Study on the Characteristics of Cement-Based Magnetoelectric Composites Using COMSOL
Abstract
1. Introduction
2. Model Construction
2.1. Multiphysics-Coupled Constitutive Equations
2.2. Equilibrium Equations
2.3. Formulas for the Magnetoelectric Coefficient
3. Finite-Element Analysis
4. Results and Discussion
4.1. Static Distribution Results
4.2. Influence of the DC Bias Magnetic Field
4.3. Influence of AC-Driven Magnetic Field
4.4. Influence of Different Functional-Phase-Layer Thicknesses
5. Conclusions
- (1)
- The developed 2–2 cement-based magnetoelectric composite multiphysics model accurately reproduces the internal stress–strain distributions, displacements, and voltage evolution. Results reveal pronounced non-uniformity in the stress and strain fields of the magnetostrictive and piezoelectric layers, which is induced by structural geometry and boundary effects.
- (2)
- The bias magnetic field exerts a pronounced influence on the output voltage of the cement-based magnetoelectric composite, evidencing strong strain–stress–voltage coupling: strain generated in the magnetostrictive layer is transferred across the interface, inducing stress in the piezoelectric layer (further intensified by double-layer compression) and corresponding displacement. The output voltage rises linearly with Hdc in the range of 0–2000 Oe (peaking at 60.8 V) and tends to saturate when Hdc exceeds 2000 Oe—this confirms the existence of an optimal bias-magnetic-field interval.
- (3)
- Under an alternating magnetic field, the magnetostrictive layer exhibits pronounced magnetization and larger displacements, while the piezoelectric layer’s voltage varies sinusoidally. The composite displays clear resonant behavior, whose frequency—governed by the bias field and structural dimensions—enables maximum output at a specific frequency. Elevating the bias field markedly amplifies the output voltage at the third-order resonance, with a simultaneous increase in the piezoelectric layer’s strain.
- (4)
- The thickness ratios of the functional phases strongly influence the composite’s performance, with differing trends between the phases: increasing the piezoelectric thickness lowers strain-transfer efficiency, thus reducing the magnetoelectric coefficient, whereas thickening the magnetostrictive layer markedly enhances the coefficient (though the gain levels off beyond 1 mm). Thickness-ratio optimization reveals an optimal layer-thickness pairing for efficient magnetoelectric conversion: a thin piezoelectric layer (0.35 mm) combined with a thick magnetostrictive layer (2 mm) yields the highest magnetoelectric coefficient.
- (5)
- Analysis of the thickness ratio’s influence on the magnetoelectric-coupling coefficient reveals that the longitudinal and transverse coefficients follow roughly the same trend but exhibit different coupling mechanisms and a significant numerical difference—this indicates that magnetic-field direction and polarization direction affect the coupling effect. Additionally, the geometric structure combination between different layers and the form of inter-layer contact also influence the coupling effect. Future work will consider further simulation studies on the effects of magnetic-field direction, composite structural design, and inter-layer contact.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Wu, K.; Li, Z. Development of 2–2 cement-based piezoelectric smart composites. Piezoelectrics Acoustooptics 2002, 217–220, 231. [Google Scholar] [CrossRef]
- Astrov, D.N. Magnetoelectric effect in chromium oxide. Sov. Phys. JETP 1961, 13, 729–733. [Google Scholar]
- Nan, C. Progress and future directions in multiferroic materials research. Sci. Sin. Technol. 2015, 45, 339–357. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Priya, S.; Carazo, A.V.; Uchino, K.; Kim, H. Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites. J. Am. Ceram. Soc. 2001, 84, 2905–2908. [Google Scholar] [CrossRef]
- Cheong, S.-W.; Mostovoy, M. Multiferroics: A Magnetic Twist for Ferroelectricity. Nat. Mater. 2007, 6, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Boomgaard, J.V.D.; Van Run, A.M.J.G.; Van Suchtelen, J. Magnetoelectricity in Piezoelectric-Magnetostrictive Composites. Ferroelectrics 1976, 10, 295–298. [Google Scholar] [CrossRef]
- Nan, C.W.; Li, M.; Huang, J.H. Calculations of Giant Magnetoelectric Effects in Ferroic Composites of Rare-Earth–Iron Alloys and Ferroelectric Polymers. Phys. Rev. B 2001, 63, 144415. [Google Scholar] [CrossRef]
- Nan, C.-W. Magnetoelectric Effect in Composites of Piezoelectric and Piezomagnetic Phases. Phys. Rev. B 1994, 50, 6082–6088. [Google Scholar] [CrossRef]
- Nan, C.-W.; Liu, L.; Cai, N.; Zhai, J.; Ye, Y.; Lin, Y.H.; Dong, L.J.; Xiong, C.X. A Three-Phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-Earth Iron Alloys, and Polymer. Appl. Phys. Lett. 2002, 81, 3831–3833. [Google Scholar] [CrossRef]
- Nan, C.-W.; Cai, N.; Shi, Z.; Zhai, J.; Liu, G.; Lin, Y. Large Magnetoelectric Response in Multiferroic Polymer-Based Composites. Phys. Rev. B 2005, 71, 014102. [Google Scholar] [CrossRef]
- Shi, Z.; Nan, C.W.; Zhang, J.; Cai, N.; Li, J.-F. Magnetoelectric Effect of Pb(Zr,Ti)O3 Rod Arrays in a (Tb,Dy)Fe2/epoxy Medium. Appl. Phys. Lett. 2005, 87, 012503. [Google Scholar] [CrossRef]
- Zhang, J. Preparation and Properties of Lead-Free KNN-Based Laminated Magnetoelectric Composites. Master’s Thesis, Shaanxi University of Science & Technology, Xi’an, China, 2017. [Google Scholar]
- Ge, X. Influence of Laminated Magnetoelectric Composite Structure on Magnetoelectric Performance. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2018. [Google Scholar]
- Xie, X.; Guo, Z.-X.; Basha, S.H. Out-of-Plane Behavior of Clay Brick Masonry Infills Contained within RC Frames Using 3D-Digital Image Correlation Technique. Constr. Build. Mater. 2023, 376, 131061. [Google Scholar] [CrossRef]
- Zhou, K.; Lei, D.; Chun, P.; She, Z.; He, J.; Du, W.; Hong, M. Evaluation of BFRP Strengthening and Repairing Effects on Concrete Beams Using DIC and YOLO-v5 Object Detection Algorithm. Constr. Build. Mater. 2024, 411, 134594. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Zhao, W.; Meng, W.; Wen, H. Research on COMSOL-Based Multiphysics Coupled Simulation Modeling Methods. Mech. Eng. Autom. 2014, 19–20, 23. [Google Scholar] [CrossRef]
- Yang, D.; Zou, J.; Gai, D. Computer-aided engineering (CAE) and its development. Mech. Eng. 2005, 72, 1732–1745. [Google Scholar]
- Bolhassani, M.; Hamid, A.A.; Rajaram, S.; Vanniamparambil, P.A.; Bartoli, I.; Kontsos, A. Failure Analysis and Damage Detection of Partially Grouted Masonry Walls by Enhancing Deformation Measurement Using DIC. Eng. Struct. 2017, 134, 262–275. [Google Scholar] [CrossRef]
- Jin, X.; Tong, J.; Tian, Y.; Jin, N. Time-Varying Relative Displacement Field on the Surface of Concrete Cover Caused by Reinforcement Corrosion Based on DIC Measurement. Constr. Build. Mater. 2018, 159, 695–703. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, K.; Li, Z. Feasibility analysis and study of cement-based piezoelectric smart composites. J. Build. Mater. 2002, 5, 141–146. [Google Scholar]
- Dong, B.; Li, Z. Cement-Based Piezoelectric Ceramic Smart Composites. Compos. Sci. Technol. 2005, 65, 1363–1371. [Google Scholar] [CrossRef]
- Dong, B.; Xing, F.; Li, Z. The Study of Poling Behavior and Modeling of Cement-Based Piezoelectric Ceramic Composites. Mater. Sci. Eng. A 2007, 456, 317–322. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Z.; Wu, K.-R. 2–2 Piezoelectric Cement Matrix Composite: Part II. Actuator Effect. Cem. Concr. Res. 2002, 32, 825–830. [Google Scholar] [CrossRef]
- Pang, C.; Pei, H.; Li, Z. Performance Investigation of Cement-Based Laminated Multifunctional Magnetoelectric Composites. Constr. Build. Mater. 2017, 134, 585–593. [Google Scholar] [CrossRef]
- Pang, C.; Hou, D.; Li, Z. Piezoelectric and Magnetoelectric Behaviors of Multifunctional Cement-Based Laminated Composites. Constr. Build. Mater. 2018, 180, 334–341. [Google Scholar] [CrossRef]
- Pei, H.; Pang, C.; Zhu, B.; Li, Z. Magnetostrictive Strain Monitoring of Cement-Based Magnetoelectric Composites in a Variable Magnetic Field by Fiber Bragg Grating. Constr. Build. Mater. 2017, 149, 904–910. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Pan, Y. Analysis of the magnetoelectric effect in magnetostrictive/piezoelectric laminated composites. Acta Phys. Sin. 2018, 67, 287–296. [Google Scholar]
- Xu, X.; Wu, W.; Zhu, T.; Pei, M.; Zhang, X.; Han, Q. High-Performance Magnetoelectric Composite with Low DC Bias Magnetic Field for Detecting Ultra-Weak Magnetic Field. Compos. Commun. 2025, 56, 102371. [Google Scholar] [CrossRef]
- Blackburn, J.F.; Vopsaroiu, M.; Cain, M.G. Verified Finite Element Simulation of Multiferroic Structures: Solutions for Conducting and Insulating Systems. J. Appl. Phys. 2008, 104, 074104. [Google Scholar] [CrossRef]
- Ye, J. Research on Size Effect of Magnetic Field Regulating Electro—Mechanical Resonant Frequency of Magnetoelectric Composites. In Master’s Thesis; Nanjing Normal University: Nanjing, China, 2014. [Google Scholar]













| Parameter | PZT | Terfenol-D | Cememt Paste |
|---|---|---|---|
| Density, (kg/m3) | 7.45 × 103 | 2.07 × 103 | 2.00 × 103 |
| Electrical conductivity, (S/m) | 1.56 × 10−4 | 5.13 × 10−6 | - |
| Relative permittivity, | {1704.4, 1704.4, 1433.6} | 2.12 × 1010 | - |
| Young’s modulus, E (Pa) | 7.14 × 1010 | 6.37 × 1010 | - |
| Poisson’s ratio, | 0.33 | 1.78 × 10−1 | - |
| Saturation magnetization, (A/m) | - | 3.95 × 105 | - |
| Initial magnetic susceptibility, | - | 2.23 | - |
| Saturation magnetostriction coefficient, | - | 1.85 × 10−3 | - |
| Domain coupling | - | 0 | - |
| Relative permeability, | 1 | - | - |
| Dielectric constant, (at 1 kHz) | - | - | 56 |
| Elastic compliance, s33 (10−12 m2/N) | - | - | 72 |
| Acoustic velocity, V (103 m/s) | - | - | 2.64 |
| Acoustic impedance, Z = (106 kg/m2s) | - | - | 5.3 |
| Resistivity, (Ohmm) | - | - | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Pang, C.; Xu, J.; Liang, K.; Fan, C.; Lu, Z.; Lu, C. Study on the Characteristics of Cement-Based Magnetoelectric Composites Using COMSOL. Materials 2025, 18, 5027. https://doi.org/10.3390/ma18215027
Huang W, Pang C, Xu J, Liang K, Fan C, Lu Z, Lu C. Study on the Characteristics of Cement-Based Magnetoelectric Composites Using COMSOL. Materials. 2025; 18(21):5027. https://doi.org/10.3390/ma18215027
Chicago/Turabian StyleHuang, Weixuan, Cuijuan Pang, Jianyu Xu, Kangyang Liang, Cunying Fan, Zeyu Lu, and Chuncheng Lu. 2025. "Study on the Characteristics of Cement-Based Magnetoelectric Composites Using COMSOL" Materials 18, no. 21: 5027. https://doi.org/10.3390/ma18215027
APA StyleHuang, W., Pang, C., Xu, J., Liang, K., Fan, C., Lu, Z., & Lu, C. (2025). Study on the Characteristics of Cement-Based Magnetoelectric Composites Using COMSOL. Materials, 18(21), 5027. https://doi.org/10.3390/ma18215027
