance assessment of uncorroded and corroded reinforced recycled aggregate concrete. Constr. Build. Mater. 2025, 470, 139951. [Google Scholar] [CrossRef]
- Tang, H.; Peng, J.; Peng, H.; Yang, Y.; Li, H.; Ge, Y.; Xiao, J.; Yao, S. Deflection analysis of pre-stressed concrete beam with local corrosion. Structures 2025, 82, 110457. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, R.; Niu, D.; Tian, W.; Wang, Y. Performance degradation of fatigue-damaged concrete under the combined effect of freeze-thaw cycles and chloride-sulfate attack. Constr. Build. Mater. 2025, 470, 140585. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Cui, J.; Xu, R. Study on Cl−Erosion of Concrete under the Combined Effect of Fatigue Load and Wet–Dry Cycles: A Review. Appl. Sci. 2023, 13, 6691. [Google Scholar] [CrossRef]
- Fan, G.; Sun, S.; Wang, D.; Sha, F.; Xiang, W.; Wang, X. Coupled effect of drying-wetting cycle and sustained load on chloride ion transport behavior of waterborne polyurethane-modified concrete. Constr. Build. Mater. 2025, 476, 141223. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, Y.; Hou, C.; Lan, X.; Pan, T.; Zhang, Z. Investigation of chloride ion diffusion mechanism and durability analysis of offshore concrete structures under fatigue loading. Eng. Fract. Mech. 2025, 317, 110942. [Google Scholar] [CrossRef]
- Chen, D.; Feng, Y.; Shen, J.; Sun, G.; Shi, J. Experimental and simulation study on chloride diffusion in unsaturated concrete under the coupled effect of carbonation and loading. Structures 2022, 43, 1356–1368. [Google Scholar] [CrossRef]
- Guo, B.; Chu, J.; Zhang, Z.; Wang, Y.; Niu, D. Effect of external loads on chloride ingress into concrete: A state-of-the-art review. Constr. Build. Mater. 2024, 450, 138657. [Google Scholar] [CrossRef]
- Fang, X.; Pan, Z.; Ma, R.; Chen, A. Electrochemical–chemical–mechanical phase field model for non-uniform corrosion-induced cracking considering the rust precipitation. Eng. Comput. 2025. [Google Scholar] [CrossRef]
- Korec, E.; Jirásek, M.; Wong, H.S.; Martínez-Pañeda, E. Phase-field chemo-mechanical modelling of corrosion-induced cracking in reinforced concrete subjected to non-uniform chloride-induced corrosion. Theor. Appl. Fract. Mech. 2024, 129, 104233. [Google Scholar] [CrossRef]
- Korec, E.; Jirásek, M.; Wong, H.S.; Martínez-Pañeda, E. A phase-field chemo-mechanical model for corrosion-induced cracking in reinforced concrete. Constr. Build. Mater. 2023, 393, 131964. [Google Scholar] [CrossRef]
- Qiu, J.-R.; Feng, D.-C.; Wu, G. A multi-physics dual-phase field model for chloride-induced localized corrosion process and cracking in reinforced concrete. Comput. Methods Appl. Mech. Eng. 2025, 434, 117578. [Google Scholar] [CrossRef]
- Dong, B.; Yu, Y.; Gao, W.; Gunasekara, C.; Zhao, G.; Castel, A.; Setunge, S. Electro-chemo-physical analysis for long-term reinforcement corrosion within the reactive system of concrete. Cem. Concr. Compos. 2025, 155, 105846. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, G.; Ye, H.; Zeng, Q.; Zhang, Z.; Tian, Z.; Jin, X.; Jin, N.; Chen, Z.; Wang, J. Corrosion of steel rebar in concrete induced by chloride ions under natural environments. Constr. Build. Mater. 2023, 369, 130504. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Q.; Zhu, T.; Li, B.; Liu, W.; Yang, H.; Xu, J.; Jiang, Z.; Zhu, H. Coupling effect of concrete cracks and stray current on chloride-induced corrosion of rebar. Constr. Build. Mater. 2024, 449, 138403. [Google Scholar] [CrossRef]
- Chen, D.; Yang, K.; Hu, D.; Shi, J. A meso-stochastic research on the chloride transport in unsaturated concrete. Constr. Build. Mater. 2021, 273, 121986. [Google Scholar] [CrossRef]
- Saetta, A.V.; Schrefler, B.A.; Vitaliani, R.V. The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials. Cem. Concr. Res. 1993, 23, 761–772. [Google Scholar] [CrossRef]
- Wong, S.F.; Wee, T.H.; Swaddiwudhipong, S.; Lee, S.L. Wong Study of water movement in concrete. Mag. Concr. Res. 2001, 53, 205–220. [Google Scholar] [CrossRef]
- Chen, X.; Sanchez, T.; Conciatori, D.; Chaouki, H.; Sorelli, L.; Selma, B.; Chekired, M. Numerical modeling of 2D hygro-thermal transport in unsaturated concrete with capillary suction. J. Build. Eng. 2022, 45, 103640. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Xi, Y. Modeling the effect of temperature gradient on moisture and ionic transport in concrete. Cem. Concr. Compos. 2020, 106, 103454. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Y.; Sun, W.; Liu, Z.; Wang, C. Multi-scale prediction of the effective chloride diffusion coefficient of concrete. Constr. Build. Mater. 2011, 25, 3820–3831. [Google Scholar] [CrossRef]
- Zhang, Y.; Luzio, G.D.; Alnaggar, M. Coupled multi-physics simulation of chloride diffusion in saturated and unsaturated concrete. Constr. Build. Mater. 2021, 292, 123394. [Google Scholar] [CrossRef]
- Mao, L.; Li, L.; Wang, Y.; Liu, Q. Physicochemical modelling in chlorides migration in concrete with account of multi-species coupling, reaction kinetic and pore evolution. Constr. Build. Mater. 2025, 460, 139707. [Google Scholar] [CrossRef]
- Tong, L.; Savija, B.; Zhang, M.; Xiong, Q.X.; Liu, Q. Chloride penetration in concrete under varying humidity and temperature changes: A numerical study. Constr. Build. Mater. 2025, 458, 138380. [Google Scholar] [CrossRef]
- Stefanoni, M.; Zhang, Z.; Angst, U.; Elsener, B. The kinetic competition between transport and oxidation of ferrous ions governs precipitation of corrosion products in carbonated concrete. RILEM Tech. Lett. 2018, 3, 8–16. [Google Scholar] [CrossRef]
- Chen, A.; Ruan, X.; Frangopol, D.M. (Eds.) Life-Cycle Civil Engineering: Innovation, Theory and Practice, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-0-429-34329-2. [Google Scholar]
- Xia, J.; Li, T.; Fang, J.-X.; Jin, W. Numerical simulation of steel corrosion in chloride contaminated concrete. Constr. Build. Mater. 2019, 228, 116745. [Google Scholar] [CrossRef]
- Wu, J.-Y. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Comput. Methods Appl. Mech. Eng. 2018, 340, 767–797. [Google Scholar] [CrossRef]
- Korec, E.; Jirásek, M.; Wong, H.S.; Martínez-Pañeda, E. Unravelling the interplay between steel rebar corrosion rate and corrosion-induced cracking of reinforced concrete. Cem. Concr. Res. 2024, 186, 107647. [Google Scholar] [CrossRef]
- Krajcinovic, D.; Basista, M.; Mallick, K.; Sumarac, D. Chemo-micromechanics of brittle solids. J. Mech. Phys. Solids 1992, 40, 965–990. [Google Scholar] [CrossRef]
- Ye, H.; Jin, N.; Fu, C.; Jin, X. Rust distribution and corrosion-induced cracking patterns of corner-located rebar in concrete cover. Constr. Build. Mater. 2017, 156, 684–691. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, L.; Wan, J.; Li, Y.; Xu, W.; Qi, Y.; Xie, Z.; Xu, W. Analysis of factors affecting structural durability based on reinforced concrete corrosion-induced cracking. Structures 2025, 75, 108677. [Google Scholar] [CrossRef]
- Fang, X.; Pan, Z.; Ma, R.; Chen, A. A multi-phase-field framework for non-uniform corrosion and corrosion-induced concrete cracking. Comput. Methods Appl. Mech. Eng. 2023, 414, 116196. [Google Scholar] [CrossRef]
- Mai, W.; Soghrati, S.; Buchheit, R.G. A phase field model for simulating the pitting corrosion. Corros. Sci. 2016, 110, 157–166. [Google Scholar] [CrossRef]






| Parameters | O2 | Cl− | Na+ | K+ | OH− | Fe2+ |
|---|---|---|---|---|---|---|
| Initial concentration (mol/m3) | 0.268 | 0 | 9.53 | 6.56 | 16.35 | 0 |
| Diffusion coefficient in mortar (×10−11 m2/s) | 4.5 × 103 | 2.03 | 1.79 | 2.63 | 7.08 | 0.965 |
| Diffusion coefficient in ITZ (×10−11 m2/s) | 3.6 × 104 | 13.65 | 8.95 | 13.15 | 35.4 | 4.825 |
| Parameter | Value |
|---|---|
| Moisture reference diffusion coefficient during drying process, (m2/s) | 8.31 × 10−10 |
| Moisture reference diffusion coefficient during wetting process, (m2/s) | 4.05 × 10−11 |
| Volume fraction of aggregates, | Case-dependent |
| The ratio of minimum to , | 0.025 |
| the relative humidity when =/2, | 0.8 |
| parameter characterizing the drop and rise spread during the drying process | 6 |
| parameter characterizing the drop and rise spread during the wetting process | 6 |
| water–cement ratio | Case-dependent |
| the initial degree of hydration α0 | 0.75 |
| Phase | Young’s Modulus (GPa) | Poisson’s Ratio | Tensile Strength (MPa) | Fracture Energy (N/m) |
|---|---|---|---|---|
| Aggregate | 80.0 | 0.2 | - | - |
| Mortar | 30.0 | 0.167 | 30 | 40 |
| ITZ | 15.0 | 0.167 | 15 | 20 |
| Parameters | Value | Unit |
|---|---|---|
| Anodic Tafel slope, | 0.09 | V/dec |
| Anodic equilibrium potential, | −0.78 | V |
| Anodic exchange current density, | 3 × 10−4 | A/m2 |
| Cathodic Tafel slope, | −0.14 | V/dec |
| Cathodic equilibrium potential, | 1 × 10−5 | V |
| Cathodic exchange current density, | 2.5 | A/m2 |
| Feature | This Study (HTECM Model) | Korec et al. [31] | Qiu et al. [33] |
|---|---|---|---|
| Physics Coupling | H-T-E-C-M (Fully coupled) | Chemo-Mechanical | Electro-Chemo-Mechanical |
| Saturation State | Unsaturated (Dynamic S(t)) | Saturated | Saturated |
| Environmental Driver | Dynamic Temp. & Humidity, Constant Chloride Flux | Constant Chloride Flux | Constant Chloride Flux |
| Material Heterogeneity | Mesoscale (Polygonal Aggregates) | Homogeneous (Macroscale) | Mesoscale (Circular Aggregates) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, A.; Zhang, Y. Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure. Materials 2025, 18, 5091. https://doi.org/10.3390/ma18225091
Lu A, Zhang Y. Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure. Materials. 2025; 18(22):5091. https://doi.org/10.3390/ma18225091
Chicago/Turabian StyleLu, Aihua, and Yongxing Zhang. 2025. "Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure" Materials 18, no. 22: 5091. https://doi.org/10.3390/ma18225091
APA StyleLu, A., & Zhang, Y. (2025). Multiphysics Phase-Field Modeling of Corrosion-Induced Degradation in Unsaturated Reinforced Concrete Structure. Materials, 18(22), 5091. https://doi.org/10.3390/ma18225091
