In Vitro Degradation Studies of 3D-Printed Thermoplastic Polyurethane for the Design of Vascular Implant
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Three-Dimensional Printing by Fused Modelling Deposition (FDM)
2.2.2. Manufacture of Prosthesis Prototype
2.2.3. Sterilisation
2.3. Sample Ageing
2.4. Characterisation of Samples
2.4.1. Size Exclusion Chromatography (SEC)
2.4.2. Differential Scanning Calorimetry (DSC)
2.4.3. Infrared Spectroscopy (ATR-FTIR)
2.4.4. Scanning Electron Microscope (SEM)
2.4.5. Optical Profilometry
2.4.6. Mechanical Tests
3. Results
3.1. Evolution of Thermal Analysis
3.2. Evolution of Molecular Weights
3.3. Evolution of Surface Properties
3.4. Evolution of Mechanical Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A | Strain at break | 
| Ð | Polydispersity Index | 
| DSC | Differential Scanning Calorimetry | 
| E | Young’s Modulus | 
| EBS | Ethylene-Bis-Stearamid | 
| FDM | Fused Deposition Modelling | 
| FTIR | Fourier Transform Infrared Spectroscopy | 
| H2O2/CoCl2 | 20% H2O2/0.1 M CoCl2 | 
| HS | Hard Segments | 
| Mn | Number average molecular weight | 
| Mw | Weight average molecular weight | 
| Ra | Roughness Average | 
| ROS | Reactive Oxygen Species | 
| SEC | Size Exclusion Chromatography | 
| SEM | Scanning Electron Microscope | 
| SS | Soft Segments | 
| Tc | Crystallisation Temperature | 
| Tg | Glass Transition Temperature | 
| Tm | Melting Temperature | 
| THF | TetraHydroFuran | 
| TPU | Thermoplastic Polyurethane | 
| ΔHc | Crystallisation Enthalpy | 
| ΔHm | Melting Enthalpy | 
| σmax | Ultimate Tensile Strength | 
References
- Bajsić, E.G.; Šmit, I.; Leskovac, M. Blends of Thermoplastic Polyurethane and Polypropylene. I. Mechanical and Phase Behavior. J. Appl. Polym. Sci. 2007, 104, 3980–3985. [Google Scholar] [CrossRef]
- Drożdż, K.; Gołda-Cępa, M.; Brzychczy-Włoch, M. Polyurethanes as Biomaterials in Medicine: Advanced Applications, Infection Challenges, and Innovative Surface Modification Methods. Adv. Microbiol. 2024, 63, 223–238. [Google Scholar] [CrossRef]
- Grzęda, D.; Węgrzyk, G.; Nowak, A.; Komorowska, G.; Szczepkowski, L.; Ryszkowska, J. Effect of Different Amine Catalysts on the Thermomechanical and Cytotoxic Properties of ‘Visco’-Type Polyurethane Foam for Biomedical Applications. Materials 2023, 16, 1527. [Google Scholar] [CrossRef] [PubMed]
- Acierno, D.; Graziosi, L.; Patti, A. Puncture Resistance and UV Aging of Nanoparticle-Loaded Waterborne Polyurethane-Coated Polyester Textiles. Materials 2023, 16, 6844. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Lee, S.; Park, J.; Shin, E.-J. Synthesis of Novel Shape Memory Thermoplastic Polyurethanes (SMTPUs) from Bio-Based Materials for Application in 3D/4D Printing Filaments. Materials 2023, 16, 1072. [Google Scholar] [CrossRef]
- He, Y.; Xie, D.; Zhang, X. The Structure, Microphase-Separated Morphology, and Property of Polyurethanes and Polyureas. J. Mater. Sci. 2014, 49, 7339–7352. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Ferguson, J. Polyurethane Elastomers. Prog. Polym. Sci. 1991, 16, 695–836. [Google Scholar] [CrossRef]
- Cauich-Rodríguez, J.V.; Chan-Chan, L.H.; Hernandez-Sánchez, F.; Cervantes-Uc, J.M. Degradation of Polyurethanes for Cardiovascular Applications. In Advances in Biomaterials Science and Biomedical Applications; Pignatello, R., Ed.; InTech Open: London, UK, 2013; ISBN 978-953-51-1051-4. [Google Scholar]
- Ghanbari, H.; Viatge, H.; Kidane, A.G.; Burriesci, G.; Tavakoli, M.; Seifalian, A.M. Polymeric Heart Valves: New Materials, Emerging Hopes. Trends Biotechnol. 2009, 27, 359–367. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J.M.; Laycock, B. Degradation and Stabilization of Polyurethane Elastomers. Prog. Polym. Sci. 2019, 90, 211–268. [Google Scholar] [CrossRef]
- Stokes, K.; McVenes, R.; Anderson, J.M. Polyurethane Elastomer Biostability. J. Biomater. Appl. 1995, 9, 321–354. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.-C.; Tseng, C.-S.; Hsu, S.-H. 5–3D Printing of Polyurethane Biomaterials. In Advances in Polyurethane Biomaterials; Cooper, S.L., Guan, J., Eds.; Woodhead Publishing: Tawain, Republic of China, 2016; pp. 149–170. ISBN 978-0-08-100614-6. [Google Scholar]
- Hua, W.; Shi, W.; Mitchell, K.; Raymond, L.; Coulter, R.; Zhao, D.; Jin, Y. 3D Printing of Biodegradable Polymer Vascular Stents: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Pavan Kalyan, B.G.; Kumar, L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022, 23, 92. [Google Scholar] [CrossRef]
- Laverne, F.; Segonds, F.; Dubois, P. Fabrication additive–Principes généraux. Tech. L’ingénieur 2016, BM7017 V2. [Google Scholar] [CrossRef]
- Lee, S.J.; Jo, H.H.; Lim, K.S.; Lim, D.; Lee, S.; Lee, J.H.; Kim, W.D.; Jeong, M.H.; Lim, J.Y.; Kwon, I.K.; et al. Heparin Coating on 3D Printed Poly (l-Lactic Acid) Biodegradable Cardiovascular Stent via Mild Surface Modification Approach for Coronary Artery Implantation. Chem. Eng. J. 2019, 378, 122116. [Google Scholar] [CrossRef]
- Mirasadi, K.; Yousefi, M.A.; Jin, L.; Rahmatabadi, D.; Baniassadi, M.; Liao, W.-H.; Bodaghi, M.; Baghani, M. 4D Printing of Magnetically Responsive Shape Memory Polymers: Toward Sustainable Solutions in Soft Robotics, Wearables, and Biomedical Devices. Adv. Sci. 2025, e13091. [Google Scholar] [CrossRef] [PubMed]
- M’Bengue, M.-S.; Mesnard, T.; Chai, F.; Maton, M.; Gaucher, V.; Tabary, N.; García-Fernandez, M.-J.; Sobocinski, J.; Martel, B.; Blanchemain, N. Evaluation of a Medical Grade Thermoplastic Polyurethane for the Manufacture of an Implantable Medical Device: The Impact of FDM 3D-Printing and Gamma Sterilization. Pharmaceutics 2023, 15, 456. [Google Scholar] [CrossRef]
- Desai, S.M.; Sonawane, R.Y.; More, A.P. Thermoplastic Polyurethane for Three-Dimensional Printing Applications: A Review. Polym. Adv. Technol. 2023, 34, 2061–2082. [Google Scholar] [CrossRef]
- Guerra, A.J.; Cano, P.; Rabionet, M.; Puig, T.; Ciurana, J. 3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems. Materials 2018, 11, 1679. [Google Scholar] [CrossRef]
- Wei, J.; Oyunbaatar, N.-E.; Jeong, Y.-J.; Park, J.; Kim, S.-H.; Kwon, K.; Lee, H.; Won, Y.; Kim, D.-S.; Lee, D.-W. Enhancing Flexibility of Smart Bioresorbable Vascular Scaffolds through 3D Printing Using Polycaprolactone and Polylactic Acid. Sens. Actuators B: Chem. 2025, 422, 136667. [Google Scholar] [CrossRef]
- Zhai, Y.; Sun, Z.; Zhang, T.; Zhou, C.; Kong, X. Mechanical Property of Thermoplastic Polyurethane Vascular Stents Fabricated by Fused Filament Fabrication. Micromachines 2024, 15, 1266. [Google Scholar] [CrossRef]
- Martin, N.K.; Domínguez-Robles, J.; Stewart, S.A.; Cornelius, V.A.; Anjani, Q.K.; Utomo, E.; García-Romero, I.; Donnelly, R.F.; Margariti, A.; Lamprou, D.A.; et al. Fused Deposition Modelling for the Development of Drug Loaded Cardiovascular Prosthesis. Int. J. Pharm. 2021, 595, 120243. [Google Scholar] [CrossRef]
- Walker, T.G.; Kalva, S.P.; Yeddula, K.; Wicky, S.; Kundu, S.; Drescher, P.; d’Othee, B.J.; Rose, S.C.; Cardella, J.F. Clinical Practice Guidelines for Endovascular Abdominal Aortic Aneurysm Repair: Written by the Standards of Practice Committee for the Society of Interventional Radiology and Endorsed by the Cardiovascular and Interventional Radiological Society of Europe and the Canadian Interventional Radiology Association. J. Vasc. Interv. Radiol. 2010, 21, 1632–1655. [Google Scholar] [CrossRef]
- Fanelli, F.; Dake, M.D. Standard of Practice for the Endovascular Treatment of Thoracic Aortic Aneurysms and Type B Dissections. Cardiovasc. Interv. Radiol. 2009, 32, 849–860. [Google Scholar] [CrossRef]
- Blanchemain, N.; Martel, B.; Tabary, N.; Garcia Fernandez, M.-J.; M’bengue, M.-S.; Mesnard, T.; Sobocinski, J.; Hildebrand, F. Fabrication D’une Endoprothèse Par Impression 3d. Available online: https://patentscope.wipo.int/search/fr/WO2024213841 (accessed on 30 September 2025).
- Anderson, J.M.; Hiltner, A.; Wiggins, M.J.; Schubert, M.A.; Collier, T.O.; Kao, W.J.; Mathur, A.B. Recent Advances in Biomedical Polyurethane Biostability and Biodegradation. Polym. Int. 1998, 46, 163–171. [Google Scholar] [CrossRef]
- Christenson, E.M.; Anderson, J.M.; Hiltner, A. Biodegradation Mechanisms of Polyurethane Elastomers. Corros. Eng. Sci. Technol. 2007, 42, 312–323. [Google Scholar] [CrossRef]
- Davies, P.; Evrard, G. Accelerated Ageing of Polyurethanes for Marine Applications. Polym. Degrad. Stab. 2007, 92, 1455–1464. [Google Scholar] [CrossRef]
- Christenson, E.M.; Anderson, J.M.; Hiltner, A. Oxidative Mechanisms of Poly(Carbonate Urethane) and Poly(Ether Urethane) Biodegradation:In Vivo and in Vitro Correlations. J. Biomed. Mater. Res. 2004, 70A, 245–255. [Google Scholar] [CrossRef]
- Christenson, E.M.; Dadsetan, M.; Wiggins, M.; Anderson, J.M.; Hiltner, A. Poly(Carbonate Urethane) and Poly(Ether Urethane) Biodegradation: In Vivo Studies. J. Biomed. Mater. Res. 2004, 69A, 407–416. [Google Scholar] [CrossRef]
- Drobny, J.G. Thermoplastic Polyurethane Elastomers. In Handbook of Thermoplastic Elastomers, 2nd ed; Plastics Design Library; William Andrew Publishing: Oxford, UK, 2014; pp. 233–253. ISBN 978-0-323-22136-8. [Google Scholar]
- Feng, Y.; Li, C. Study on Oxidative Degradation Behaviors of Polyesterurethane Network. Polym. Degrad. Stab. 2006, 91, 1711–1716. [Google Scholar] [CrossRef]
- Christenson, E.M.; Patel, S.; Anderson, J.M.; Hiltner, A. Enzymatic Degradation of Poly(Ether Urethane) and Poly(Carbonate Urethane) by Cholesterol Esterase. Biomaterials 2006, 27, 3920–3926. [Google Scholar] [CrossRef]
- Weems, A.C.; Wacker, K.T.; Carrow, J.K.; Boyle, A.J.; Maitland, D.J. Shape Memory Polyurethanes with Oxidation-Induced Degradation: In Vivo and in Vitro Correlations for Endovascular Material Applications. Acta Biomater. 2017, 59, 33–44. [Google Scholar] [CrossRef]
- Chaffin, K.A.; Chen, X.; McNamara, L.; Bates, F.S.; Hillmyer, M.A. Polyether Urethane Hydrolytic Stability after Exposure to Deoxygenated Water. Macromolecules 2014, 47, 5220–5226. [Google Scholar] [CrossRef]
- ISO 11137-2:2013; Stérilisation des Produits de Santé—Irradiation—Partie 2: Établissement de la Dose Stérilisante. ISO: Geneva, Switzerland, 2013.
- ISO 10993-13:2010; Évaluation Biologique des Dispositifs Médicaux—Partie 13: Identification et Quantification de Produits de Dégradation de Dispositifs Médicaux à Base de Polymères. ISO: Geneva, Switzerland, 2013.
- ISO 25178-2:2021; Spécification Géométrique des Produits (GPS)—État de Surface: Surfacique Partie 2: Termes, Définitions et Paramètres D’états de Surface. ISO: Geneva, Switzerland, 2021.
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2022.
- Król, P.; Pilch-Pitera, B. Phase Structure and Thermal Stability of Crosslinked Polyurethane Elastomers Based on Well-Defined Prepolymers. J. Appl. Polym. Sci. 2007, 104, 1464–1474. [Google Scholar] [CrossRef]
- Schollenberger, C.S.; Stewart, F.D. Thermoplastic Polyurethane Hydrolysis Stability. J. Elastoplast. 1971, 3, 28–56. [Google Scholar] [CrossRef]
- Mrad, O.; Saunier, J.; Aymes Chodur, C.; Rosilio, V.; Agnely, F.; Aubert, P.; Vigneron, J.; Etcheberry, A.; Yagoubi, N. A Comparison of Plasma and Electron Beam-Sterilization of PU Catheters. Radiat. Phys. Chem. 2010, 79, 93–103. [Google Scholar] [CrossRef]
- Mrad, O.; Saunier, J.; Aymes-Chodur, C.; Mazel, V.; Rosilio, V.; Agnely, F.; Vigneron, J.; Etcheberry, A.; Yagoubi, N. Aging of a Medical Device Surface Following Cold Plasma Treatment: Influence of Low Molecular Weight Compounds on Surface Recovery. Eur. Polym. J. 2011, 47, 2403–2413. [Google Scholar] [CrossRef]
- Nouman, M.; Saunier, J.; Jubeli, E.; Marlière, C.; Yagoubi, N. Impact of Sterilization and Oxidation Processes on the Additive Blooming Observed on the Surface of Polyurethane. Eur. Polym. J. 2017, 90, 37–53. [Google Scholar] [CrossRef]
- Christenson, E.M.; Anderson, J.M.; Hiltner, A. Antioxidant Inhibition of Poly(Carbonate Urethane)in Vivo Biodegradation. J. Biomed. Mater. Res. 2006, 76A, 480–490. [Google Scholar] [CrossRef]
- Nouman, M.; Saunier, J.; Jubeli, E.; Yagoubi, N. Additive Blooming in Polymer Materials: Consequences in the Pharmaceutical and Medical Field. Polym. Degrad. Stab. 2017, 143, 239–252. [Google Scholar] [CrossRef]
- Nouman, M.; Jubeli, E.; Saunier, J.; Yagoubi, N. Exudation of Additives to the Surface of Medical Devices: Impact on Biocompatibility in the Case of Polyurethane Used in Implantable Catheters. J. Biomed. Mater. Res. Part. A 2016, 104, 2954–2967. [Google Scholar] [CrossRef]
- Ludwick, A.; Aglan, H.; Abdalla, M.O.; Calhoun, M. Degradation Behavior of an Ultraviolet and Hygrothermally Aged Polyurethane Elastomer: Fourier Transform Infrared and Differential Scanning Calorimetry Studies. J. Appl. Polym. Sci. 2008, 110, 712–718. [Google Scholar] [CrossRef]
- Jiao, L.; Xiao, H.; Wang, Q.; Sun, J. Thermal Degradation Characteristics of Rigid Polyurethane Foam and the Volatile Products Analysis with TG-FTIR-MS. Polym. Degrad. Stab. 2013, 98, 2687–2696. [Google Scholar] [CrossRef]
- Jayaraman, A.; Kang, J.; Antaki, J.F.; Kirby, B.J. The Roles of Sub-Micron and Microscale Roughness on Shear-Driven Thrombosis on Titanium Alloy Surfaces. Artif. Organs 2023, 47, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Hecker, J.F.; Scandrett, L.A. Roughness and Thrombogenicity of the Outer Surfaces of Intravascular Catheters. J. Biomed. Mater. Res. 1985, 19, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Linneweber, J.; Dohmen, P.M.; Kerzscher, U.; Affeld, K.; Nosé, Y.; Konertz, W. The Effect of Surface Roughness on Activation of the Coagulation System and Platelet Adhesion in Rotary Blood Pumps. Artif. Organs 2007, 31, 345–351. [Google Scholar] [CrossRef] [PubMed]









| Tg (°C) | Tc (°C) | ΔHc (J/g) | Tm (°C) | ΔHm (J/g) | |
|---|---|---|---|---|---|
| Control | −42 ± 0.9 | 90 ± 0.7 | 10.33 ± 0.35 | 161 ± 0.5 | 8.53 ± 0.39 | 
| H2O2/CoCl2-2w | −44 ± 0.8 | 93 ± 5.4 | 10.42 ± 0.25 | 161 ± 0.8 | 8.49 ± 0.19 | 
| H2O2/CoCl2-1m | −42 ± 0.9 | 90 ± 0.2 | 10.63 ± 0.37 | 161 ± 0.3 | 8.18 ± 0.26 | 
| H2O2/CoCl2-3m | −42 ± 3.0 | 90 ± 1.8 | 10.21 ± 0.61 | 160 ± 1.7 | 8.28 ± 0.34 | 
| NaOH-2w | −42 ± 0.6 | 90 ± 0.4 | 10.44 ± 0.63 | 160 ± 1.0 | 9.14 ± 0.56 | 
| NaOH-1m | −42 ± 1.0 | 89 ± 1.7 | 8.74 ± 0.09 | 159 ± 0.7 | 7.23 ± 0.07 | 
| NaOH-3m | −42 ± 3.8 | 87 ± 2.5 | 6.07 ± 1.17 | 150 ± 4.2 | 6.05 ± 0.49 | 
| Mn (g/mol) | Mw (g/mol) | Ð | |
|---|---|---|---|
| Control | 25,600 ± 540 | 60,000 ± 2750 | 2.36 ± 0.06 | 
| H2O2/CoCl2-2w | 26,000 ± 700 | 59,000 ± 1800 | 2.28 ± 0.08 | 
| H2O2/CoCl2-1m | 24,900 ± 1100 | 59,100 ± 1800 | 2.37 ± 0.05 | 
| H2O2/CoCl2-3m | 24,900 ± 920 | 58,600 ± 1700 | 2.36 ± 0.03 | 
| NaOH-2w | 25,300 ± 850 | 60,000 ± 1650 | 2.37 ± 0.07 | 
| NaOH-1m | 25,700 ± 560 | 60,800 ± 1250 | 2.37 ± 0.02 | 
| NaOH-3m | 25,800 ± 320 | 61,100 ± 1100 | 2.36 ± 0.02 | 
| Control | 2 Weeks | 1 Months | 3 Months | |
|---|---|---|---|---|
| H2O2/CoCl2 | 11.0 ± 2.5 | 16.2 ± 1.9 | 16.2 ± 1.4 | 18.6 ± 0.5 | 
| NaOH | 13.7 ± 1.8 | 14.6 ± 0.6 | 22.1 ± 1.4 | 
| Samples | E (MPa) | σmax (MPa) | A (%) | |||
|---|---|---|---|---|---|---|
| Para | Perp | Para | Perp | Para | Perp | |
| TPU | 13.8 ± 0.5 | 13.1 ± 0.6 | 11.0 ± 0.6 | 4.2 ± 0.2 | 752 ± 87 | 130 ± 33 | 
| H2O2/CoCl2-1m | 12.8 ± 1.0 | 11.8 ± 0.5 | 9.8 ± 1.5 | 4.0 ± 0.3 | 720 ± 62 | 82 ± 42 | 
| H2O2/CoCl2-3m | 13.2 ± 0.3 | 12.6 ± 0.4 | 10.3 ± 0.2 | 3.4 ± 0.8 | 746 ± 77 | 43 ± 22 | 
| NaOH-1m | 12.9 ± 0.7 | 12.7 ± 1.2 | 9.9 ± 0.5 | 3.4 ± 0.8 | 778 ± 130 | 53 ± 13 | 
| NaOH-3m | 12.8 ± 1.1 | 12.0 ± 2.3 | 10.6 ± 0.7 | 4.4 ± 0.5 | 801 ± 62 | 63 ± 35 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanden Broeck, K.; M’Bengue, M.-S.; Mesnard, T.; Maton, M.; Tabary, N.; Sobocinski, J.; Martel, B.; Blanchemain, N. In Vitro Degradation Studies of 3D-Printed Thermoplastic Polyurethane for the Design of Vascular Implant. Materials 2025, 18, 4948. https://doi.org/10.3390/ma18214948
Vanden Broeck K, M’Bengue M-S, Mesnard T, Maton M, Tabary N, Sobocinski J, Martel B, Blanchemain N. In Vitro Degradation Studies of 3D-Printed Thermoplastic Polyurethane for the Design of Vascular Implant. Materials. 2025; 18(21):4948. https://doi.org/10.3390/ma18214948
Chicago/Turabian StyleVanden Broeck, Kim, Marie-Stella M’Bengue, Thomas Mesnard, Mickaël Maton, Nicolas Tabary, Jonathan Sobocinski, Bernard Martel, and Nicolas Blanchemain. 2025. "In Vitro Degradation Studies of 3D-Printed Thermoplastic Polyurethane for the Design of Vascular Implant" Materials 18, no. 21: 4948. https://doi.org/10.3390/ma18214948
APA StyleVanden Broeck, K., M’Bengue, M.-S., Mesnard, T., Maton, M., Tabary, N., Sobocinski, J., Martel, B., & Blanchemain, N. (2025). In Vitro Degradation Studies of 3D-Printed Thermoplastic Polyurethane for the Design of Vascular Implant. Materials, 18(21), 4948. https://doi.org/10.3390/ma18214948
 
        

 
       
       
       