Interfacial Rheology of Surfactant–Asphaltene Systems: State of the Art and Implications for Enhanced Oil Recovery
Abstract
1. Introduction
2. Interfacial Rheology: Principles and Methods
2.1. Interfacial Shear Rheology Method
2.2. Dilatational Interfacial Rheology Method
3. Oil Trapping by the Snap-Off Mechanism
4. Impact of Surfactant Injection on the Oil Snap-Off Mechanism
5. Formation and Organization of Interfaces
5.1. Adsorption Kinetics of Surfactants at Interfaces
5.2. Modification of Interfacial Properties in Regime III
5.2.1. Surfactant Tail Length
5.2.2. Effect of Branching or Unsaturation
5.2.3. Interactions in Surfactants Mixtures
6. Competitive and Cooperative Interactions of Surfactants
7. Interfacial Interactions Between Asphaltenes and Surfactants
8. Impact of Surfactant Concentration on Interfacial Properties
9. Future Research Directions and Prospects
10. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, D.W.; Willhite, G.P. Enhanced Oil Recovery, 2nd ed.; Society of Petroleum Engineers: Richardson, TX, USA, 2018. [Google Scholar] [CrossRef]
- Zulkifli, N.N.; Mahmood, S.M.; Akbari, S.; Manap, A.A.A.; Kechut, N.I.; Elrais, K.A. Evaluation of New Surfactants for Enhanced Oil Recovery Applications in High-Temperature Reservoirs. J. Pet. Explor. Prod. Technol. 2020, 10, 283–296. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most Common Surfactants Employed in Chemical Enhanced Oil Recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Hirasaki, G.J.; Miller, C.A.; Puerto, M. Recent Advances in Surfactant EOR. SPE J. 2011, 16, 889–907. [Google Scholar] [CrossRef]
- Karnanda, W.; Benzagouta, M.S.; AlQuraishi, A.; Amro, M.M. Effect of Temperature, Pressure, Salinity, and Surfactant Concentration on IFT for Surfactant Flooding Optimization. Arab. J. Geosci. 2013, 6, 3535–3544. [Google Scholar] [CrossRef]
- Sarmas-Farfan, J.; Medina-Rodriguez, B.X.; Alvarado, V. Dynamic Stability of a Crude Oil/Brine Interface: Effect of Anion Type. Fuel 2023, 335, 127002. [Google Scholar] [CrossRef]
- Cao, H.; Li, Y.; Gao, W.; Cao, J.; Sun, B.; Zhang, J. Experimental Investigation on the Effect of Interfacial Properties of Chemical Flooding for Enhanced Heavy Oil Recovery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132335. [Google Scholar] [CrossRef]
- Chávez-Miyauchi, T.E.; Firoozabadi, A.; Fuller, G.G. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery. Langmuir 2016, 32, 2192–2198. [Google Scholar] [CrossRef]
- Pan, F.; Zhang, Z.; Zhang, X.; Davarpanah, A. Impact of Anionic and Cationic Surfactants Interfacial Tension on the Oil Recovery Enhancement. Powder Technol. 2020, 373, 93–98. [Google Scholar] [CrossRef]
- Wang, F.; Hua, H.; Wang, L. Surfactant-Enhanced Assisted Spontaneous Imbibition for Enhancing Oil Recovery in Tight Oil Reservoirs: Experimental Investigation of Surfactant Types, Concentrations, and Temperature Impact. Energies 2024, 17, 1794. [Google Scholar] [CrossRef]
- Garcia-Olvera, G.; Reilly, T.M.; Lehmann, T.E.; Alvarado, V. Effects of Asphaltenes and Organic Acids on Crude Oil-Brine Interfacial Visco-Elasticity and Oil Recovery in Low-Salinity Waterflooding. Fuel 2016, 185, 151–163. [Google Scholar] [CrossRef]
- Marquez, R.; Antón, R.; Vejar, F.; Salager, J.L.; Forgiarini, A.M. New Interfacial Rheology Characteristics Measured Using a Spinning Drop Rheometer at the Optimum Formulation. Part 2. Surfactant–Oil–Water Systems with a High Volume of Middle-Phase Microemulsion. J. Surfactants Deterg. 2019, 22, 177–188. [Google Scholar] [CrossRef]
- Sun, H.Q.; Zhang, L.; Li, Z.Q.; Zhang, L.; Luo, L.; Zhao, S. Interfacial Dilational Rheology Related to Enhance Oil Recovery. Soft Matter 2011, 7, 7601–7611. [Google Scholar] [CrossRef]
- Edwards, D.A.; Brenner, H.; Wasan, D.T. Interfacial Transport Processes and Rheology; Butterworth-Heinemann: Oxford, UK, 1991; p. 558. [Google Scholar]
- El Omari, Y.; Yousfi, M.; Duchet-Rumeau, J.; Maazouz, A. Recent Advances in the Interfacial Shear and Dilational Rheology of Polymer Systems: From Fundamentals to Applications. Polymers 2022, 14, 2844. [Google Scholar] [CrossRef]
- El Omari, Y.; Yousfi, M.; Duchet-Rumeau, J.; Maazouz, A. Interfacial Rheology Testing of Molten Polymer Systems: Effect of Molecular Weight and Temperature on the Interfacial Properties. Polym. Test. 2021, 101, 107280. [Google Scholar] [CrossRef]
- Krstonošić, V.; Pavlović, N.; Ćirin, D. Principles and Applications of Interfacial Rheology in (Pre)Formulation Development of Pharmaceutical Preparations. Arch. Pharm. 2023, 73, 337–357. [Google Scholar] [CrossRef]
- Nagarajan, R.; Chung, S.I.; Wasan, D.T. Biconical Bob Oscillatory Interfacial Rheometer. J. Colloid Interface Sci. 1998, 204, 53–60. [Google Scholar] [CrossRef]
- Vandebril, S.; Franck, A.; Fuller, G.G.; Moldenaers, P.; Vermant, J. A Double Wall-Ring Geometry for Interfacial Shear Rheometry. Rheol. Acta 2010, 49, 131–144. [Google Scholar] [CrossRef]
- Krägel, J.; Derkatch, S.R. Interfacial Shear Rheology. Curr. Opin. Colloid Interface Sci. 2010, 15, 246–255. [Google Scholar] [CrossRef]
- Velandia, S.F.; Ramos, D.; Lebrun, M.; Marchal, P.; Lemaitre, C.; Sadtler, V.; Roques-Carmes, T. Exploring the Link between Interfacial and Bulk Viscoelasticity in Reverse Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126785. [Google Scholar] [CrossRef]
- Marquez, R.; Forgiarini, A.M.; Salager, J.-L. Fundamentos de Reologia Interfacial; Laboratorio FIRP, Escuela de Ingenieria Quimica, Universidad de los Andes: Mérida, Venezuela, 2019. [Google Scholar]
- Freer, E.M.; Svitova, T.; Radke, C.J. The Role of Interfacial Rheology in Reservoir Mixed Wettability. J. Pet. Sci. Eng. 2003, 39, 137–158. [Google Scholar] [CrossRef]
- García, B.F.; Saraji, S. Transient Interfacial Rheology and Polar Component Dynamics at Oil-Brine Interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126773. [Google Scholar] [CrossRef]
- Perles, C.E.; Guersoni, V.C.B.; Bannwart, A.C. Rheological Study of Crude Oil/Water Interface-The Effect of Temperature and Brine on Interfacial Film. J. Pet. Sci. Eng. 2018, 162, 835–843. [Google Scholar] [CrossRef]
- Fan, Y.; Simon, S.; Sjöblom, J. Interfacial Shear Rheology of Asphaltenes at Oil–Water Interface and Its Relation to Emulsion Stability: Influence of Concentration, Solvent Aromaticity and Nonionic Surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 120–128. [Google Scholar] [CrossRef]
- Ravera, F.; Loglio, G.; Kovalchuk, V.I. Interfacial Dilational Rheology by Oscillating Bubble/Drop Methods. Curr. Opin. Colloid Interface Sci. 2010, 15, 217–228. [Google Scholar] [CrossRef]
- Leser, M.E.; Acquistapace, S.; Cagna, A.; Makievski, A.V.; Miller, R. Limits of Oscillation Frequencies in Drop and Bubble Shape Tensiometry. Colloids Surf. A Physicochem. Eng. Asp. 2005, 261, 25–28. [Google Scholar] [CrossRef]
- Marquez, R.; Forgiarini, A.M.; Fernández, J.; Langevin, D.; Salager, J.-L. New Interfacial Rheology Characteristics Measured Using a Spinning-Drop Rheometer at the Optimum Formulation of a Simple Surfactant-Oil-Water System. J. Surfactants Deterg. 2018, 21, 611–623. [Google Scholar] [CrossRef]
- Cho, H.; Kar, T.; Firoozabadi, A. Effect of Interface Elasticity on Improved Oil Recovery in a Carbonate Rock from Low Salinity and Ultra-Low Concentration Demulsifier. Fuel 2020, 270, 117504. [Google Scholar] [CrossRef]
- Soo-Gun, O.H.; Slattery, J.C. Disk and Biconical Interfacial Viscometers. J. Colloid Interface Sci. 1978, 67, 516–525. [Google Scholar] [CrossRef]
- Marquez, R.; Salager, J.-L. Measurement Techniques for Interfacial Rheology of Surfactant, Asphaltene, and Protein-Stabilized Interfaces in Emulsions and Foams. Colloids Interfaces 2025, 9, 14. [Google Scholar] [CrossRef]
- Ma, G.; Gong, Q.; Xu, Z.; Jin, Z.; Zhang, L.; Ma, G.; Zhang, L. The Interfacial Dilational Rheology of Surfactant Solutions with Low Interfacial Tension. Molecules 2025, 30, 447. [Google Scholar] [CrossRef] [PubMed]
- Slattery, J.C.; Chen, J.D.; Thomas, C.P.; Fleming, P.D. Spinning Drop Interfacial Viscometer. J. Colloid Interface Sci. 1980, 73, 483–499. [Google Scholar] [CrossRef]
- Anderson, W.G. Wettability Literature Survey- Part 4: Effects of Wettability on Capillary Pressure. J. Pet. Technol. 1987, 39, 1283–1300. [Google Scholar] [CrossRef]
- Jamaloei, B.Y.; Kharrat, R. Analysis of Microscopic Displacement Mechanisms of Dilute Surfactant Flooding in Oil-Wet and Water-Wet Porous Media. Transp. Porous Media 2010, 81, 1–19. [Google Scholar] [CrossRef]
- Sagir, M.; Mushtaq, M.; Tahir, M.S.; Tahir, M.B.; Shaik, A.R. Surfactants for Enhanced Oil Recovery Applications; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Zhao, J.; Yao, G.; Wen, D. Pore-Scale Simulation of Water/Oil Displacement in a Water-Wet Channel. Front. Chem. Sci. Eng. 2019, 13, 803–814. [Google Scholar] [CrossRef]
- Alireza Emadi, B. Enhanced Heavy Oil Recovery by Water and Carbon Dioxide Flood. Ph.D. Thesis, Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, UK, 2012. [Google Scholar]
- Arriola, A.; Willhite, G.P.; Green, D.W. Trapping of Oil Drops in a Noncircular Pore Throat and Mobilization Upon Contact with a Surfactant. SPE J. 1983, 23, 99–114. [Google Scholar] [CrossRef]
- Roof, J. Snap-Off of Oil Droplets in Water-Wet Pores. Soc. Pet. Eng. J. 1970, 10, 85–90. [Google Scholar] [CrossRef]
- Rücker, M.; Berg, S.; Armstrong, R.T.; Georgiadis, A.; Ott, H.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; et al. From Connected Pathway Flow to Ganglion Dynamics. Geophys. Res. Lett. 2015, 42, 3888–3894. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The Use of Surfactants in Enhanced Oil Recovery: A Review of Recent Advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Schaffie, M.; Ranjbar, M.; Dong, M.; Li, Z. (Eds.) Chemical Methods; Enhanced Oil Recovery Series; Gulf Professional Publishing: Houston, TX, USA, 2022. [Google Scholar]
- Lucassen-Reynders, E.H. Interfacial Viscoelasticity in Emulsions and Foams. Food Struct. 1993, 12, 1. [Google Scholar]
- Hoyer, P.; Alvarado, V.; Carvalho, M.S. Snap-Offin Constricted Capillary with Elastic Interface. Phys. Fluids 2016, 28, 012104. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Formation of Water-in-Oil Emulsions and Application to Oil Spill Modelling. J. Hazard. Mater. 2004, 107, 37–50. [Google Scholar] [CrossRef]
- Salehpour, M.; Sakhaei, Z.; Salehinezhad, R.; Mahani, H.; Riazi, M. Contribution of Water-in-Oil Emulsion Formation and Pressure Fluctuations to Low Salinity Waterflooding of Asphaltic Oils: A Pore-Scale Perspective. J. Pet. Sci. Eng. 2021, 203, 108597. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Liu, D.; Li, X. Synergetic Adsorption of Asphaltenes and Oil Displacement Surfactants on the Oil-Water Interface: Insights on Stabilization Mechanism of the Interfacial Film. Chem. Eng. Sci. 2021, 245, 116850. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Wang, Z.; Cao, R. The Formation and Viscoelasticity of Pore-Throat Scale Emulsion in Porous Media. Pet. Explor. Dev. 2017, 44, 111–118. [Google Scholar] [CrossRef]
- Nguyen, D.; Sadeghi, N. Stable Emulsion and Demulsification in Chemical EOR Flooding: Challenges and Best Practices. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 16–18 April 2012; p. SPE-154044-MS. [Google Scholar]
- Bidhendi, M.M.; Garcia-Olvera, G.; Morin, B.; Oakey, J.S.; Alvarado, V. Interfacial Viscoelasticity of Crude Oil/Brine: An Alternative Enhanced-Oil-Recovery Mechanism in Smart Waterflooding. SPE J. 2018, 23, 803–818. [Google Scholar] [CrossRef]
- Wang, C.; Cao, X.L.; Guo, L.L.; Xu, Z.C.; Zhang, L.; Gong, Q.T.; Zhang, L.; Zhao, S. Effect of Molecular Structure of Catanionic Surfactant Mixtures on Their Interfacial Properties. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 601–612. [Google Scholar] [CrossRef]
- Machale, J.; Majumder, S.K.; Ghosh, P.; Sen, T.K.; Saeedi, A. The Role of Adsorption of a Natural Surfactant at Oil–Water Interface in Enhanced Oil Recovery: Interfacial Rheology, and Structural, and Emulsifying Analyses. Chem. Eng. Commun. 2023, 210, 2189–2203. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, H.Y.; Hu, S.S.; Li, J.G.; Gong, Q.T.; Ma, W.J.; Liu, Z.Y.; Zhang, L.; Zhang, L.; Zhao, S. Interfacial Dilational Properties of Betaines and Sulfonate Mixtures: Effects of Alkyl Chain Length. J. Dispers. Sci. Technol. 2020, 41, 195–206. [Google Scholar] [CrossRef]
- Xie, L.; Lu, Q.; Tan, X.; Liu, Q.; Tang, T.; Zeng, H. Interfacial Behavior and Interaction Mechanism of Pentol/Water Interface Stabilized with Asphaltenes. J. Colloid Interface Sci. 2019, 553, 341–349. [Google Scholar] [CrossRef]
- Zhang, S. Interfacial Properties of Asphaltenes at Oil/Water Interface. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2017. [Google Scholar] [CrossRef]
- Jeribi, M.; Almir-Assad, B.; Langevin, D.; Hénaut, I.; Argillier, J.F. Adsorption Kinetics of Asphaltenes at Liquid Interfaces. J. Colloid Interface Sci. 2002, 256, 268–272. [Google Scholar] [CrossRef]
- Mao, X.; Qiao, C.; Zhao, Z.; Huang, C.; Yang, D.; Ma, H.; Hu, Y.; Zhang, H.; Zhu, L.; Zeng, H. Probing the Interfacial Behaviors of Interfacially Active and Non-Active Asphaltenes and Their Impact on Emulsion Stability. J. Colloid Interface Sci. 2024, 675, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, M.I.; Navaro, S.F.M.; Velasco, D.M. Onset of the Asphaltene Flocculation and Asphaltene Hydrodynamic Radius Determination Using H-Diffusion- Ordered Spectroscopy DOSY NMR. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 17–19 May 2017. [Google Scholar] [CrossRef]
- Langevin, D.; Argillier, J.F. Interfacial Behavior of Asphaltenes. Adv. Colloid Interface Sci. 2016, 233, 83–93. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zirrahi, M.; Hassanzadeh, H. An Analytical Model for Estimation of the Self-Diffusion Coefficient and Adsorption Kinetics of Surfactants Using Dynamic Interfacial Tension Measurements. J. Phys. Chem. B 2020, 124, 3206–3213. [Google Scholar] [CrossRef]
- Zhan, X.; Wu, Z.; Chen, Z.; Cui, X. Mechanism of the Micellar Solubilization of Curcumin by Mixed Surfactants of SDS and Brij35 via NMR Spectroscopy. Molecules 2022, 27, 5032. [Google Scholar] [CrossRef]
- Weinheimer, R.M.; Evans, D.F.; Cussler, E.L. Diffusion in Surfactant Solutions. J. Colloid Interface Sci. 1981, 80, 357–368. [Google Scholar] [CrossRef]
- Bustamante-Rendón, R.A.; Velázquez, J.D.H.; Pérez, E.; Goicochea, A.G. Association and Diffusion of Cationic and Nonionic Surfactants with Hydrocarbon Molecules as a Model for Enhanced Oil Recovery. J. Mol. Liq. 2024, 414, 126151. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, M.; Zhao, S. Which One Is More Important in Chemical Flooding for Enhanced Court Heavy Oil Recovery, Lowering Interfacial Tension or Reducing Water Mobility? Energy Fuels 2010, 24, 1829–1836. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Aksenenko, E.V.; Kovalchuk, V.I.; Mucic, N.; Javadi, A.; Liggieri, L.; Ravera, F.; Loglio, G.; Makievski, A.V.; Schneck, E.; et al. New View of the Adsorption of Surfactants at Water/Alkane Interfaces—Competitive and Cooperative Effects of Surfactant and Alkane Molecules. Adv. Colloid Interface Sci. 2020, 279, 102143. [Google Scholar] [CrossRef]
- He, Y. Study on the Interfacial Properties of Surfactants and Their Interactions with DNA. Ph.D. Thesis, L’Universite Paris Sud XI, Sceaux, France, 2013. [Google Scholar]
- Xu, H.; Tian, H.; Deng, J.; Zhuo, Q.; Cui, J.; Wang, J.; Yin, Y.; Yu, P. Review of Influence of Steric Effect on Aggregation Behavior of Fine Particles. Miner. Eng. 2023, 203, 108304. [Google Scholar] [CrossRef]
- Bergfreund, J.; Siegenthaler, S.; Lutz-Bueno, V.; Bertsch, P.; Fischer, P. Surfactant Adsorption to Different Fluid Interfaces. Langmuir 2021, 37, 6722–6727. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J. Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; 444p. [Google Scholar]
- Dong, L.; Li, Z.; Cao, X.; Song, X.; Zhang, L.; Xu, Z.; Zhang, L.; Zhao, S. Dilational Rheological Properties of P-(n-Alkyl)-Benzyl Polyoxyethylene Ether Carboxybetaine at Water–Decane Interface. J. Dispers. Sci. Technol. 2015, 36, 430–440. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, D.; Hu, J. Effect of Surfactant Molecular Structure on Emulsion Stability Investigated by Interfacial Dilatational Rheology. Polymers 2021, 13, 1127. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Mao, J.; Zhao, J.; Zhang, H.; Yang, X.; Lin, C. Effect of Surfactant Hydrophobic Chain Equivalence on the Oil-Water Interface and Emulsion Stability: A Dissipative Particle Dynamics and Experimental Study. J. Mol. Liq. 2023, 382, 121781. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, P.; Sun, Y.; Wang, C.; Xu, B. Interfacial Dilational Rheology of Sodium Lauryl Glycine and Mixtures with Conventional Surfactants. J. Surfactants Deterg. 2019, 22, 1477–1485. [Google Scholar] [CrossRef]
- Harbottle, D.; Chen, Q.; Moorthy, K.; Wang, L.; Xu, S.; Liu, Q.; Sjoblom, J.; Xu, Z. Problematic Stabilizing Films in Petroleum Emulsions: Shear Rheological Response of Viscoelastic Asphaltene Films and the Effect on Drop Coalescence. Langmuir 2014, 30, 6730–6738. [Google Scholar] [CrossRef]
- Niu, Z.; Yue, T.; He, X.; Manica, R. Changing the Interface between an Asphaltene Model Compound and Water by Addition of an EO-PO Demulsifier through Adsorption Competition or Adsorption Replacement. Energy Fuels 2019, 33, 5035–5042. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.; Liang, C.; Wang, Z.; Jia, Y. Dissipative Particle Dynamics to Study Asphaltenes and Surfactants Interactions at the Oil–Water Interface. J. Mol. Liq. 2023, 381, 121802. [Google Scholar] [CrossRef]
- Jia, H.; Lian, P.; Liang, Y.; Han, Y.; Wang, Q.; Wang, S.; Wang, D.; Leng, X.; Pan, W.; Lv, K. The Effects of Surfactant/Hydrocarbon Interaction on Enhanced Surfactant Interfacial Activity in the Water/Hydrocarbon System. J. Mol. Liq. 2019, 293, 111570. [Google Scholar] [CrossRef]
- Riwar, L.J.; Trapp, N.; Kuhn, B.; Diederich, F. Substituent Effects in Parallel-Displaced π–π Stacking Interactions: Distance Matters. Angew. Chem. Int. Ed. 2017, 56, 11252–11257. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, H.; Kang, X.; Jiang, H.; Li, M.; Kang, W.; Sarsenbekuly, B. Study on the Types and Formation Mechanisms of Residual Oil after Two Surfactant Imbibition. J. Pet. Sci. Eng. 2020, 195, 107904. [Google Scholar] [CrossRef]
- Hassanzadeh, M.; Abdouss, M. Essential Role of Structure, Architecture, and Intermolecular Interactions of Asphaltene Molecules on Properties (Self-Association and Surface Activity). Heliyon 2022, 8, e12170. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Y.; Ren, S. Molecular Dynamics Simulation of Self-Aggregation of Asphaltenes at an Oil/Water Interface: Formation and Destruction of the Asphaltene Protective Film. Energy Fuels 2015, 29, 1233–1242. [Google Scholar] [CrossRef]
- Rahham, Y.; Rane, K.; Goual, L. Characterization of the Interfacial Material in Asphaltenes Responsible for Oil/Water Emulsion Stability. Energy Fuels 2020, 34, 13871–13882. [Google Scholar] [CrossRef]
- Song, S.; Zhang, H.; Sun, L.; Shi, J.; Cao, X.; Yuan, S. Molecular Dynamics Study on Aggregating Behavior of Asphaltene and Resin in Emulsified Heavy Oil Droplets with Sodium Dodecyl Sulfate. Energy Fuels 2018, 32, 12383–12393. [Google Scholar] [CrossRef]
- Ahmadi, M.; Chen, Z. Insight into the Interfacial Behavior of Surfactants and Asphaltenes: Molecular Dynamics Simulation Study. Energy Fuels 2020, 34, 13536–13551. [Google Scholar] [CrossRef]
- Stubenrauch, C.; Miller, R. Stability of Foam Films and Surface Rheology: An Oscillating Bubble Study at Low Frequencies. J. Phys. Chem. B 2004, 108, 6412–6421. [Google Scholar] [CrossRef]
- Lucassen, J.; Giles, D. Dynamic Surface Properties of Nonionic Surfactant Solutions. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1975, 71, 217–232. [Google Scholar] [CrossRef]
- Langevin, D. Influence of Interfacial Rheology on Foam and Emulsion Properties. Adv. Colloid Interface Sci. 2000, 88, 209–222. [Google Scholar] [CrossRef]
- Stenvot, C.; Langevin, D. Study of Viscoelasticity of Soluble Monolayers Using Analysis of Propagation of Excited Capillary Waves. Langmuir 1988, 4, 1179–1183. [Google Scholar] [CrossRef]
- Amani, P.; Miller, R.; Ata, S.; Hurter, S.; Rudolph, V.; Firouzi, M. Dynamics of Interfacial Layers for Sodium Dodecylbenzene Sulfonate Solutions at Different Salinities. J. Ind. Eng. Chem. 2020, 92, 174–183. [Google Scholar] [CrossRef]
- Li, H.; Cui, C.; Cao, X.; Yuan, F.; Xu, Z.; Zhang, L.; Zhang, L. The Interfacial Dilational Rheology Properties of Betaine Solutions: Effect of Anionic Surfactant and Polymer. Molecules 2023, 28, 5436. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Liu, X.P.; Zhang, L.; Zhao, S.; Yu, J.Y. Dilational Properties of Anionic Gemini Surfactants with Polyoxyethylene Spacers at Water−Air and Water−Decane Interfaces. Langmuir 2010, 26, 11907–11914. [Google Scholar] [CrossRef] [PubMed]










| Method | Frequency Range (Hz) | Advantages | Limitations | Ref |
|---|---|---|---|---|
| Bicone rheometer | 0.01–10 |
|
| [17,26,31,32] |
| Ring geometry (Du Noüy or double-wall ring) | 0.01–10 |
|
| [15,16,17,19,32] |
| Pendant drop | 0.001–1 |
|
| [27,28] |
| Spinning drop | 0.001–1 |
|
| [12,32,33,34] |
| Crude Oil Sample Name | Phase Angle | Oil Recovery Factor (%) | Interfacial Tension (mN/m) |
|---|---|---|---|
| WG | 16 | 43 | 5 |
| TC | 26 | 81 | 10 |
| RC | 45 | 45 | 17 |
| Surfactants | Head Group Charge | Mixtures | Elastic Modules (mN/m) |
|---|---|---|---|
| SDS | −1.33 | SDS:C12TAB | 42 |
| SDDS | −1.00 | SDS:C12TAB | 16.5 |
| DAS | −0.91 | SDS:C12TAB | 5.0 |
| C12TAB | 0.59 |
| Surfactant (Type) | Effect on Interfacial Rheology | Ref |
|---|---|---|
| SDBS (Anionic, aromatic) | Aromatic rings enable π–π stacking at the oil–water interface, forming compact, elastic films with low IFT. In asphaltene systems, SDBS promotes cross-linked networks stabilized by π–π and hydrogen bonding, resulting in highly rigid and stable interfaces. | [7,26,49] |
| SDS (Anionic, aliphatic) | Without aromatic groups, SDS interactions are dominated by electrostatic repulsion and exchange with the bulk phase. Elasticity rises to a single maximum with concentration, then decreases as molecular exchange dominates. | [53,85,91,92] |
| CTAB/C12TAB (Cationic) | Adsorbs strongly onto negatively charged interfaces via electrostatic attraction. Elasticity increases to a peak, followed by viscous-dominated behavior at high surface coverage. | [53,85,86] |
| Cationic–Anionic Mixtures | Electrostatic attraction between oppositely charged headgroups enhances interfacial packing and elasticity, producing stable, densely packed films with limited molecular exchange. | [53,74,75] |
| Nonionic EO-based (TX100, TX165, TX405) | Hydrated EO chains act as flexible segments that compress and expand under deformation, producing two elasticity maxima. Long EO chains promote loop conformations and the formation of a structured interfacial sublayer. | [63,67,68,89,93] |
| EO/PO-Extended Surfactants | PO groups slow interfacial relaxation and molecular reorientation, increasing the dilatational modulus. These systems show tunable viscoelasticity (phase angle 10–50°) even under ultra-low IFT. | [33,67,72] |
| Double-Chain Surfactants | Strong hydrophobic interactions suppress molecular exchange, leading to a continuous increase in elasticity with concentration and highly rigid films. | [55,72] |
| Long-Chain Surfactants | Longer hydrophobic tails enhance van der Waals interactions and interfacial packing, leading to monotonic increases in elasticity and the formation of dense, stable films. | [53,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval Martinez, M.I.; Mercado, R.; Chaves-Guerrero, A.; Hassanzadeh, H. Interfacial Rheology of Surfactant–Asphaltene Systems: State of the Art and Implications for Enhanced Oil Recovery. Materials 2025, 18, 5036. https://doi.org/10.3390/ma18215036
Sandoval Martinez MI, Mercado R, Chaves-Guerrero A, Hassanzadeh H. Interfacial Rheology of Surfactant–Asphaltene Systems: State of the Art and Implications for Enhanced Oil Recovery. Materials. 2025; 18(21):5036. https://doi.org/10.3390/ma18215036
Chicago/Turabian StyleSandoval Martinez, Maria Isabel, Ronald Mercado, Arlex Chaves-Guerrero, and Hassan Hassanzadeh. 2025. "Interfacial Rheology of Surfactant–Asphaltene Systems: State of the Art and Implications for Enhanced Oil Recovery" Materials 18, no. 21: 5036. https://doi.org/10.3390/ma18215036
APA StyleSandoval Martinez, M. I., Mercado, R., Chaves-Guerrero, A., & Hassanzadeh, H. (2025). Interfacial Rheology of Surfactant–Asphaltene Systems: State of the Art and Implications for Enhanced Oil Recovery. Materials, 18(21), 5036. https://doi.org/10.3390/ma18215036

