Effect of Process Parameters on Plasma-Enhanced Solvolysis of CFRPs
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayam, A.; Rahman, A.N.M.M.; Rahman, M.S.; Smriti, S.A.; Ahmed, F.; Rabbi, M.F.; Hossain, M.; Faruque, M.O. A Review on Carbon Fiber-Reinforced Hierarchical Composites: Mechanical Performance, Manufacturing Process, Structural Applications and Allied Challenges. Carbon Lett. 2022, 32, 1173–1205. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Seidlitz, H.; Goracy, K.; Urbaniak, M.; Rösch, J.J. Recycling of Carbon Fiber Reinforced Composite Polymers—Review—Part 1: Volume of Production, Recycling Technologies, Legislative Aspects. Polymers 2021, 13, 300. [Google Scholar] [CrossRef]
- Shehab, E.; Meiirbekov, A.; Amantayeva, A.; Suleimen, A.; Tokbolat, S.; Sarfraz, S. A Cost Modelling System for Recycling Carbon Fiber-Reinforced Composites. Polymers 2021, 13, 4208. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Banatao, D.R.; Pastine, S.J.; Latteri, A.; Cicala, G. Recycling Treatment of Carbon Fibre/Epoxy Composites: Materials Recovery and Characterization and Environmental Impacts through Life Cycle Assessment. Compos. B Eng. 2016, 104, 17–25. [Google Scholar] [CrossRef]
- Directive—2000/53—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2000/53/oj/eng (accessed on 23 July 2025).
- Podara, C.; Termine, S.; Modestou, M.; Semitekolos, D.; Tsirogiannis, C.; Karamitrou, M.; Trompeta, A.-F.; Milickovic, T.K.; Charitidis, C. Recent Trends of Recycling and Upcycling of Polymers and Composites: A Comprehensive Review. Recycling 2024, 9, 37. [Google Scholar] [CrossRef]
- Liu, T.; Shao, L.; Zhao, B.; Chang, Y.; Zhang, J. Progress in Chemical Recycling of Carbon Fiber Reinforced Epoxy Composites. Macromol. Rapid Commun. 2022, 43, 2200538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current Status of Carbon Fibre and Carbon Fibre Composites Recycling. Compos. B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Pakdel, E.; Kashi, S.; Varley, R.; Wang, X. Recent Progress in Recycling Carbon Fibre Reinforced Composites and Dry Carbon Fibre Wastes. Resour. Conserv. Recycl. 2021, 166, 105340. [Google Scholar] [CrossRef]
- Mu, Q.; An, L.; Hu, Z.; Kuang, X. Fast and Sustainable Recycling of Epoxy and Composites Using Mixed Solvents. Polym. Degrad. Stab. 2022, 199, 109895. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Y.; Hou, X. Review of Chemical Recycling and Reuse of Carbon Fiber Reinforced Epoxy Resin Composites. New Carbon. Mater. 2022, 37, 1021–1041. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Zhang, S.; Guo, B.; Niu, D. A Review on New Methods of Recycling Waste Carbon Fiber and Its Application in Construction and Industry. Constr. Build. Mater. 2023, 367, 130301. [Google Scholar] [CrossRef]
- Scarpitti, N.; Gavio, N.; Pol, A.; Sanei, S.H.R. Recycling Unrecycled Plastic and Composite Wastes as Concrete Reinforcement. J. Compos. Sci. 2023, 7, 11. [Google Scholar] [CrossRef]
- Vincent, G.A.; de Bruijn, T.A.; Wijskamp, S.; Abdul Rasheed, M.I.; van Drongelen, M.; Akkerman, R. Shredding and Sieving Thermoplastic Composite Scrap: Method Development and Analyses of the Fibre Length Distributions. Compos. B Eng. 2019, 176, 107197. [Google Scholar] [CrossRef]
- Demski, S.; Misiak, M.; Majchrowicz, K.; Komorowska, G.; Lipkowski, A.; Stankiewicz, K.; Dydek, K.; Waśniewski, B.; Boczkowska, A.; Ehrlich, H. Mechanical Recycling of CFRPs Based on Thermoplastic Acrylic Resin with the Addition of Carbon Nanotubes. Sci. Rep. 2024, 14, 11550. [Google Scholar] [CrossRef]
- Sharma, J.; Shukla, S.; Ramana, G.V.; Behera, B.K. Advances in Carbon and Glass Fiber Recycling: Optimal Composite Recycling and Sustainable Solutions for Composite Waste. J. Mater. Cycles Waste Manag. 2025, 27, 3166–3195. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical Review on Recycling of End-of-Life Carbon Fibre/Glass Fibre Reinforced Composites Waste Using Pyrolysis towards a Circular Economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef]
- Abdou, T.R.; Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. Recycling of Polymeric Composites from Industrial Waste by Pyrolysis: Deep Evaluation for Carbon Fibers Reuse. J. Waste Manag. 2021, 120, 1–9. [Google Scholar] [CrossRef]
- Meng, F.; McKechnie, J.; Turner, T.A.; Pickering, S.J. Energy and Environmental Assessment and Reuse of Fluidised Bed Recycled Carbon Fibres. Compos. Part A Appl. Sci. Manuf. 2017, 100, 206–214. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Blanco, I.; Banatao, D.R.; Pastine, S.J.; Björklund, A.; Cicala, G. Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic—An LCA Study. Materials 2018, 11, 353. [Google Scholar] [CrossRef]
- Rijo, B.; Dias, A.P.S.; Carvalho, J.P.S. Recovery of Carbon Fibers from Aviation Epoxy Composites by Acid Solvolysis. Sustain. Mater. Technol. 2023, 35, e00545. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, Q.; Yuan, X.X.; Van Kasteren, J.M.N.; Wang, Y.Z. Highly Efficient Solvolysis of Epoxy Resin Using Poly(Ethylene Glycol)/NaOH Systems. Polym. Degrad. Stab. 2012, 97, 1101–1106. [Google Scholar] [CrossRef]
- Okajima, I.; Hiramatsu, M.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. J. Supercrit. Fluids 2014, 91, 68–76. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.; Wu, Y.; Wang, Y.; Nguyen, T.T.; Guo, M. Recycling Carbon Fiber from Carbon Fiber-Reinforced Polymer and Its Reuse in Photocatalysis: A Review. Polymers 2022, 15, 170. [Google Scholar] [CrossRef] [PubMed]
- DiPucchio, R.C.; Stevenson, K.R.; Lahive, C.W.; Michener, W.E.; Beckham, G.T. Base-Mediated Depolymerization of Amine-Cured Epoxy Resins. ACS Sustain. Chem. Eng. 2023, 11, 16946–16954. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, S.; Wang, C.; Cui, X.; Zhao, T.; Yuan, L.; Qi, Y.; Hou, X.; Jin, H.; Deng, T. Efficient Catalytic Degradation of Anhydride-Cured Epoxy Resin by Amphiphilic Molecule Catalysts. Green. Chem. 2022, 24, 7395–7402. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S.; Wong, K.H. Chemical Recycling of Carbon Fibre Reinforced Composites in Nearcritical and Supercritical Water. Compos. Part A Appl. Sci. Manuf. 2008, 39, 454–461. [Google Scholar] [CrossRef]
- Shen, M.; Cao, H.; Robertson, M.L. Hydrolysis and Solvolysis as Benign Routes for the End-of-Life Management of Thermoset Polymer Waste. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 183–201. [Google Scholar] [CrossRef]
- Knight, C.C.; Zeng, C.; Zhang, C.; Wang, B. Recycling of Woven Carbon-Fibre-Reinforced Polymer Composites Using Supercritical Water. Environ. Technol. 2012, 33, 639–644. [Google Scholar] [CrossRef]
- Pereira, P.; Slear, W.; Testa, A.; Reasons, K.; Guirguis, P.; Savage, P.E.; Pester, C.W. Fast Hydrolysis for Chemical Recycling of Polyethylene Terephthalate (PET). RSC Sustain. 2024, 2, 1508–1514. [Google Scholar] [CrossRef]
- Fazio, D.; Boccarusso, D.; Formisano, L.; Viscusi, A.; Durante, A.; De Fazio, D.; Boccarusso, L.; Formisano, A.; Viscusi, A.; Durante, M. A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. J. Mar. Sci. Eng. 2023, 11, 851. [Google Scholar] [CrossRef]
- Poranek, N.; Pikoń, K.; Generowicz-Caba, N.; Mańka, M.; Kulczycka, J.; Marinis, D.; Farsari, E.; Amanatides, E.; Lewandowska, A.; Sajdak, M.; et al. Comparative LCA Analysis of Selected Recycling Methods for Carbon Fibers and Socio-Economic Analysis. Materials 2025, 18, 2660. [Google Scholar] [CrossRef]
- Shi, X.; Luo, C.; Lu, H.; Yu, K. Primary Recycling of Anhydride-cured Engineering Epoxy Using Alcohol Solvent. Polym. Eng. Sci. 2019, 59, E111–E119. [Google Scholar] [CrossRef]
- Sakai, A.; Kurniawan, W.; Kubouchi, M. Chemical Recycling of CFRP in an Environmentally Friendly Approach. Polymers 2024, 16, 143. [Google Scholar] [CrossRef]
- Lahive, C.W.; Dempsey, S.H.; Reiber, S.E.; Pal, A.; Stevenson, K.R.; Michener, W.E.; Alt, H.M.; Ramirez, K.J.; Rognerud, E.G.; Lincoln, C.L.; et al. Acetolysis for Epoxy-Amine Carbon Fibre-Reinforced Polymer Recycling. Nature 2025, 642, 605–612. [Google Scholar] [CrossRef]
- Shetty, S.; Pinkard, B.R.; Novosselov, I.V. Recycling of Carbon Fiber Reinforced Polymers in a Subcritical Acetic Acid Solution. Heliyon 2022, 8, E12242. [Google Scholar] [CrossRef]
- Gallyamova, R.; Dokichev, V.; Musin, F. Acid Treatment of Carbon Fiber Surface. MATEC Web Conf. 2023, 376, 01002. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, L.; Huang, Y.; Du, J. Recycling of Carbon/Epoxy Composites. J. Appl. Polym. Sci. 2004, 94, 1912–1916. [Google Scholar] [CrossRef]
- Hanaoka, T.; Arao, Y.; Kayaki, Y.; Kuwata, S.; Kubouchi, M. Analysis of Nitric Acid Decomposition of Epoxy Resin Network Structures for Chemical Recycling. Polym. Degrad. Stab. 2021, 186, 109537. [Google Scholar] [CrossRef]
- Dang, W.; Kubouchi, M.; Yamamoto, S.; Sembokuya, H.; Tsuda, K. An Approach to Chemical Recycling of Epoxy Resin Cured with Amine Using Nitric Acid. Polymer 2002, 43, 2953–2958. [Google Scholar] [CrossRef]
- Hanaoka, T.; Ikematsu, H.; Takahashi, S.; Ito, N.; Ijuin, N.; Kawada, H.; Arao, Y.; Kubouchi, M. Recovery of Carbon Fiber from Prepreg Using Nitric Acid and Evaluation of Recycled CFRP. Compos. B Eng. 2022, 231, 109560. [Google Scholar] [CrossRef]
- Semitekolos, D.; Terzopoulou, S.; Zecchi, S.; Marinis, D.; Farsari, E.; Amanatides, E.; Sajdak, M.; Sobek, S.; Smok, W.; Tański, T.; et al. Performance Restoration of Chemically Recycled Carbon Fibres Through Surface Modification with Sizing. Polymers 2024, 17, 33. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, H.; Ding, L.X.; Chen, S.; Zou, Y.; Chen, G.F.; Wang, H. Selective Synthesis of Either Nitric Acid or Ammonia from Air by Electrolyte Regulation in a Plasma Electrolytic System. ACS Sustain. Chem. Eng. 2023, 11, 11737–11744. [Google Scholar] [CrossRef]
- Clark, R.A.; Shaver, M.P. Depolymerization within a Circular Plastics System. Chem. Rev. 2024, 124, 2617–2650. [Google Scholar] [CrossRef]
- Marinis, D.; Markatos, D.; Farsari, E.; Amanatides, E.; Mataras, D.; Pantelakis, S. A Novel Plasma-Enhanced Solvolysis as Alternative for Recycling Composites. Polymers 2024, 16, 2836. [Google Scholar] [CrossRef]
- Marinis, D.; Farsari, E.; Amanatides, E. Dissolution Kinetics in Plasma-Enhanced Nitric Acid Solvolysis of CFRCs. Materials 2025, 18, 4242. [Google Scholar] [CrossRef]
- Marinis, D.; Farsari, E.; Alexandridou, C.; Amanatides, E.; Mataras, D. Chemical Recovery of Carbon Fibers from Composites via Plasma Assisted Solvolysis. J. Phys. Conf. Ser. 2024, 2692, 012017. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Qin, L.; Mathew, S.; Han, Y.; Li, O.L. Gas-Liquid Interfacial Plasma Engineering under Dilute Nitric Acid to Improve Hydrophilicity and OER Performance of Nickel Foam. Prog. Nat. Sci. Mater. Int. 2022, 32, 608–616. [Google Scholar] [CrossRef]
- Stapelmann, K.; Gershman, S.; Miller, V. Plasma–Liquid Interactions in the Presence of Organic Matter—A Perspective. J. Appl. Phys. 2024, 135, 160901. [Google Scholar] [CrossRef] [PubMed]
- ASTM C1557-20; Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. Advancing Standards Transforming Markets International: West Conshohocken, PA, USA, 2007. [CrossRef]
- Silsby, J.A.; Dickenson, A.; Walsh, J.L.; Hasan, M.I. Resolving the Spatial Scales of Mass and Heat Transfer in Direct Plasma Sources for Activating Liquids. Front. Phys. 2022, 10, 1045196. [Google Scholar] [CrossRef]
- Di Somma, I.; Marotta, R.; Andreozzi, R.; Caprio, V. Nitric Acid Decomposition Kinetics in Mixed Acid and Their Use in the Modelling of Aromatic Nitration. Chem. Eng. Trans. 2014, 36, 127. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Zhang, P.; Li, J.; Chen, G. Interactions between Gas–Liquid Mass Transfer and Bubble Behaviours. R. Soc. Open Sci. 2019, 6, 190136. [Google Scholar] [CrossRef]
- Pultar, M.; Vidensky, J.; Sedlarova, I. Study of the Reaction between Dolomite and Nitric Acid. Physicochem. Probl. Miner. Process. 2019, 55, 370. [Google Scholar] [CrossRef]
- Kiminaitė, I.; Wilhelm, S.; Martetschläger, L.; Eckert, C.L.B.; Berenguer Casco, M.; Striūgas, N.; Fendt, S. Plastic Devolatilisation Kinetics During Isothermal High-Temperature Pyrolysis: Focus on Solid Products (Part I). Polymers 2025, 17, 525. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.M.; Afzal, A.; Sajid, S.; Akhter, Z. Synthesis, Characterization and Thermal Oxidative Stability of Rigid Epoxy Polymers Cured from Aromatic Mono- and Di-Amines. J. Polym. Res. 2013, 20, 41. [Google Scholar] [CrossRef]
- Miao, Y.; Yokochi, A.; Jovanovic, G.; Zhang, S.; von Jouanne, A. Application-Oriented Non-Thermal Plasma in Chemical Reaction Engineering: A Review. Green Energy Resour. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Kim, D.K.; An, K.H.; Bang, Y.H.; Kwac, L.K.; Oh, S.Y.; Kim, B.J. Effects of Electrochemical Oxidation of Carbon Fibers on Interfacial Shear Strength Using a Micro-Bond Method. Carbon Lett. 2016, 19, 32–39. [Google Scholar] [CrossRef]
- Peng, X.; Wu, Y.; Wei, Z. Research Progress on the Surface Modification of Carbon Fiber. RSC Adv. 2024, 14, 4043–4064. [Google Scholar] [CrossRef]
- Roseno, S.; Ammarullah, M.I.; Rohman, S.; Kurniawati, F.; Wahyudi, T.; Wargadipura, A.H.S.; Masmui, M.; Budiyanto, D.; Effendi, M.D.; Wahyudin, W.; et al. The Effects of Carbon Fiber Surface Treatment by Oxidation Process for Enhanced Mechanical Properties of Carbon Fiber/Epoxy Composites for Biomedical Application. AIP Adv. 2024, 14, 15044. [Google Scholar] [CrossRef]
- Pitto, M.; Fiedler, H.; Kim, N.K.; Verbeek, C.J.R.; Allen, T.D.; Bickerton, S. Carbon Fibre Surface Modification by Plasma for Enhanced Polymeric Composite Performance: A Review. Compos. Part A Appl. Sci. Manuf. 2024, 180, 108087. [Google Scholar] [CrossRef]
- Ballout, W.; Sallem-Idrissi, N.; Sclavons, M.; Doneux, C.; Bailly, C.; Pardoen, T.; Van Velthem, P. High Performance Recycled CFRP Composites Based on Reused Carbon Fabrics through Sustainable Mild Solvolysis Route. Sci. Rep. 2022, 12, 5928. [Google Scholar] [CrossRef]
- Torkaman, N.F.; Bremser, W.; Wilhelm, R. Catalytic Recycling of Thermoset Carbon Fiber-Reinforced Polymers. ACS Sustain. Chem. Eng. 2024, 12, 7668–7682. [Google Scholar] [CrossRef]
- Langston, T.A.; Granata, R.D. Influence of Nitric Acid Treatment Time on the Mechanical and Surface Properties of High-Strength Carbon Fibers. J. Compos. Mater. 2012, 48, 259–276. [Google Scholar] [CrossRef]
- Ahmed, K.; Qin, X.; Pang, Y.; Shao, Y.; Islam, S.R.; Yang, Y.; Hamada, H.; Yu, L. Effect of De-Sizing on the Structural and Mechanical Properties of Carbon Fiber Reinforced Polypropylene Composites Molded by the Novel Direct Fiber Feeding Injection Molding Technology. J. Thermoplast. Compos. Mater. 2023, 36, 1847–1876. [Google Scholar] [CrossRef]
- He, D.; Soo, V.K.; Stojcevski, F.; Lipiński, W.; Henderson, L.C.; Compston, P.; Doolan, M. The Effect of Sizing and Surface Oxidation on the Surface Properties and Tensile Behaviour of Recycled Carbon Fibre: An End-of-Life Perspective. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106072. [Google Scholar] [CrossRef]








| Performance Parameters | Single-Stage Wet Scrubber | Two-Stage Wet Scrubber |
|---|---|---|
| HNO3 consumption (mol) | 1.15 | 1.58 |
| NOx recovery (%) | 48 | 82.67 |
| NOx emissions (mol) | 0.60 | 0.27 |
| 39.35 | 96.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinis, D.; Tourkantoni, I.; Farsari, E.; Amanatides, E.; Tserpes, K. Effect of Process Parameters on Plasma-Enhanced Solvolysis of CFRPs. Materials 2025, 18, 5081. https://doi.org/10.3390/ma18225081
Marinis D, Tourkantoni I, Farsari E, Amanatides E, Tserpes K. Effect of Process Parameters on Plasma-Enhanced Solvolysis of CFRPs. Materials. 2025; 18(22):5081. https://doi.org/10.3390/ma18225081
Chicago/Turabian StyleMarinis, Dimitrios, Ilektra Tourkantoni, Ergina Farsari, Eleftherios Amanatides, and Konstantinos Tserpes. 2025. "Effect of Process Parameters on Plasma-Enhanced Solvolysis of CFRPs" Materials 18, no. 22: 5081. https://doi.org/10.3390/ma18225081
APA StyleMarinis, D., Tourkantoni, I., Farsari, E., Amanatides, E., & Tserpes, K. (2025). Effect of Process Parameters on Plasma-Enhanced Solvolysis of CFRPs. Materials, 18(22), 5081. https://doi.org/10.3390/ma18225081

